
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.12, February 2013

38

Code Size Reduction in Embedded Systems with

Redesigned ISA for RISC Processors

Govindarajalu B,

B S Abdur Rahman University,
Vandalur, Chennai -600048,

India

K.M.Mehata, PhD.
B S Abdur Rahman University,
Vandalur, Chennai-600 048,

India

ABSTRACT

Reducing the size of a program is a major goal in modern

embedded systems. Large code occupies more space in the

Chip and also causes higher power consumption because of

increased memory traffic. In this paper, a revised architecture

is proposed for embedded processors by replacing the Load-

store Architecture with Register-Memory Architecture for

selected instructions. Analysis of RISC object code for

Embedded Applications, using an offline tool developed by

the authors, establishes the scope for a new class of processor

exclusively for embedded applications. We have used this tool

to simulate Register-Memory Architecture for MIPS

processor. Based on the results, MIPS processor's instruction

set is enhanced with 12 new instructions of Register-Memory

Architecture. Experimental results for MiBench Benchmark

programs with Register-Memory Architecture Simulation

reveal that code size reduction up to 22% can be achieved

with modified MIPS Architecture. This is also applicable for

microMIPS processor that claims 35% code space saving with

16-bit instructions, thus offering a total of over 55% code

space reduction compared to MIPS32 Architecture, for

embedded systems. Equivalent memory reduction achieved is

very significant for Embedded Systems built using SOCs.

Processor design modifications, required at microarchitecture

level, are also identified. Other additional features that can be

combined with Register-Memory Architecture for an efficient

embedded processor are identified.

General Terms

Computer Architecture, Embedded Systems

Keywords

Embedded system, power consumption, code size, RISC,

Code compression, Chip space

1. INTRODUCTION
An embedded system usually performs a dedicated function,

and is generally non-programmable by users. Use of

embedded systems has increased rapidly in several

applications, ranging from small hand held products to

sophisticated medical equipments and aerospace. Though

performance is important, it is not critical in several

embedded systems such as cameras, video game consoles, TV

remote controls, cell phones, personal data assistants (PDAs),

and toys. Instead, cost, power consumption and physical

dimensions are the critical factors.

Embedding multiple processor cores in single system-on-a-

chip (SOC) is a modern design practice that offers lower

design cost, reduced time-to-market and design reuse. The

code size is one of the factors that affect the chip space and

power consumption since the program memory is on-chip in

most embedded systems. If the code size increases, number

of instructions fetched also increases thereby increasing the

power consumption. High power consumption also leads to

increased operating temperature since it is not practical to use

cooling fans in most embedded systems. Operating these

systems for long duration may also cause reliability problems

apart from reducing the battery life. Considering these issues,

it is essential that processor designers need to suitably modify

the existing RISC processors thereby making them more

suitable for embedded systems. The following discussion

explains why present day RISC processors contribute to

increased power consumption.

1.1 Code size and RISC Processors
Presently RISC processors are used as embedded processors

since they offer high performance. Originally, the Load-Store

Architecture (LSA) was chosen for RISC processors with an

aim to simplify and minimize the processor hardware circuitry

so as to house the entire processor on a single chip. The LSA

also enables easy implementation of instruction pipelining

that increases processor performance. This made RISC

processors the preferred choice for workstations and servers.

However, the LSA is undesirable for embedded systems

because of its impact on code size. In LSA, only load and

store instructions can access memory operands and the

arithmetic/logical instructions can access register operands

only. Since arithmetic and logical operations on memory

operands are not permitted in LSA, the compiler places a load

instruction, before an add instruction, to move the data from

memory to register. Similarly, the result of an add instruction

is stored by the processor in a register. Hence a store

instruction has to be placed, after the add instruction, by the

compiler, for moving the result to main memory. This

practice results in too many load and store instructions also

known as data transfer instructions. A comparison [1] of

distribution of Arithmetic/logic instructions and data transfer

instructions for two benchmark programs on VAX and MIPS

is shown in Table 1. The VAX is a popular CISC processor

and MIPS is a popular RISC processor. The 50% to 133%

increase in data transfer instructions for the MIPS, compared

to the VAX, is due to use of several load and store

instructions in MIPS. This ‘code size bloating’ problem of

RISC processors is depicted in [2] which compares the object

code size of an MPEG2 encoder compiled on multiple

processors of different architectures. The Intel x86, a typical

CISC processor with Register-Memory architecture (RMA)

needs 50.6 kB of code, while the RISC processors ARM

Thumb and SHARC need 68.2 kB and 106.2 kB respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.12, February 2013

