
International Journal of Computer Applications (0975 – 8887)  

Volume 64– No.18, February 2013  

48 

Finding all Occurrences of a Pattern by a Genetic 

Algorithm based Divide-and-Conquer Method 

 
Sagnik Banerjee 

Department of Computer 
Science & Engineering, 

Jadavpur University, 188 Raja 
S.C. Mullik Road,  

Kolkata-700032, West Bengal, 
India 

 

Tamal Chakrabarti 
Department of Computer 

science & Engineering, Institute 
of Engineering and 

Management, Y-12, Block -EP, 
Sector-V, Salt Lake Electronics 

Complex, Kolkata-700091, 
West Bengal, India  

 

Devadatta Sinha 
Department of Computer 
Science & Engineering, 
Calcutta University, 92 

AcharyaPrafulla Chandra Road,  

Kolkata-700009, West Bengal, 
India  

 

ABSTRACT 

The method of finding a sequence of characters, called the 

pattern, in another much longer sequence of characters, called 

the text, is known as pattern matching. Several pattern-

matching algorithms exist, that locate all the positions where a 

pattern occurs in a text. In this paper we have presented an 

algorithm which implements a divide and conquer technique, 

which divides the text in smaller independent sub-texts and 

then looks for the existence of the pattern in each such sub-

text. The said divide and conquer method thus eventually 

finds all the occurrences of the pattern in the given text. The 

points of division have been chosen using a genetic algorithm. 

General Terms 

Pattern Matching, Genetic Algorithm, Divide and conquer 

Keywords 

Divide and Conquer; Pattern Matching; Bioinformatics; 

Genetic Algorithm. 

1. INTRODUCTION 
Many computing applications today requires the task of 

finding the first, or all of the occurrences of pattern in a text 

— string searching — to be performed [2]. A string matcher 

usually aligns the pattern with the beginning of the text and 

keeps shifting the pattern forward until a match is found or the 

end of the text is reached, indicating the existence or 

otherwise of the pattern in the text [4].  Complex methods of 

string matching [9] today are used in a variety of areas, such 

as locating DNA sequences (genetics), fingerprint assessment 

(criminology), soil patterns (geology), retinal blood vessel 

assessment (medicine), design of assembly lines to improved 

flow (business), continuous speech profiles [8] and many 

other fields.  

For example, DNA Pattern matching is an important task of 

the pattern discovery process in Bioinformatics for finding the 

structural and functional behavior in genes [7], [11]. 

Molecular biologists often search for the important 

information from the DNA databases in different directions of 

different uses, such as detection of disease etc. [10]. With the 

increasing need for instant information, pattern matching 

algorithms will continue to play a very important role in the 

application of Bioinformatics [12]. 

 

Most widely used algorithms for pattern matching are Knuth 

Morris Pratt (KMP) and Boyer Moore (BM). These 

algorithms are sequential in nature. In order to locate all 

occurrences of a given pattern in the text these algorithms 

search the entire length of text. Due to the sequential nature of 

these algorithms the run time of the operation of pattern 

matching becomes very high. Our algorithm breaks up the text 

into independent units.  

The division of the entire text into independent units is done 

based on a genetic algorithm (GA). Genetic algorithm is an 

adaptive search heuristic in the field of Artificial Intelligence 

that imitates the process of natural evolution [5]. It works on a 

philosophy of “natural selection” to pick the best among the 

candidates from a generation. For GA we have used the most 

common genetic operators like crossover and mutation to 

create better individuals. 

2. RELATED WORK 
The Knuth-Morris-Pratt (KMP) [6] and the Boyer-Moore 

(BM) [3] algorithms are the two most widely used pattern 

matchers. We will denote ‘n’ as the size of the text and ‘m’ as 

the size of the pattern (n >> m) in subsequent discussions. 

Table 1 depicts the same. 

 

Table 1. Important notations – 1 

Abbreviations Description 

n Size of text 

m Size of pattern 

 

KMP makes use of the observation that when a mismatch 

occurs, the pattern itself embodies enough information to 

determine where the next match could begin. KMP, therefore, 

does pre-processing of the pattern. 

Unlike KMP, the BM algorithm makes use of two heuristics, a 

good character heuristic and a bad character heuristic. The 

shifting of the pattern in the event of a mismatch is decided 

based on the value of these heuristics. 

The complexity of KMP is O(m+n), whereas the complexity 

of BM is O(n/m). 

