
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.15, February 2013

16

 A Model for GUI Automated Testing Framework in
Software System

J.Prabhu
Research Scholar,

CMJ University,
Shillong, Meghalaya, India

G.Gunasekaran, PhD.

Principal
Meenakshi college of Engineering,

K.K.Nagar, Chennai-78, India

ABSTRACT

A pervasive method for GUI testing is the Capture and

Playback (CP) technique. This commonly used technique

cannot be used until an Application Under Test (AUT) is

completely developed. In this paper we propose a

specification driven approach to test GUI-Based java

programs as an alternative to the CP technique. We introduce

a GUI-event test specification language based on Java Script

from which an automated test engine is generated.

The esteem of Java as a scripting language is its ease of use

and its standard format that have made writing a test script

using our proposed specification language makes it an easy

task. Beside the ability to test AUT before being completely

developed we have implemented our approach that can

generate the test specification file for an already existing

AUT. The Tool generates GUI events, where Captures and

Playback event responses to automatic verification of the

results for the test cases which are written to a test log file.

This approach supports M-version testing, where each version

of the application is intended to satisfy the same specification.

General Terms
Software Testing, Testing Model, Architecture

Keywords
GUI Testing, Testing Tools, Java Script , Graphical User

Interfaces, Application Under Testing

1. INTRODUCTION

Graphical User Interface (GUI) has become an important and

accepted way of interacting with software leading to more and

more complex GUIs. Although they make software easy to

use from user’s perspective, they complicate the challenges in

testing the correctness of a GUI [1].

The main challenge is that GUI - based programs are event

driven, where an event is triggered when the user interacts

with the program through GUI. Common user interactions

include moving or clicking the mouse, selecting a graphic

object, typing into a text field, or closing a window. The

fundamental difference between event-driven programs and

data-driven programs complicate test automation. Simple test

automation involving input or output redirection that is

adequate for data-driven programs will not be suffice for GUI

based testing which requires a combination of data and event

stimuli. Special tools are needed to simulate inputs and user

actions that occur through the graphical user interface

[2].With the commonly used CP tools, a test designer interacts

with the GUI of the AUT and all the events are recorded in a

test script.

The test script can later be replayed by the CP tool to recreate

user interactions. CP tools are effective in saving the

development time of GUI test programs; however, a

deficiency of CP-based technologies is that test scripts cannot

be generated before an AUT is ready for testing.

Thus, the captured test scripts have more description of the

system behavior than a system specification. It may also be

difficult to maintain, when the system specification changes.

Furthermore, test-first programming can never be applied with

CP tools, since nothing can be captured in advance [3].

Therefore, there are researches studying specification based

approaches for GUI testing .These researches aim at defining

GUI specification languages for the definition of system

behavior and then generate test scripts based on the

specification languages. The test scripts written in these

specification languages can be automatically executed to

perform verification of the AUT [3]. It contains methods to

reproduce all user actions that can be performed on

Swing/AWT GUI components, such as pushing buttons or

typing text. The reflection API is used to identify and access

GUI components defined inside the software under test, it

permits the development of a test harness capable of

generating application-specific GUI events, capturing the

responses to the events, and verifying correct behavior.

In this paper, we worked on the specification language used

for testing in the current state of the art to be written as JAVA

Scripting which provides the specification language with

standardized format, ease of use and small learning time.

Since specification language is made of fully JAVA Script

compliant, it takes advantage of existing JAVA Script

development tools such as Visual editor for modeling,

editing, transforming, and debugging scripting technologies.

Next we provide a generator that converts test specification

written in Java into a program which is used to generate

events that implement user test cases given in specification

script. The generator also contains a test oracle to verify that

correct response occur and produce a log file for the given test

script. Then we provide a visual tool to automatically generate

specification script from an already existing AUT that helps

the test designer to test already existing applications, as he has

to edit only the user actions to be executed and its expected

states using a visual hierarchy configuration.

2. GUI TESTING

GUI testing is vital for quality assurance because the GUI

tests are performed from the view of the end users of the

application. Mostly, all the functionality of the application can

be invoked through the GUI and therefore GUI tests can cover

the entire application [8]. Because manual testing of GUI

software is tedious and laborious; there is a great need for

reducing the high costs by means of automated GUI testing.