39

Table 1. Frequency of Data Transfer Instructions in

Typical CISC and RISC Processors

 Program

Processor

ALU

 instructions

 Data

transfer

instructions

 gcc VAX 40% 19%

 gcc MIPS 35% 27%

 spice VAX 23% 15%

 spice MIPS 29% 35%

The code bloating problem is more critical for embedded systems

thereby requiring serious efforts to minimize it. The frequency of

usage of LOAD and STORE instructions in MIPS object codes

for embedded systems has been estimated by the authors with the

MiBench Benchmark programs. The MiBench is a popular suite

that is widely used for evaluating the behavior of embedded

systems. Table 2 lists the percentage distribution of LOAD,

STORE and ADD instructions for six different MiBench

programs compiled using SimpleScalar simulator and analyzed

using an offline instruction distribution analyzer tool developed

by the authors. From these measurements, it is obvious that the

LSA Architecture is a burden on Embedded Systems.

TABLE 2. Distribution of LOAD, STORE and ADD

Instructions in Embedded Programs for MIPS

MiBench

Program

LOAD

Instruction

%

STORE

Instruction

%

ADD

Instruction

%

Susan 29.2 10.6 24.3

Typeset 27.2 7.8 21.4

Dijkstra 25.8 14.6 22.0

Sphinx 24.7 19.1 15.7

Sha 34.3 16.4 20.4

CRC 32 27.1 17.9 17.4

Register-Memory Architecture and Hybrid Instruction

Encoding (HIE) are two features that can substantially reduce

code size. The authors are working on developing a new

Hybrid Embedded Processor Architecture (HEPA) that

supports both RMA and HIE so that future embedded systems

based on SOCs are free from code bloating problem and are

inherently low power enabled. The goal of this paper is to

estimate the scope for RMA for existing RISC processors to

achieve maximum reduction of code size and chip space. This

paper deals with modifying an existing RISC architecture with

new RMA arithmetic/logical instructions to minimize the

number of instructions in the code. The rest of the paper is

organized as follows. In section 2, we present related work on

code size reduction. Section 3 describes the impact of RMA

on Embedded Processors. Section 4 explains the methodology

used for introducing RMA in existing RISC processors and

relevant pipeline changes. Section 5 gives sample

measurements estimating the resulting code space reduction

due to ISA modifications. Section 6 presents the conclusions

and proposes an alternate solution for processor developers.

2. RELATED WORK
To reduce code size, several techniques have been

implemented [2]. These are classified into three types [3]:

Code compression, Compiler techniques and ISA

modification. The first two techniques retain the original ISA

whereas the third technique involves supporting a new

instruction set that is a subset of the original ISA. The

technique proposed in this paper is a variant of the third

technique with a superset of the original ISA. An overview of

these three techniques is given below.

2.1 Code compression
Code compression involves compressing the RISC object

code, in offline, based on some compression algorithm and

storing the compressed code in main memory and

decompressing it by hardware, on-the-fly, during program

execution. The decompression unit is placed between the

processor core and memory due to which there is an increase

in chip space [4]. Wolfe and Chanin [5] were the first to

apply code compression to embedded systems. Their scheme

known as Compressed Code RISC Processor (CCRP) uses

Huffman coding to compress MIPS object codes. This method

established the foundation for the IBM Codepack

compression technology for the PowerPC 400 series [6]. This

approach does not involve compiler modification or processor

design change. Dictionary- based compression is another

compression method [2]. It is based on the property that the

same instructions frequently reappear in the object code. A

dictionary table maintains a list of distinct instructions in the

application program. Then the instructions in the program are

replaced by their respective indices to the dictionary. During

instruction fetch, reference to the dictionary using the index,

gives the actual instruction that will be supplied to the

processor. Though this is a simple technique to implement,

the solution is not application independent since the developer

has to profile the given object code and generate a dictionary

table that is unique to the given application.

2.2 Compiler Techniques
Compiler techniques [7] for code compression involve

register renaming, interprocedural optimization, and

procedural abstraction of repeated code fragments. The

procedure abstraction is a program optimization that replaces

repeated sequences of common code with calls to a single

procedure. These techniques have no runtime decompression

overheads and do not require any hardware change since the

code generated can be directly executed by the processor.

