
International Journal of Computer Applications (0975 – 8887)  

Volume 64– No.12, February 2013   

38 

Code Size Reduction in Embedded Systems with 

Redesigned ISA for RISC Processors 

 
Govindarajalu B, 

B S Abdur Rahman University,  
Vandalur, Chennai -600048,  

India 

K.M.Mehata, PhD. 
B S Abdur Rahman University,  
Vandalur, Chennai-600 048,  

India 
  

ABSTRACT 

Reducing the size of a program is a major goal in modern 

embedded systems. Large code occupies more space in the 

Chip and also causes higher power consumption because of 

increased memory traffic. In this paper, a revised architecture 

is proposed for embedded processors by replacing the Load-

store Architecture with Register-Memory Architecture for 

selected instructions. Analysis of RISC object code for 

Embedded Applications, using an offline tool developed by 

the authors, establishes the scope for a new class of processor 

exclusively for embedded applications. We have used this tool 

to simulate Register-Memory Architecture for MIPS 

processor. Based on the results, MIPS processor's instruction 

set is enhanced with 12 new instructions of Register-Memory 

Architecture. Experimental results for MiBench Benchmark 

programs with Register-Memory Architecture Simulation 

reveal that code size reduction up to 22% can be achieved 

with modified MIPS Architecture. This is also applicable for 

microMIPS processor that claims 35% code space saving with 

16-bit instructions, thus offering a total of over 55% code 

space reduction compared to MIPS32 Architecture, for 

embedded systems. Equivalent memory reduction achieved is 

very significant for Embedded Systems built using SOCs.  

Processor design modifications, required at microarchitecture 

level, are also identified. Other additional features that can be 

combined with Register-Memory Architecture for an efficient 

embedded processor are identified.   
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1. INTRODUCTION 
An embedded system usually performs a dedicated function, 

and is generally non-programmable by users. Use of 

embedded systems has increased rapidly in several 

applications, ranging from small hand held products to 

sophisticated medical equipments and aerospace. Though 

performance is important, it is not critical in several 

embedded systems such as cameras, video game consoles, TV 

remote controls, cell phones, personal data assistants (PDAs), 

and toys.  Instead, cost, power consumption and physical 

dimensions are the critical factors. 

Embedding multiple processor cores in single system-on-a-

chip (SOC) is a modern design practice that offers lower 

design cost, reduced time-to-market and design reuse. The 

code size is one of the factors that affect the chip space and 

power consumption since the program memory is on-chip in 

most embedded systems.  If the code size increases, number 

of instructions fetched also increases thereby increasing the 

power consumption. High power consumption also leads to 

increased operating temperature since it is not practical to use 

cooling fans in most embedded systems. Operating these 

systems for long duration may also cause reliability problems 

apart from reducing the battery life. Considering these issues, 

it is essential that processor designers need to suitably modify 

the existing RISC processors thereby making them more 

suitable for embedded systems. The following discussion 

explains why present day RISC processors contribute to 

increased power consumption.  

1.1 Code size and RISC Processors 
Presently RISC processors are used as embedded processors 

since they offer high performance. Originally, the Load-Store 

Architecture (LSA) was chosen for RISC processors with an 

aim to simplify and minimize the processor hardware circuitry 

so as to house the entire processor on a single chip. The LSA 

also enables easy implementation of instruction pipelining 

that increases processor performance. This made RISC 

processors the preferred choice for workstations and servers. 

However, the LSA is undesirable for embedded systems 

because of its impact on code size. In LSA, only load and 

store instructions can access memory operands and the 

arithmetic/logical instructions can access register operands 

only.  Since arithmetic and logical operations on memory 

operands are not permitted in LSA, the compiler places a load 

instruction, before an add instruction, to move the data from 

memory to register. Similarly, the result of an add instruction 

is stored by the processor in a register. Hence a store 

instruction has to be placed, after the add instruction, by the 

compiler, for moving the result to main memory.  This 

practice results in too many load and store instructions also 

known as data transfer instructions.  A comparison [1] of 

distribution of Arithmetic/logic instructions and data transfer 

instructions for two benchmark programs on VAX and MIPS 

is shown in Table 1. The VAX is a popular CISC processor 

and MIPS is a popular RISC processor. The 50% to 133% 

increase in data transfer instructions for the MIPS, compared 

to the VAX, is due to use of several load and store 

instructions in MIPS. This ‘code size bloating’ problem of 

RISC processors is depicted in [2] which compares the object 

code size of an MPEG2 encoder compiled on multiple 

processors of different architectures. The Intel x86, a typical 

CISC processor with Register-Memory architecture (RMA) 