The most popular tools used to test GUIs are

Capture/Playback tools [8]. Some tools record mouse

coordinates of the user actions as test cases. The problem with

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.15, February 2013

17

such tools is that even a minor modification in the GUI breaks

the corresponding test cases. One approach to overcome this

problem is to capture GUI widgets rather than mouse

coordinates. Although replay is automated, significant effort

is required to create the test cases and to detect the failures.

Another popular approach is to invoke the methods of

underlying code as if initiated by the GUI [9]. Due to GUI

software being created using rapid prototyping, the GUI is

constantly changing during the development, making

maintenance of capture/Playback or test scripts very

expensive [10]. Therefore the current GUI testing techniques

used in practice are incomplete, and a substantial amount of

manual effort is required from the test designer [11]. A

number of research results have shown AUT as a promising

solution to overcome the maintenance weakness of capture

and Playback tools [12].

2.1 Various Open Source GUI Testing

Tools

Abbot is a framework for GUI testing. Its basic functionality

allows a developer to write GUI unit tests in the form of Java

methods which call the Abbot framework to drive an

application’s GUI. Besides tests written in Java, Abbot also

allows the specification of tests in the form of XML test

scripts. It provides a script editor called Costello for editing

such scripts. Besides the manual editing of test scripts,

Costello also supports the recording of scripts by capturing

the events occurring in a running application [14].

Jacareto is a GUI captures and replay tool supporting the

creation of animated demonstrations, the analysis of user

behavior, as well as GUI test automation. Given this broad

spectrum of applications, Jacareto provides a number of extra

features, such as the highlighting of specific components in

the GUI, extension points to capture and replay application-

specific semantic events, or the embedding of Jacareto into

the GUI application for providing macro-record and replay

functionality. Jacareto comes with two front-ends,

CleverPHL, a graphical tool with extensive support for

recording, editing, and replaying interaction scripts and

Picorder [15].

Pounder is exclusively focused on capturing and replaying

interactions for GUI testing. It stores interaction scripts as

XML files and is not intended to be used for manually writing

tests. Compared with Abbot and Jacareto, Pounder is a

lightweight tool, as can be seen by its narrow focus and its

small size [16].

Marathon seems to be an open-source version of a more

powerful commercial product. Besides providing a recorder

and a player, Marathon also comes with an extensive editor

for interaction scripts. Marathon records interaction logs as

Python scripts [18].

JFC Unit is an extension that enables GUI testing based on

the JUnit testing framework. JFC Unit allows a developer to

write Java GUI tests as JUnit test case methods. The main

focus of JFC Unit is the manual creation of GUI tests

(following JUnit’s approach), but a recording feature has been

added in a recent version [17].

Table 1 Open Source GUI Tools

 TOOL

Fields Abbot Jacareto Pounder JFC M.thon

Text field

MouseMove

MouseDrag

MouseClick

Component

Scrolling

FileDialog

ComboBox

Timing

The coverage of various testable items in the above discussed

open source GUI Tools are summarized in Table 1[6]

2.2Automated Modeling and Testing of

Java GUIs

The GUI Driver tool that we implemented is a proof-of-

concept and a tool chain for automated modeling and testing

of Java GUI applications. Our aim is to reduce the manual

effort required to create models for GUI testing by providing

tool support for automatically generating models suitable for

AUT. In our approach, the models are generated while

automatically executing and observing the AUT. The

generated models include structural tree models presenting the

GUI components and their properties, and a GUI state model

presenting the behavior of the GUI and mapping the structural

models into the abstract states. The Application are generated

for each state of the GUI application and saved into JAVA

Scripting files. Comparing two consecutive structural models

makes it possible to observe the changes happening in the

GUI, while automatically interacting with the GUI

application. The GUI state model represents the behavior of

the GUI application as a state machine, presenting GUI states

as nodes and interactions between the states as edges. The

structural models are automatically mapped into the abstract

states of the GUI state model. For the GUI state model, we

also provide human readable graphical representation to allow

checking the implementation against the requirements of the

system. Normally, AUT based on the requirements and

automatically generating a test suite based on that model to

check whether it fulfils the requirements. In our approach the

generated models are based on the actual implementation, so

the generated GUI state model should be compared with the

requirements of the system. Another goal for the graphical

modeling is to allow manual elaboration of the model, for

example, adding valid and invalid input values for text fields

of the GUI. Also, automatically generated graphical models

can help developers to understand and analyze an existing

implementation if proper models of the system are missing.