However, there is a need to modify the software tools such as

compilers and linkers.

2.3 ISA Modification
This approach customizes the existing RISC instruction set

architecture with narrow instructions supporting fewer

operations, smaller operand fields, and fewer registers. For

example, the Thumb [8] instruction set is a modification of

the original ARM instruction set (32-bit instructions). It has

36 different 16-bit instructions which form a subset of ARM

instructions. Similarly in MIPS16, a subset of 32-bit MIPS

instructions are mapped to 16-bit MIPS instructions which can

be translated in real-time into 32-bit MIPS instructions. This

approach involves a new instruction set and requires a new

instruction decoder, a new set of software development tools,

such as a compiler, an assembler, and a linker. A code saving

of up to 40% has been reported. However, the dense

instruction sets often cause performance penalties [9] due to

lack of instructions during compilation. Also, the processor

hardware needs additional decoder/decompression logic to

support both ISAs. A variation of this approach is used by

microMIPS [10] that is a recent addition to MIPS architecture.

It offers a new ISA that supports both 16-bit and 32-bit

instructions in a single program. However, its new

instructions have certain restrictions as regard to number of

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.12, February 2013

40

registers. Some of the 16-bit microMIPS instructions can

access only 8 of 32 GPRs.

The approach in this paper resolves these weaknesses. It does

not remove any instruction from the original instruction set.

On the other hand, this paper introduces 12 new RMA

instructions. As a result, the instruction set is marginally

enhanced. Though compiler and processor modifications are

required, these are one time efforts by the processor

manufactureres/ compiler developers and there is no burden

on embedded system developers as required for other

approaches. Also it is a program independent solution for

embedded applications. This strategy can be combined with

other methods of code size reduction thereby achieving

additional amount of code size reduction.

3. IMPACT OF RMA ON EMBEDDED

PROCESSORS
Generally, RISC processors [11] have three types of

instructions: ALU instructions, Load and store instructions

and Branch and Jump type instructions. For ALU

instructions, the operands are in registers and the results

will be stored in registers. In Load and Store instructions,

one operand is in register and the other operand is in

memory. Our proposal is to support one memory operand

in 12 different ALU instructions, thereby adding a new

class of register-memory instructions in addition to

existing register-register ALU instructions. This will

impact the processor design as regard to opcode decoding

and pipeline design. Apart from redesigning the

processor cores, modifications are required in the

existing compilers and associated program development

tools.

 The hardware changes for supporting the RMA

arithmetic/logical instructions will cause performance

penalty to processors, to some extent, making them less

attractive for some market segments such as servers and

workstations. Therefore, bringing out a separate

processor model/version for embedded market may be the

best choice in view of ever growing population of

embedded systems. The authors have evaluated the

feasibility of incorporating RMA arithmetic/logic

instructions in existing RISC processors and a case study

is presented for MIPS processor in the next section.

4. METHODOLOGY - IMPLEMENTING

RMA ALU INSTRUCTIONS
This section describes the design steps involved in

redesigning the existing RISC processors to support the RMA

ADD (ADDrm) instruction. A specific case of MIPS

processor is considered and a scheme for including 12 new

RMA ALU instructions is presented occupying the vacant

slots in MIPS instruction set. The following steps are involved

in modifying RISC processors for including the RMA

instructions:

1. Assign vacant opcodes to the RMA instructions

2. Choose formats for the RMA instructions

3. Modify pipeline sequence to suit the RMA instructions

4. Review the need for additional data path and controls

5. Modify the controls to support hazards and interrupts

We have discussed here using the examples of ‘add’ type

instructions. However, the implementation procedure applies

for other arithmetic/logical instructions also.

4.1 MIPS Instructions
The original MIPS I CPU ISA has been extended in a

backward-compatible fashion several times: MIPS II, MIPS

III, MIPS IV and microMIPS. Each new architecture level (or

version) includes the former levels described in MIPS website

[12]. The discussions below restrict to integer instructions of

MIPS to maintain simplicity. Figure 1 shows the three

different instruction formats used by MIPS processor.