We had designed an algorithm [1] to search for the presence 

of a given pattern only in that portion of a text where there is a 

high chance for it to exist. The portion of the text, where the 

existence of the pattern is very probable, was identified by a 

genetic algorithm. Experimental results established that the 

algorithm runs faster than the KMP or BM algorithms. But 

using our algorithm one could only tell whether a given 

pattern exists in a text or not. In case a text had multiple 



International Journal of Computer Applications (0975 – 8887)  

Volume 64– No.18, February 2013  

49 

occurrences of a pattern, it is sometimes necessary to find out 

all such occurrences. This paper presents a pattern matcher to 

do exactly that, by employing a divide and conquer technique 

combined with the genetic algorithm. 

3. ALGORITHM 
Initially, using genetic algorithm the location of one 

occurrence of the pattern in the text is found.  The genetic 

algorithm initializes the population with random 

chromosomes. We have considered the binary representation 

of positions in the text as chromosomes. For example the 

position 15 is 00001111 (we had used 64 bit representation). 

For each such chromosome their fitness is calculated. 

3.1 Fitness function 
For the purpose of calculating the fitness of each chromosome 

a look up table is generated [1]. For every chromosome we 

chose an area of m-1 elements to the left of the position and m 

elements to the right of that position. Let this area be ‘A’. 

Then A is scanned sequentially. A pair of characters is chosen 

from the area ‘A’. If that position in the look_up table 

contains zero then the fitness value is incremented once. If 

that position contains one then the increment of the fitness 

value is one greater than the increase in the previous iteration. 

The equations are given below: 

                                       

       

 
 
 
 
 
 
 

 
 
 
 
 
 

                                     

         

         

                                     

         

   

                                     

     

         

                                     

     

   

  

        
                                  

                                     
  

      
                                    

                  
  

3.2 Genetic operators 
Selection of the chromosomes is done by spinning the roulette 

wheel. Thus fitter individuals have a greater chance of being 

selected. These selected individuals are then crossed over to 

produce new individuals. We follow the procedure of 

scattered crossover here. After crossover we go for mutation. 

In this case we have used the procedure of single-bit mutation. 

It is a unary operation where the bit at any random position is 

flipped. These operations are repeated over and over again for 

a certain number of times to produce fitter individuals. 

 

 

 

 

 

Thus by applying our genetic algorithm, we can locate one of 

the occurrences of the pattern in the given text [1]. Let the 

starting of this area be denoted by left and ending be denoted 

by right.  Then this point of occurrence was used to divide the 

larger text in two smaller parts. If the pattern was located at 

position p in the text, then the algorithm would divide the text 

into two parts, one from left to (p + FK[1] - 1) and another 

one from (p + length_of_pattern - FK[1] + 1) to right. Here 

FK is the failure function generated during pattern pre-

processing by KMP. This has been illustrated in the following 

pseudo code. 

Algorithm patternMatcher(left, right) 
If (left < right) 

p = search (left, right)  

// use GA to search for the pattern  
// between left and right indices 

 patternMatcher (left, p + FK[1] - 1) 

 patternMatcher (p + length_of_pattern-FK[1] + 1 ,right) 
end if 

end function 

 

The function search() applies GA to locate one occurrence of 

the pattern in the text within the positions left and right. 

Following the call to function search() there are calls to the 

function patternMatcher() with different parameters. These 

are basically recursive calls which search the portion of the 

text before position p and after position p. The following 

example illustrates the procedure. We consider the following 

text and pattern. 

Initially the algorithm patternMatcher starts with left=0 and 

right=25. Then let us assume that the search procedure returns 

9. If the portion of the text under consideration has more than 

a single occurrence of the pattern then the search procedure 

can return the starting position of any such occurrence. Then 

the algorithm divides the entire text into two parts, one part 

from 0 to 9 and the other one from 10 to 25. Then it calls the 

search procedure recursively on these two parts. The first 

portion returns 1 and the next portion returns 24. Now each of 

these individual portions will get further subdivided. The 

recursive procedure will end when the value of left is no 

longer less than that of right or if the search procedure returns 

0, i.e. the portion of text under consideration does not have the 

pattern. 

The following example depicts detection of a smaller gene 

sequence (pattern) within a larger gene sequence (text). We 

assume that the pattern is a disease causing gene sequence. 

We will apply our algorithm to locate all occurrences of such 

a pattern within a genetic text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 64– No.18, February 2013  

50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig1: Text 
Figure 1: Text 

Figure 2: Pattern 

Figure 3: FK 

Figure 4: Recursion Tree 



International Journal of Computer Applications (0975 – 8887)  

Volume 64– No.18, February 2013  

51 

The above procedure works exactly like the previous 

illustration. Therefore we can detect presence and the 

locations of disease causing genes in a given larger gene 

sequence. The extent of the disease can also be estimated 

from the number of times such disease causing gene occurs in 

the sequence. Since the locations of the genes can be pin-

pointed exactly, genetic engineering techniques can be applied 

to cure such diseases. 