An example of the GUI Tool model is shown in Figure 1.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.15, February 2013

18

Figure 1: Generated GUI Application model displayed by GUI Testing tool.

3. GUI TOOL ARCHITECTURE

We have implemented the GUI tool to support our approach.

It is a tool for programmatically driving a Java GUI

application and generating models representing the states and

behavior of the GUI. The created models are then used for

AUT purposes. In the high level architecture of the GUI Tool,

presented in Figure 2, the main parts of the tool are GUI Tool,

Event Recorder, Event Dispatcher, Method invoker, Event

log, Call Log .

Figure 2: High level architecture of the GUI Tool.

After starting the AUT, the GUI Tool identifies the accessible

and focused GUI window of the Java GUI application, creates

a structural model of the window including the GUI

components and their properties, and saves the model in an

Log file. Then, it identifies the enabled and visible

interactions, selects and executes one of the available GUI

actions and creates a new structural model after each executed

GUI action. In case of selecting exit or close action during the

execution, the AUT is restarted. The Model Generator

observes the behavior of the GUI, checks if a specific GUI

state is a new one or one of the old states, and creates a state

model of the GUI application suitable for AUT. Also, the

generated structural models are mapped to the abstract states

of the GUI state model. Currently, the GUI state model is

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.15, February 2013

19

saved in JASON format that is applicable for the generation of

test sequences with an open source AUT tool [13].The Test

Executor is able to parse test sequences generated by the AUT

tool [13], execute the test sequences on the AUT, verify

whether the expected states were reached after executing the

specified GUI actions, and create a test report including

information about executed GUI actions, reached GUI states,

and abnormal behavior like unhandled exceptions.

3.1 Automatic selection of GUI actions

The GUI Tool uses certain rules and preferences for selecting

one of the GUI actions provided by the AUT. The default

way is to select one of the GUI actions that have not been

selected in that GUI state earlier.

The State-based logging: in this logging type the start and the

end time of each event that uniquely define a state are stored

in the log file .This file type contains a set of interval records

each one of them is characterized as ‘begin interval’, ‘end

interval’, ‘continuation interval’ and ‘complete interval’. The

enabled actions of consecutive states are compared and new

GUI actions are preferred over the ones that were available in

the previous state. That way after opening a drop-down menu

it is probable that one of the actions of that menu is selected.

If there are many evenly preferable actions, one is selected

randomly.

3.2 Identifying the visited GUI states.

After generating a structural model of the AUT, the GUI tool

compares the reached GUI state to the states visited earlier to

check, whether the state is a new one or one of the already

visited GUI states. The first criteria for a GUI state to be

considered the same as one of the already visited states is that

both states must have the same enabled GUI actions. The

secondary generates the test cases of the Application. The

number of the structural changes that are tolerated for similar

GUI states can be specified in the settings.

3.3 Test-Suite Reduction

Test-suite reduction may be divided into two kinds in more

detail: reduced test suite and minimized test suite. Minimized

test suite is a test suite that cannot be reduced any more. If we

use the heuristics algorithm is to reduce the test suite shown.

But this heuristics algorithm only considers coverage degree

of test case for test requirements, and does not consider the

characteristic of MC/DC, moreover, It does not consider the

capability of test case to reveal error [4]

3.4 GUI Test case Generation.

The planning has also been used to manage the state space

explosion by eliminating the need for explicit states. A

description of the GUI is manually created by a tester; this

description is in the form of planning operators, which model

the preconditions and effects (post conditions) of each GUI

event. Test cases are automatically generated from tasks (pairs

of initial and goal states) by invoking a planner which

searches for a path from the initial to the goal state.[7]

System data is a necessary ingredient for testing since internal

data is the base of any ERP system and will most likely be

processed during any execution.[5]

4. Conclusion and Future Enhancement

In this paper we presented an approach for automatic

modeling of Java GUI applications for Application Under

testing (AUT) purposes, implemented proof-of-concept tool

support for the approach, and combined the implemented GUI

tool with an open source AUT tool to form a tool chain for

automated modeling and testing of Java GUI applications.

Our approach aims to reduce the amount of manual effort

required to model GUI applications to enable automated

testing. The strengths of our approach in comparison to the

automated testing tools include automatically generating

human readable graphical models while requiring none or

only a little manual effort.