Bits 31-26 Bits 25-21 Bits 20-16 Bits 15-0

Opcode Rs Rt Immediate

 (a) I - Type (Immediate)

Bits 31-26 Bits 25-0

Opcode Target

(b) J – Type (Jump)

Bits 31-

26

Bits

25-

21

Bits

 20-

16

Bits

15-

11

 Bits

 10-6

Bits 5-0

Opcode Rs Rt Rd 0’s Function

 (c) R- Type (Register)

Fig.1 MIPS Instruction Formats

Addition is available both in R-Type format and I-Type

format as shown in Fig.2 and Fig.3 respectively. In R-type

addition, both the source operands (Rs-r and Rt-r) are

available in registers and the result is placed in the destination

register Rd-r. In I-type addition, one source operand is in a

register Rs-i and the other source operand is available in the

instruction as immediate operand. The result is stored in the

destination register, Rt-i. MIPS document [12] gives the entire

instruction set of MIPS, also indicating the unused opcodes.

OP

 (Bits

31-26)

Bits

25-

21

Bits

 20-

16

Bits

15-

11

 Bits

 10-6

Bits 5-0

0’s Rs-r Rt-r Rd-r 0’s 100000

Fig. 2 R-Type ADD Instruction

.

Opcode

(bits 31-

26)

Bits

 (25-21)

Bits

(20-16)

Bits

(15-0)

001000 Rs-i Rt-i Immediate

Fig.3 I-Type ADD Instruction

There are four different ‘Add’ instructions in MIPS. The first

two instructions, ADD and ADDU, follow R-Type format. In

both these instructions, two register contents are added. The

ADD can cause overflow exception in which case, there is no

result; for the ADDU, overflow cannot occur. The ADDI and

ADDIU follow I- Type format. These two instructions add

register content with an immediate operand present in the

instruction.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.12, February 2013

41

4.2 Formats for ADDrm Instruction for

MIPS
Table 3 lists 12 new RMA instructions. Figures 4 and 5 show

the suggested formats for these instructions. Both R-Type and

I-Type instruction formats are possible for the ADDrm in

MIPS. Strategy used by the RMA simulator to modify the R-

Type and I-Type ADD instructions, to generate corresponding

RMA instructions, is discussed in section 4.5.

4.2.1 Using R-Type Format
We use Rs-r as a base register and the 8-bit offset to specify

the memory operand. The register operand is in Rt-r. This will

require a new datapath for bits 10-3 of instruction register to

the adder input. Relevant additional control signals have to be

generated by the opcode decoder. We have retained the 3-

address format.

4.2.2 Using I Format
Use Rs-r as a base register and the 8-bit offset to specify the

memory operand. The immediate field gives the other

operand. For generating memory address, the existing data

path for load type instructions can be used.

4.3 Impact of RMA Opcodes
As seen in Table 3, and figures 4 and 5, the RMA instructions

introduce two new formats. The 3-lsbs (bits 2-0) define the

nature of operation whereas the 6-msbs (bits 31-26) gives the

operation type, for RM format. For IM format, the 6-msbs

alone indicate the operation. The offset and immediate fields

are only 8-bits that may pose a challenge to the compiler. As

discussed in section 4.5, MIDACC converts LSA instructions

into RMA instructions only if the length limitation is satisfied.

TABLE 3. 12 New RMA Instructions (op- main opcode;

opx-rm - opcode extension; NA - not applicable)

 RMA

Instruction

Type OP Opx-rm

ADD-rm RM 101101 000

ADDU-rm RM 101101 001

ADDI-rm IM 101111 NA

ADDIU-rm IM 110101 NA

SUB-rm RM 101101 010

SUBU-rm RM 101101 011

AND-rm RM 101101 100

ANDI-rm IM 110110 NA

OR-rm RM 101101 101

ORI-rm IM 111110 NA

XOR-rm RM 101101 110

NOR-rm RM 101101 111

31-26 25-21 20-16 15-11 10-3 2-0

OP Rs-l Rt-rm Rd-r Offset-l Opx-rm

Fig. 4 RMA Instruction Format – RM Type

31-26 25-21 20-16 15-8 7-0

OP Rt-i Rs-l Offset-1 Immediate

Fig.5 RMA Instruction Format – IM Type

4.4 Pipeline modifications for supporting

RMA instructions
A five stage instruction cycle sequence shown in Fig.6 is

commonly followed in RISC processors [11]. An

instruction is active at any instant in only one of the stages.

During IF, the instruction is fetched from the code memory.

During ID, instruction decoding is done and also register

operands are fetched. During EX, either instruction execution

or address calculation is done depending on the instruction

type. During MEM, data memory is accessed if relevant.

During WB, the result (if applicable) is stored in a register.