needs  50.6 kB of code, while the RISC processors ARM 

Thumb and SHARC need 68.2 kB and 106.2 kB respectively.  
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Table 1.  Frequency of Data Transfer Instructions in  

Typical CISC and RISC Processors  

 

  Program 
 

Processor 

 

ALU 

 instructions 

 

 Data  

transfer                 

instructions 

  gcc   VAX   40%   19%                                   

  gcc   MIPS   35%   27% 

  spice   VAX   23%   15% 

  spice   MIPS   29%   35% 

 

The code bloating problem is more critical for embedded systems 

thereby requiring serious efforts to minimize it. The frequency of 

usage of LOAD and STORE instructions in MIPS object codes 

for embedded systems has been estimated by the authors with the 

MiBench Benchmark programs. The MiBench is a popular suite 

that is widely used for evaluating the behavior of embedded 

systems. Table 2 lists the percentage distribution of LOAD, 

STORE and ADD instructions for six different MiBench 

programs compiled using SimpleScalar simulator and analyzed 

using an offline instruction distribution analyzer tool developed 

by the authors. From these measurements, it is obvious that the 

LSA Architecture is a burden on Embedded Systems.  

TABLE 2.  Distribution of LOAD, STORE and ADD 

Instructions in Embedded Programs for MIPS 

 

MiBench 

Program 

LOAD 

Instruction 

% 

STORE 

Instruction 

% 

ADD 

Instruction 

% 

Susan 29.2 10.6 24.3 

Typeset 27.2 7.8 21.4 

Dijkstra 25.8 14.6 22.0 

Sphinx 24.7 19.1 15.7 

Sha 34.3 16.4 20.4 

CRC 32 27.1 17.9 17.4 

 

Register-Memory Architecture and Hybrid Instruction 

Encoding (HIE) are two features that can substantially reduce 

code size. The authors are working on developing a new 

Hybrid Embedded Processor Architecture (HEPA) that 

supports both RMA and HIE so that future embedded systems 

based on SOCs are free from code bloating problem and are 

inherently low power enabled. The goal of this paper is to 

estimate the scope for RMA for existing RISC processors to 

achieve maximum reduction of code size and chip space. This 

paper deals with modifying an existing RISC architecture with 

new RMA arithmetic/logical instructions to minimize the 

number of instructions in the code. The rest of the paper is 

organized as follows. In section 2, we present related work on 

code size reduction. Section 3 describes the impact of RMA 

on Embedded Processors. Section 4 explains the methodology 

used for introducing RMA in existing RISC processors and 

relevant pipeline changes. Section 5 gives sample 

measurements estimating the resulting code space reduction 

due to ISA modifications. Section 6 presents the conclusions 

and proposes an alternate solution for processor developers.   

2. RELATED WORK 
To reduce code size, several techniques have been 

implemented [2]. These are classified into three types [3]:  

Code compression, Compiler techniques and ISA 

modification. The first two techniques retain the original ISA 

whereas the third technique involves supporting a new 

instruction set that is a subset of the original ISA.  The 

technique proposed in this paper is a variant of the third 

technique with a superset of the original ISA.  An overview of 

these three techniques is given below.  