The graphical models provides the test engineers, a way to

manually elaborate the models, for example inserting valid

input values for specific input fields of the GUI application,

and allow comparison between testing tools based on the

actual implementation and requirements of the system. The

tool chain was used to automatically model and test several

open source Java GUI applications, resulting in the

breakthrough of several unknown errors and usability

problems.

The approach seems hopeful but there are also limitations. As

our approach is based on running and observing existing

software, the AUT must be an executable Java GUI

application, and the models are based on the actual

implementation instead of designed and expected features.

Also, more work is needed on the GUI Tool, as the proof-of-

concept implementation is not yet mature enough to be used

in the software industry.

In future, we plan to improve the GUI Tool so that the

generated models and reports would inform about the detected

usability issues and include information about the changes

that happened in the GUI after a specific interaction. The GUI

Tool should indicate more clearly the states that should be

manually elaborated in the model and support iterative

modeling containing manual and automated phases. Also, we

plan to extend the approach to be also usable on other kinds of

GUI applications.

5. REFERENCES

[1] A. M. Memon, M. E. Pollack, and M. L. Soffa.

“Hierarchical GUI Test Case Generation using

Automated Planning”, IEEE Transactions on Software

Engineering, 27(2), February 2001, pp.144-155.

[2] Y. Sun and E. L. Jones, “Specification-Driven

Automated Testing”,Proceedings of the 42nd Annual

Southeast Regional Conference, pp 140-145, 2004.

[3] Woei-Kae Chen, Tung-Hung Tsai and Hung-Hsing Chao

“Integration of Specification-based and CR-based

Approaches for GUI Testing”, Proceedings of the 19th

International Conference on Advanced Information

Networking and Applications (AINA’05), pp 1-6, 2005

[4] J.Prabhu, N.Malmurugan, G.Gunasekaran, R.Gowtham”

Study of ERP Test-Suite Reduction Based on Modified

Condition/Decision Coverage”, proceedings of the

Second International Conference on Computer Research

and Development (ICCRD) pp373-378,2010

[5] J.Prabhu, N.Malmurugan ” Finding Bugs in ERP

Application Using Test Data”, International Journal of

Computer Theory and Engineering, Vol. 3, No. 5,

October 2011,pp 690-696

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.15, February 2013

20

[6] J.Prabhu, N.Malmurugan ” A Survey on Automated GUI

Testing Procedures”, European Journal of Scientific

Research, Vol.64 No.3 (2011), pp. 456-462

[7] Xun Yuan, Atif M. Memon, “Generating Event

Sequence-Based Test Cases Using GUI Runtime State

Feedback” IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 36, NO. 1,

JANUARY/FEBRUARY 2010, pp. 81-95

[8] K. Li and M. Wu, “Effective GUI Test Automation:

Developing an Automated GUI Testing Tool”, SYBEX

Inc.,Alameda, CA, 2004.

[9] A. M. Memon, “Automatically repairing event sequence

based GUI test suites for regression testing”, ACM

Transactions on Software Engineering and Methodology

(TOSEM), Volume 18, Issue 2 (November 2008), Article

No. 4

[10] M. Grechanik, Q. Xie, and C. Fu, “Maintaining and

Evolving GUI-Directed Test Scripts”, Proceedings of the

2009 IEEE 31st International Conference on Software

Engineering (ICSE 2009), pp. 408-418.

[11] A. M. Memon, “An event-flow model of GUI-based

applications for testing”, Software Testing, Verification

& Reliability, Volume 17, Issue 3 (September 2007), pp.

137 -157.

[12] M. Utting and B. Legeard, “Practical Model-Based

Testing: A Tools Approach”, Morgan Kaufmann

Publishers Inc, San Francisco, CA, USA, 2006.

[13] http://mbt.tigris.org/

[14] http://www.abbot.sourceforge.net/

[15] http://www.jacareto.sourceforge.net/

[16] http://www.pounder.sourceforge.net/

[17] http://www.jfcunit.sourceforge.net/

[18] http://www.marathontesting.com/

http://www.abbot.sourceforge.net/
http://www.jacareto.sourceforge.net/
http://www.pounder.sourceforge.net/
http://www.jfcunit.sourceforge.net/