IF ID EX MEM WB

Figure 6. Typical 5-stage RISC Instruction Sequence

The traditional RISC pipeline sequence has to be rearranged

to suit both LSA and RMA instructions, interchanging the

Data memory access and Execute stages. Fig.7 shows a

proposed 6-stage pipeline that supports the RMA Register-

Memory instructions, for RISC processors.

Let us consider the pipeline action for the ADD-RM

instruction. The first two stages are similar to the RISC

pipeline. In the third stage (AC), memory address, for the

memory operand, is calculated by a small address adder (as in

ARM processors) and in the fourth stage (MEM), the memory

operand is fetched from the data memory. In the fifth stage

(EX), addition is carried out and in the last stage (WB), the

result is stored in destination register.

 Fig.8 shows the execution of LSA instructions in the new

pipeline. For the LSA ADD instruction, the AC and MEM

cycles are unused. Compared to a 5-stage RISC pipeline, one

additional clock cycle is wasted (consumed) for LSA

instructions in the 6-stage RMA pipeline.

The unused internal cycles [13] do not directly affect

performance, since they do not cause pipeline stalls. However,

a slight performance decrease is expected due to increase in

pipeline length in view of increased frequency of

dependencies between successive instructions. It is a question

of choice between performance and code size. For embedded

systems, code size is more significant, and hence the increase

in execution time by one cycle is tolerable. An alternate

approach is possible for the RMA pipeline with 5 stages as

shown in fig. 9 in which the EX and MEM stages are

combined as a single MEM/EX stage to improve the

efficiency of the RMA pipeline for the LSA instructions.

In the 6-stage pipeline, the EX stage is unused by LOAD and

STORE instructions of LSA, and the MEM stage is unused by

LSA ADD instruction as shown in Fig.8. Hence in the 5-stage

RMA pipeline, the EX and MEM stages are combined into a

single MEM/EX stage. Therefore, no performance penalty is

caused for LSA instructions. For the ADD-rm instruction, the

MEM/EX stage is recycled as shown in Fig.10. In the first

MEM/EX cycle, the memory operand is fetched from the data

cache and, in the second MEM/EX cycle, the addition is

performed As a matter of fact, such 5-stage approach has been

used in several processors including Pentium, R8000 and PA

7100 [13] .

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.12, February 2013

42

 IF ID AC MEM EX WB

Fetch Instruction

 Decode+Fetch Registers

 Memory operand

 Address calculation

 Memory operand fetch

 Perform Addition

 Write result
 Figure 7 Proposed 6-Stage RMA Pipeline

 IF ID AC MEM EX WB

Fetch Instruction

 Decode+Fetch Registers

 Memory operand

 Address calculation

 Memory operand fetch

 Write result in

 register

 Perform Addition

ADD IF ID,RF - - EX WB

LOAD IF ID,RF AC MEM - WB

STORE IF ID,RF AC MEM - -

Figure 8 Execution of LSA Instructions in 6 – Stage RMA Pipeline

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.12, February 2013

43

 IF ID AC MEM/EX WB

 Fetch Instruction

 Decode + Fetch Registers

 Memory operand

 Address calculation

 Memory fetch/write +

 Perform Addition Write result in

 register

ADD IF ID,RF - EX WB

LOAD IF ID,RF AC MEM WB

STORE IF ID,RF AC MEM -

 Figure 9 Execution of LSA Instruction in 5 – Stage RMA Pipeline

 IF ID AC EX/MEM MEM/EX WB

 Fetch Instruction

 Decode+Fetch Registers

 Memory operand

 Address calculation

 Memory operand fetch

 Perform Addition

 Write result in register

 FI ID,RF AC MEM EX WB

 Figure 10 Execution of RMA ADDrm Instruction in 5- Stage RMA Pipeline

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.12, February 2013

44

4.5. Simulation of RMA Instructions
The extent of code size reduction due to the use of RMA

Arithmetic instructions depend on the frequency of generation

of these instructions by the new compiler. This also varies

with the nature of embedded programs. Simulation studies

have been performed with the MiBench benchmark programs

for estimating the code size reduction. The authors have

developed a software tool named MIDACC to simulate the

RMA environment. This tool scans the MIPS compiler output

and estimates the scope for RMA instructions in the given

program by a search for appropriate sequences of Load word

(LW) and ALU instructions. The format of LW instruction is

shown in Fig.11.