2.1 Code compression 
Code compression involves compressing the RISC object 

code, in offline, based on some compression algorithm and 

storing the compressed code in main memory and 

decompressing it by hardware, on-the-fly, during program 

execution. The decompression unit is placed between the 

processor core and memory due to which there is an increase 

in chip space [4].  Wolfe and Chanin [5] were the first to 

apply code compression to embedded systems. Their scheme 

known as Compressed Code RISC Processor (CCRP) uses 

Huffman coding to compress MIPS object codes. This method 

established the foundation for the IBM Codepack 

compression technology for the PowerPC 400 series [6]. This 

approach does not involve compiler modification or processor 

design change.  Dictionary- based compression is another 

compression method [2]. It is based on the property that the 

same instructions frequently reappear in the object code. A 

dictionary table maintains a list of distinct instructions in the 

application program. Then the instructions in the program are 

replaced by their respective indices to the dictionary. During 

instruction fetch, reference to the dictionary using the index, 

gives the actual instruction that will be supplied to the 

processor. Though this is a simple technique to implement, 

the solution is not application independent since the developer 

has to profile the given object code and generate a dictionary 

table that is unique to the given application.  

2.2 Compiler Techniques 
Compiler techniques [7] for code compression involve 

register renaming, interprocedural optimization, and 

procedural abstraction of repeated code fragments. The 

procedure abstraction is a program optimization that replaces 

repeated sequences of common code with calls to a single 

procedure. These techniques have no runtime decompression 

overheads and do not require any hardware change since the 

code generated can be directly executed by the processor. 

However, there is a need to modify the software tools such as 

compilers and linkers. 

2.3 ISA Modification 
This approach customizes the existing RISC instruction set 

architecture with narrow instructions supporting fewer 

operations, smaller operand fields, and fewer registers.  For 

example, the Thumb [8] instruction set is a modification of 

the original ARM instruction set (32-bit instructions). It has 

36 different 16-bit instructions which form a subset of ARM 

instructions. Similarly in MIPS16, a subset of 32-bit MIPS 

instructions are mapped to 16-bit MIPS instructions which can 

be translated in real-time into 32-bit MIPS instructions. This 

approach involves a new instruction set and requires a new 

instruction decoder, a new set of software development tools, 

such as a compiler, an assembler, and a linker. A code saving 

of up to 40% has been reported.  However, the dense 

instruction sets often cause performance penalties [9] due to 

lack of instructions during compilation.  Also, the processor 

hardware needs additional decoder/decompression logic to 

support both ISAs.  A variation of this approach is used by 

microMIPS [10] that is a recent addition to MIPS architecture. 

It offers a new ISA that supports both 16-bit and 32-bit 

instructions in a single program. However, its new 

instructions have certain restrictions as regard to number of 
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registers. Some of the 16-bit microMIPS instructions can 

access only 8 of 32 GPRs. 

The approach in this paper resolves these weaknesses. It does 

not remove any instruction from the original instruction set. 

On the other hand, this paper introduces 12 new RMA 

instructions. As a result, the instruction set is marginally 

enhanced. Though compiler and processor modifications are 

required, these are one time efforts by the processor 

manufactureres/ compiler developers and there is no burden 

on embedded system developers as required for other 

approaches. Also it is a program independent solution for 

embedded applications. This strategy can be combined with 

other methods of code size reduction thereby achieving 

additional amount of code size reduction.  

  

3. IMPACT OF RMA ON EMBEDDED 

PROCESSORS  
Generally, RISC processors [11] have three types of 

instructions: ALU instructions, Load and store instructions 

and Branch and Jump type instructions. For ALU 

instructions, the operands are in registers and the results 

will be stored in registers. In Load and Store instructions, 

one operand is in register and the other operand is in 

memory. Our proposal is to support one memory operand 

in 12 different ALU instructions, thereby adding a new 

class of register-memory instructions in addition to 

existing register-register ALU instructions. This will 

impact the processor design as regard to opcode decoding 

and pipeline design. Apart from redesigning the 

processor cores, modifications are required in the 

existing compilers and associated program development 

tools. 

 The hardware changes for supporting the RMA 

arithmetic/logical instructions will cause performance 

penalty to processors, to some extent, making them less 

attractive for some market segments such as servers and 

workstations. Therefore, bringing out a separate 

processor model/version for embedded market may be the 

best choice in view of ever growing population of 

embedded systems. The authors have evaluated the 

feasibility of incorporating RMA arithmetic/logic 

instructions in existing RISC processors and a case study 

is presented for MIPS processor in the next section. 