 

4. EXPERIMENTS 
We have executed our algorithm, with different sets of text 

and pattern files. We have tested with texts of size 750MB, 

900MB, 1024MB, 1280MB and 1536MB. The pattern file 

was of size 100B. With this set up we have later demonstrated 

a comparison of the behavior of our algorithm, when it is used 

in conjunction with the KMP algorithm and the BM 

algorithm. This experiment shows how change in text size 

affects run time. 

In another experiment we demonstrate the change in run time 

with respect to change in pattern size. For this case we chose a 

text file of length 750MB. The pattern files were of sizes 

100B, 125B, 150B, 200B, 250B. 

We have conducted our experiments in the following 

environment. 

 Hardware 

o Processor -  Intel® Core™ i7-3610QM 

CPU @ 2.30GHz × 8 

o RAM – 8GB 

o Disk 1000 GB 

 Software 

o Operating system – Open SUSE Kernel 

version 3.1.0-1.2-desktop 

o OS type – 64-bit 

o Compiler used – GCC version 4.6.2 

(SUSE Linux) 

5. OBSERVATIONS 
The results of our experiments have been depicted below. The 

first graph shows the change of average execution time of the 

program with respect to change in text size. The second graph 

displays the change in average execution time with respect to 

change in pattern size. 

 

Figure 5: References 

 

 

Figure 6: Average execution time vs text size 
 

 

6. CONCLUSION 
From the graphs we can conclude that our method employed 

with the BM algorithm performs better than the corresponding 

KMP version when divide and conquer is used. The sequential 

nature of conventional KMP and conventional BM prevents 

us to use processors that are lying idle in the system. The 

algorithm suggested in this paper overcomes this problem by 

dividing the text recursively into smaller texts which are 

independent of each other. These independent units can be 

parallely executed to achieve better performance. Moreover 

one can use a pool of threads to simulate the parallelism. The 

only problem with our algorithm is that it will take more time 

to complete execution if the pattern does not occur in the text. 

This is due to the overhead of computations used in GA. 

7. REFERENCES 
[1]  Banerjee Sagnik, Chakrabarti Tamal and Sinha 

Devadatta (2012), A Genetic Algorithm Based Pattern 

Matcher, International Journal of Scientific & 

Engineering Research, Volume 3, Issue 11 

[2]  Baeza-Yates. R. A. String Searching Algorithms 

Revisited. Lecture Notes in Computer Science, 382:75–

96, 1989. 

[3]  Boyer R. and Moore J.S. A Fast String Searching 

Algorithm. Comm. of the ACM, 20:762–772, 1977. 

[4]  Colussi. L.  Fastest Pattern Matching in Strings. Journal 

of Algorithms, 16:163–189, March 1994. 

0 

5000 

10000 

15000 

20000 

25000 

750 900 1024 1280 1536 A
ve

ra
ge

 E
xe

cu
ti

o
n

 t
im

e
 (

in
 

m
s)

 

Text size (in MB) 

0 

2000 

4000 

6000 

8000 

10000 

12000 

100 125 150 200 250 

A
ve

ra
ge

 E
xe

cu
ti

o
n

 t
im

e
 (

in
 

m
s)

 
 

Pattern size (in bytes) 

Figure 7: Average Execution time vs. Pattern size 



International Journal of Computer Applications (0975 – 8887)  

Volume 64– No.18, February 2013  

52 

[5]  Goldberg, D.E. (2011): Genetic Algorithms in Search, 

Optimization and Machine Learning, Pearson. 

[6]  Knuth D., Morris J. and Pratt V. Fast Pattern Matching in 

Strings, SIAM Journal of Computer Science, pp323 – 

350, 1977 

[8]  Mount David W., Bioinformatics – Sequence and 

Genome Analysis, Cold Spring Harbor Laboratory Press, 

2001. 

[9]  Navarro G. and M. Raffinot. Fast and Simple Character 

Classes and Bounded Gaps Pattern Matching, With 

Application to Protein Searching. In Annual Conference 

on Research in Computational Molecular Biology, 

Montreal, Canada, 2001 

[10]  Rajesh S., Prathima S., Reddy L.S.S., Unusual Pattern 

Detection in DNA Database Using KMP Algorithm, 

International Journal of Computer Applications (0975 - 

8887)Volume 1 – No. 22, 2010. 

[11]  Simone Faro and Thierry Lecroq.An Efficient Matching 

Algorithm for Encoded DNA Sequences and Binary 

Strings. Lecture Notes in Computer Science, 2009, 

Volume 5577/2009, 106-115. 

[12]  Smith-Keary. P. Molecular Genetics. Macmillan 

Education Ltd, London, 1991.

 