 OP

(bits 31-26)

Bits

(25-21)

Bits

(20-16)

Bits

 (15-0)

100011 Rs-l Rt-l Offset-l

Figure 11 Format of LW Instruction

The MIDACC inserts RMA Instructions by performing the

following actions a-e:

(a) Scans the input code for a ‘special two-instruction’

sequence of LOAD WORD (LW) followed by ALU type

(such as ADD) instruction with a common operand.

Combinations of the LW instruction immediately followed by

any of the 12 ALU instructions are considered.

 (b) Deletes the identified LW instruction and the immediately

following ALU type instruction if they satisfy some operand

combinations between these two instructions.

Qualifying conditions for LW followed by R-Type ALU

Instruction:

1. Numeric value of ‘Offset-l’ should not occupy more than 8-

bits.

2. Rt-l should be equal to either Rs-r or Rt-r. If Rt-l is equal to

Rs-r, Rs-r is dropped and Rt-r is renamed as Rt-rm. If Rt-l is

equal to Rt-r, Rt-r is dropped and Rs-r is renamed as Rt-rm.

Qualifying condition for LW followed by I-Type ALU

Instruction:

1. Numeric value of ‘Immediate’ should not occupy more than

8-bits.

2. Rt-l should be equal to Rs-i. If it is equal, the Rs-I is

dropped.

(c) Creates a new RMA instruction in the original location for

LW instruction. The RMA instruction is also of 32-bits as

shown in Figures.

The steps (a) to (c) are repeated for the entire program till all

LW-12 ALU sequences are covered.

5. RESULTS AND DISCUSIONS
MIDACC was used by the authors to simulate the RMA

environment for running MiBench Benchmarks that are a

collection of C programs for six different embedded

applications. The experiments were conducted in Intel PC

under Linux. The authors used SimpleScalar simulator for

cross compilation. The compiler output is analyzed by

MIDACC for estimating the scope for RMA in the given

program. In addition to inserting the RMA instructions, it also

generates the compressed code that can be used as input to the

linker. Table 4 lists the results obtained by us for six selected

embedded programs.

As already mentioned, the code reduction by RMA is additional

reduction that can be combined with other techniques. Hence

effective percentage reduction for the MiBench programs taking

into account RMA for microMIPS architecture varies from 41.4

(consumer applications) to 55.1 (Network applications). The

Automotive and Industrial Control applications will see 52.8 %

code size reduction. This results in proportional chip space

savings and equivalent power reduction.

6. CONCLUSIONS AND FUTURE WORK
This paper advocates implementation of register – memory

architecture for embedded processors for low power

embedded systems in view of the need for reduced chip size

and lower power consumption. Encoding of appropriate new

instructions and pipeline modifications of existing RISC

processors to support RMA arithmetic/logical instructions is

recommended. A case study has been presented demonstrating

addition of 12 instructions for MIPS. The measurement with

the C programs in MiBench suite gives over 20% of code

space reduction. This is an additional savings in addition to

other techniques of code space reduction. Combining the

RMA technique with microMIPS Architecture will yield over

55% code size reduction.

Designing a new processor is the answer to the needs of

embedded systems. A study of existing RISC processors gives a

clue to the specifications of a new processor. The instruction

format affects the code size and the processor performance.

While choosing the instruction formats, the processor

architect considers [1], [14] following factors: code size,

processor design complexity, processor performance and

compiler complexity. The number of registers and the

addressing modes affect the length of the instruction and

compiler simplicity. Similarly the number of operands per

instruction affects the instruction length and code size. The

instruction size, number of instruction formats and addressing

modes determine the complexity of instruction decoding and

the difficulty of pipelining. The number of registers

determines the extent of help to the compiler to generate

efficient object code.

The authors are presently working on upgrading the MIDACC

and simulate the proposed HEPA.

TABLE 4. Code Size Reduction in RMA for MiBench

Applicati-

on

Progra-

m

No. of

Instru-

ctions

A

No.

of

Load

cases

 B

RMA

cases

C

%

Reduc

-tion

C/A

Automoti-

ve and

Industrial

Control

Susan 12502 3655 2228 17.8

Network Dijkstra 418 108 84 20.1

Telecom CRC 32 195 53 24 12.3

Security Sha 538 185 57 10.6

Office Sphinx 89 20 7 7.9

Consumer Typeset 5598 1523 357 6.4

A Hybrid processor with two types of instructions may be the

optimum solution: 16-bit instructions of LSA and 32-bit

instructions of RMA. It is hoped that the use of hybrid

instruction encoding together with RMA will yield over 60%

code space reduction. The authors are working on simulation

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.12, February 2013

45

studies using SimpleScalar tools to determine the optimum

configuration of the desired Embedded Processor.