4. METHODOLOGY - IMPLEMENTING 

RMA ALU INSTRUCTIONS   
This section describes the design steps involved in 

redesigning the existing RISC processors to support the RMA 

ADD (ADDrm) instruction. A specific case of MIPS 

processor is considered and a scheme for including 12 new 

RMA ALU instructions is presented occupying the vacant 

slots in MIPS instruction set. The following steps are involved 

in modifying RISC processors for including the RMA 

instructions:   

1. Assign vacant opcodes to the RMA instructions  

2. Choose formats for the RMA instructions  

3. Modify pipeline sequence to suit the RMA instructions 

4. Review the need for additional data path and controls  

5. Modify the controls to support hazards and interrupts  

We have discussed here using the examples of ‘add’ type 

instructions. However, the implementation procedure applies 

for other arithmetic/logical instructions also. 

 

4.1 MIPS Instructions  
The original MIPS I CPU ISA has been extended in a 

backward-compatible fashion several times:  MIPS II, MIPS 

III, MIPS IV and microMIPS. Each new architecture level (or 

version) includes the former levels described in MIPS website 

[12]. The discussions below restrict to integer instructions of 

MIPS to maintain simplicity. Figure 1 shows the three 

different instruction formats used by MIPS processor.  

Bits 31-26  Bits 25-21  Bits 20-16   Bits 15-0 

Opcode Rs Rt Immediate 

 
   (a) I - Type (Immediate) 

Bits 31-26    Bits 25-0 

Opcode Target 

(b)  J – Type (Jump) 

 

Bits 31-

26 

Bits  

25- 

21 

Bits 

 20- 

16   

Bits  

15-

11 

  Bits 

 10-6 

Bits 5-0  

Opcode Rs Rt Rd  0’s Function 

 

        (c)   R- Type (Register) 

Fig.1 MIPS Instruction Formats 

Addition is available both in R-Type format and I-Type 

format as shown in Fig.2 and Fig.3 respectively. In R-type 

addition, both the source operands (Rs-r and Rt-r) are 

available in registers and the result is placed in the destination 

register Rd-r. In I-type addition, one source operand is in a 

register Rs-i and the other source operand is available in the 

instruction as immediate operand. The result is stored in the 

destination register, Rt-i. MIPS document [12] gives the entire 

instruction set of MIPS, also indicating the unused opcodes.  

OP 

 (Bits 

31-26) 

Bits  

25- 

21 

Bits 

 20- 

16   

Bits  

15-

11 

  Bits 

 10-6 

Bits 5-0  

0’s Rs-r Rt-r Rd-r  0’s 100000 

Fig. 2  R-Type ADD Instruction 

.  

Opcode 

(bits 31-

26)  

Bits 

 (25-21)  

Bits  

(20-16) 

Bits  

(15-0) 

001000 Rs-i Rt-i  Immediate 

Fig.3  I-Type ADD Instruction 

There are four different ‘Add’ instructions in MIPS. The first 

two instructions, ADD and ADDU, follow R-Type format. In 

both these instructions, two register contents are added. The 

ADD can cause overflow exception in which case, there is no 

result; for the ADDU, overflow cannot occur. The ADDI and 

ADDIU follow I- Type format.  These two instructions add 

register content with an immediate operand present in the 

instruction.  
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4.2 Formats for ADDrm Instruction for 

MIPS  
Table 3 lists 12 new RMA instructions. Figures 4 and 5 show 

the suggested formats for these instructions. Both R-Type and 

I-Type instruction formats are possible for the ADDrm in 

MIPS. Strategy used by the RMA simulator to modify the R-

Type and I-Type ADD instructions, to generate corresponding 

RMA instructions, is discussed in section 4.5. 

4.2.1 Using R-Type Format             
We use Rs-r as a base register and the 8-bit offset to specify 

the memory operand. The register operand is in Rt-r. This will 

require a new datapath for bits 10-3 of instruction register to 

the adder input. Relevant additional control signals have to be 

generated by the opcode decoder. We have retained the 3- 

address format.  

4.2.2 Using I Format  
Use Rs-r as a base register and the 8-bit offset to specify the 

memory operand. The immediate field gives the other 

operand. For generating memory address, the existing data 

path for load type instructions can be used. 

4.3 Impact of RMA Opcodes   
As seen in Table 3, and figures 4 and 5, the RMA instructions 

introduce two new formats. The 3-lsbs (bits 2-0) define the 

nature of operation whereas the 6-msbs (bits 31-26) gives the 

operation type, for RM format. For IM format, the 6-msbs 

alone indicate the operation. The offset and immediate fields 

are only 8-bits that may pose a challenge to the compiler. As 

discussed in section 4.5, MIDACC converts LSA instructions 

into RMA instructions only if the length limitation is satisfied.   

TABLE 3.  12 New RMA Instructions (op- main opcode; 

opx-rm - opcode extension; NA - not applicable) 

 RMA 

Instruction  

Type OP  Opx-rm 

 

ADD-rm RM 101101 000 

ADDU-rm RM 101101 001 

ADDI-rm IM 101111 NA 

ADDIU-rm IM 110101 NA 

SUB-rm RM 101101 010 

SUBU-rm RM 101101 011 

AND-rm RM 101101 100 

ANDI-rm IM 110110 NA 

OR-rm RM 101101 101 

ORI-rm IM 111110 NA 

XOR-rm RM 101101 110 

NOR-rm RM 101101 111 

 

31-26 25-21 20-16 15-11 10-3 2-0 

OP Rs-l Rt-rm Rd-r Offset-l Opx-rm  

 

Fig. 4 RMA Instruction Format – RM Type 

31-26 25-21 20-16 15-8 7-0 

OP Rt-i Rs-l Offset-1  Immediate 

 
Fig.5 RMA Instruction Format – IM Type 

4.4 Pipeline modifications for supporting 

RMA instructions 
A five stage instruction cycle sequence shown in Fig.6 is 

commonly followed in RISC processors [11]. An 

instruction is active at any instant in only one of the stages. 

During IF, the instruction is fetched from the code memory. 

During ID, instruction decoding is done and also register 

operands are fetched. During EX, either instruction execution 

or address calculation is done depending on the instruction 

type. During MEM, data memory is accessed if relevant. 

During WB, the result (if applicable) is stored in a register.  

IF ID EX MEM WB 

 

Figure 6. Typical 5-stage RISC Instruction Sequence       

The traditional RISC pipeline sequence has to be rearranged 

to suit both LSA and RMA instructions, interchanging the 

Data memory access and Execute stages. Fig.7 shows a 

proposed 6-stage pipeline that supports the RMA Register-

Memory instructions, for RISC processors.  

Let us consider the pipeline action for the ADD-RM 

instruction. The first two stages are similar to the RISC 

pipeline. In the third stage (AC), memory address, for the 

memory operand, is calculated by a small address adder (as in 

ARM processors) and in the fourth stage (MEM), the memory 

operand is fetched from the data memory. In the fifth stage 

(EX), addition is carried out and in the last stage (WB), the 

result is stored in destination register. 

 Fig.8 shows the execution of LSA instructions in the new 

pipeline. For the LSA ADD instruction, the AC and MEM 

cycles are unused. Compared to a 5-stage RISC pipeline, one 

additional clock cycle is wasted (consumed) for LSA 

instructions in the 6-stage RMA pipeline.   

The unused internal cycles [13] do not directly affect 

performance, since they do not cause pipeline stalls. However, 

a slight performance decrease is expected due to increase in 

pipeline length in view of increased frequency of 

dependencies between successive instructions. It is a question 

of choice between performance and code size. For embedded 

systems, code size is more significant, and hence the increase 

in execution time by one cycle is tolerable. An alternate 

approach is possible for the RMA pipeline with 5 stages as 

shown in fig. 9 in which the EX and MEM stages are 

combined as a single MEM/EX stage to improve the 

efficiency of the RMA pipeline for the LSA instructions. 