7. ACKNOWLEDGMENTS
The authors would like to thank Raysoft professionals, Mr.

S.Raju, CEO and Mr. S. Ramkumar, Programmer, for their

suggestions during development of MIDACC. Thanks are also

due to Dr. V.P.Ramamurthi, Chairman, Dhanalakshmi

College of Engineering for extending the research facilities,

and Mrs. Shyamala Dharmar, CEO, Vael's Academy, for her

suggestions towards effective presentation.

8. REFERENCES
[1] J.L.Hennessy and D.A.Patterson, “Computer

Architecture: A quantitative Approach”, Fourth edition,

Morgan Kaufmann publishers, 2007.

[2] J. Heikkinen, J.Takala, and H.Corporaal, “Dictionary

based program compression on customizable processor

architectures”, Microprocessors and Microsystems, vol.

33, pp. 139 – 153, 2009.

[3] Y. Xie, W. Wolf, H. Lekatsas, “Code Compression for

VLIW Processors using Variable – to- Fixed Coding,”

IEEE Trans. VLSI Systems, vol. 14, no.5, pp. 525 –

536, May 2006.

[4] L.Benini, F.Menichelli, and M.Olivieri, “A class of code

compression schemes for reducing power consumption in

embedded microprocessor systems”, IEEE

Trans.Computers, vol.53, no.4, pp.467 – 482, April 2004.

[5] A. Wolfe and A. Chanin, “Executing compressed

programs on an embedded RISC architecture”, in Proc.

Int. Symp. Microarch, 1992, pp.81 – 91.

[6] T.M.Kemp, R.K. Montoye, J.D. Harper, J.D.Palmer, and

D.J. Auerbach, “A decompression core for power PC,”

IBM J.Res.Develop., vol.42, no.6, pp. 807 – 812, Nov.

1998.

[7] J.A. Fisher, P.Faraboschi, and C.Young, “Embedded

Computing: A VLIW Approach to Architecture,

Compilers and Tools”, Morgan Kaufmann publishers,

2005.

[8] A.N.Sloss, D.Symes and C.Wright, “ARM System

Developer’s Guide: Designing and optimizing System

Software”, Morgan Kaufmann Publishers, 2004.

[9] C.H.Lin, Y.Xie, and W.Wolf,”Code Compression for

VLIW Embedded Systems using a self-generating table”,

IEEE Trans. VLSI Systems”, Vol.15, no.10.pp.1160-

1171, Oct.2007.

[10] “microMIPS Instruction Set Architecture”, MIPS

Technologies, Inc., October, 2009

[11] B.Govindarajalu, “Computer Architecture: and

Organization: Design Principles and Applications”,

Second Edition, Mc Graw-Hill publishers, 2010.

[12] http://www.mips.com/products/support-

training/documentation/

[13] D. Sima, T. Fountain, and P. Kacsuk, “Advanced

Computer Architectures: A design space approach”,

Pearson Education, 1997.

[14] D.A.Patterson, and J.L.Hennessy,"Computer

Organization & Design: The Hardware / Software

Interface”, Second Edition, Morgan Kaufmann, 1998.

AUTHOR’S PROFILE

Govindarajalu B received his M.Tech degree in Computer

Science from Indian Institute of Technology, Bombay.

Currently he is Professor in Computer Science at

Dhanalakshmi College of Engineering, and is pursuing the

PhD degree at B S Abdur Rahman University. His research

interests include Computer Architecture and Embedded

Systems. He is the author of IBM PC AND CLONES:

Hardware, Troubleshooting and Maintenance, and Computer

Architecture and Organization: Design Principles and

Applications. He has trained over 10,000 students in PC

Hardware and Networking since 1988 at Microcode Systems,

an IT Training Organization.

Dr.K.M. Mehata is currently Professor & Dean, School of

Computer and Information Sciences at B S Abdur Rahman

University since 2009. He served as Professor & Director,

Department of Computer Science and Engineering, Anna

University for thirty years. During this period he has guided

about fifteen doctoral candidates and published about 70

research papers in subject areas of Image Processing,

Computer Networks, Software Engineering, Web mining and

Medical Informatics.