In the 6-stage pipeline, the EX stage is unused by LOAD and 

STORE instructions of LSA, and the MEM stage is unused by 

LSA ADD instruction as shown in Fig.8. Hence in the 5-stage 

RMA pipeline, the EX and MEM stages are combined into a 

single MEM/EX stage. Therefore, no performance penalty is 

caused for LSA instructions. For the ADD-rm instruction, the 

MEM/EX stage is recycled as shown in Fig.10. In the first 

MEM/EX cycle, the memory operand is fetched from the data 

cache and, in the second MEM/EX cycle, the addition is  

performed As a matter of fact, such 5-stage approach has been 

used in several processors including Pentium, R8000 and PA 

7100 [13] .  
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                IF                ID                            AC                     MEM                  EX                     WB 

 

 

          

Fetch Instruction 

                                          

              Decode+Fetch Registers  

                                   

                                               Memory operand 

                                             Address calculation 

 

                                                                     Memory operand fetch 

     

                                                                                               Perform Addition       

                                                                                                                                  Write result  
 Figure 7 Proposed 6-Stage RMA Pipeline 

                                                                                                         

                IF                  ID                            AC                 MEM                      EX                    WB 

 

 

          

Fetch Instruction 

                                          

              Decode+Fetch Registers  

                                   

                                               Memory operand 

                                             Address calculation 

 

                                                                     Memory operand fetch 

                                                                                                                              Write result in 

                                                                                                                                 register 

                                                                                            Perform Addition         

 

ADD        IF             ID,RF                    -                     -                     EX             WB 

LOAD      IF            ID,RF                  AC              MEM                   -               WB 

STORE    IF            ID,RF                   AC              MEM                  -                -   

 
Figure 8 Execution of LSA Instructions in 6 – Stage RMA Pipeline                                                                                                                                         
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                IF                    ID                             AC                              MEM/EX                                  WB 

 

 

  Fetch Instruction 

               Decode + Fetch Registers  

                           Memory operand 

                                             Address calculation 

           Memory fetch/write + 

                                                                       Perform Addition                              Write result in                                                           

                                                                                                                                 register                                                                                            

ADD       IF            ID,RF                    -                        EX                                WB 

LOAD    IF             ID,RF                  AC                   MEM                              WB 

STORE  IF             ID,RF                   AC                  MEM                                -   

 
 Figure 9 Execution of LSA Instruction in 5 – Stage RMA Pipeline  

  

 

                                                                  
 

 

 

                IF                  ID                            AC                     EX/MEM        MEM/EX               WB 

 

 

  Fetch Instruction 

                 Decode+Fetch Registers  

                                    Memory operand 

                                             Address calculation 

 

                                                                     Memory operand fetch 

          

       Perform Addition 

 Write result in register 

 

              FI            ID,RF                    AC                  MEM            EX            WB 

 

 

 

 

       Figure 10 Execution of RMA ADDrm Instruction in 5- Stage RMA Pipeline 
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4.5. Simulation of RMA Instructions 
The extent of code size reduction due to the use of RMA 

Arithmetic instructions depend on the frequency of generation 

of these instructions by the new compiler. This also varies 

with the nature of embedded programs. Simulation studies 

have been performed with the MiBench benchmark programs 

for estimating the code size reduction. The authors have 

developed a software tool named MIDACC to simulate the 

RMA environment. This tool scans the MIPS compiler output 

and estimates the scope for RMA instructions in the given 

program by a search for appropriate sequences of Load word 

(LW) and ALU instructions. The format of LW instruction is 

shown in Fig.11. 

 OP 

(bits 31-26)  

Bits 

(25-21)  

Bits  

(20-16) 

Bits 

 (15-0) 

100011 Rs-l Rt-l  Offset-l 

 

Figure 11 Format of LW Instruction 

The MIDACC inserts RMA Instructions by performing the 

following actions a-e:  

(a) Scans the input code for a ‘special two-instruction’ 

sequence of LOAD WORD (LW) followed by ALU type 

(such as ADD) instruction with a common operand. 

Combinations of the LW instruction immediately followed by 

any of the 12 ALU instructions are considered. 

 (b) Deletes the identified LW instruction and the immediately 

following ALU type instruction if they satisfy some operand 

combinations between these two instructions. 

Qualifying conditions for LW followed by R-Type ALU 

Instruction:  

1. Numeric value of ‘Offset-l’ should not occupy more than 8-

bits.  

2. Rt-l should be equal to either Rs-r or Rt-r. If Rt-l is equal to 

Rs-r, Rs-r is dropped and Rt-r is renamed as Rt-rm. If Rt-l is 

equal to Rt-r, Rt-r is dropped and Rs-r is renamed as Rt-rm.  

Qualifying condition for LW followed by I-Type ALU 

Instruction:  

1. Numeric value of ‘Immediate’ should not occupy more than 

8-bits.  

2. Rt-l should be equal to Rs-i. If it is equal, the Rs-I is 

dropped.  

(c) Creates a new RMA instruction in the original location for 

LW instruction.  The RMA instruction is also of 32-bits as 

shown in Figures.  

The steps (a) to (c) are repeated for the entire program till all 

LW-12 ALU sequences are covered. 

5. RESULTS AND DISCUSIONS 
MIDACC was used by the authors to simulate the RMA     

environment for running MiBench Benchmarks that are a 

collection of C programs for six different embedded 

applications. The experiments were conducted in Intel PC 

under Linux. The authors used SimpleScalar simulator for 

cross compilation.  The compiler output is analyzed by 

MIDACC for estimating the scope for RMA in the given 

program. In addition to inserting the RMA instructions, it also 

generates the compressed code that can be used as input to the 

linker. Table 4 lists the results obtained by us for six selected 

embedded programs.  

As already mentioned, the code reduction by RMA is additional 

reduction that can be combined with other techniques. Hence 

effective percentage reduction for the MiBench programs taking 

into account RMA for microMIPS architecture varies from 41.4 

(consumer applications) to 55.1 (Network applications). The 

Automotive and Industrial Control applications will see 52.8 % 

code size reduction. This results in proportional chip space 

savings and equivalent power reduction. 

6. CONCLUSIONS AND FUTURE WORK 
This paper advocates implementation of register – memory 

architecture for embedded processors for low power 

embedded systems in view of the need for reduced chip size 

and lower power consumption. Encoding of appropriate new 

instructions and pipeline modifications of existing RISC 

processors to support RMA arithmetic/logical instructions is 

recommended. A case study has been presented demonstrating 

addition of 12 instructions for MIPS. The measurement with 

the C programs in MiBench suite gives over 20% of code 

space reduction. This is an additional savings in addition to 

other techniques of code space reduction. Combining the 

RMA technique with microMIPS Architecture will yield over 

55% code size reduction. 

Designing a new processor is the answer to the needs of 

embedded systems.  A study of existing RISC processors gives a 

clue to the specifications of a new processor. The instruction 

format affects the code size and the processor performance. 

While choosing the instruction formats, the processor 

architect considers [1], [14] following factors: code size, 

processor design complexity, processor performance and 

compiler complexity.  The number of registers and the 

addressing modes affect the length of the instruction and 

compiler simplicity. Similarly the number of operands per 

instruction affects the instruction length and code size. The 

instruction size, number of instruction formats and addressing 

modes determine the complexity of instruction decoding and 

the difficulty of pipelining. The number of registers 

determines the extent of help to the compiler to generate 

efficient object code.  

The authors are presently working on upgrading the MIDACC 

and simulate the proposed HEPA. 

TABLE 4.  Code Size Reduction in RMA for MiBench  

Applicati-

on 

 

Progra-

m 

No. of 

Instru-

ctions 

 

A 

No. 

of 

Load 

cases  

 B 

RMA  

cases 

  

 

C 

%   

Reduc

-tion    

 

C/A  
 

 

Automoti-

ve and 

Industrial 

Control 

Susan 12502 3655 2228 17.8 

Network Dijkstra   418   108    84 20.1 

Telecom CRC 32   195    53   24 12.3 

Security Sha   538   185   57 10.6 

Office Sphinx    89    20     7   7.9 

Consumer Typeset 5598 1523  357   6.4 

 

A Hybrid processor with two types of instructions may be the 

optimum solution: 16-bit instructions of LSA and 32-bit 

instructions of RMA. It is hoped that the use of hybrid 

instruction encoding together with RMA will yield over 60% 

code space reduction. The authors are working on simulation 
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studies using SimpleScalar tools to determine the optimum 

configuration of the desired Embedded Processor.  
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