
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.10, February 2013

18

Formal Analysis of Privilege based Total Order

Broadcast System

Neha Chourasia
M.tech Student

Mewar University
India

Nilima Fulmare
Assistant Professor

Department of Computer
Science

Sir Padampat Singhania
University

India

Sandeep Chaurasia
Assistant Professor

Department of Computer
Science

Sir Padampat Singhania
University

India

ABSTRACT
In distributed system common global clock and shared

memory does not exist, so knowledge is shared by passing

messages between several sites. Reliable broadcast eventually

delivers messages to all participating sites. Total order

broadcast ensures that all messages must be delivered to all

sites in same order and it is a stronger notion of reliable

broadcast [1]. Event-B is based on set theory and used event

driven approach. For system-level analysis and modeling

Event-B is a formal technique. In this technique system is

gone through several stages for refinement [7,9]. To specify

total order broadcasting, introduce privilege based algorithm

and refine it at the refinement level that only owner of the

token can broadcast the messages in privilege based algorithm

and detect failures like messages having same sequence

number, token is not present for broadcasting a messages,

higher sequence number message is delivered before lower

one.

Keywords
Total order broadcast, Privilege based algorithm,

Movinsender, Event-B

1. INTRODUCTION

Distributed system architecture consists of a collection of

workstations and servers connected by a local area network

and distribution middle ware. In other words heterogeneity of

the network components that are separated and cooperate with

each other for distributed computation. In distributed system

common global clock and shared memory exist does not exist.

Communication is done by passing messages between several

sites where messages are delivered after arbitrary time delay.

This problem can be dealt by relying on broadcast primitives

that provide ordering guarantees on the delivery of messages.

Total order broadcast ensures that all messages must be

delivered to all sites in same order. It satisfies the total order

requirements and essential for group communication services.

We are using privileged based algorithm in which process can

only send messages when they are allowed to do it. In system

a special message or token is sent and only the owner of the

token is allowed to send messages [2]. A total order broadcast

is a reliable broadcast that delivers message in a same

delivery order to all processes. In the step of refinement,

introduce acknowledgement of message to make sure that

messages are not lost in between of the process and delivered

successfully to its destination and also identify that delivery

order of message is not be same at all sites and higher

sequence number messages is not delivered before lower

sequence number messages.

2. TOTAL ORDER BROADCAST

SERVICES
Here we briefly discuss about total order broadcasting. We

assume that there is a substrate layer providing basic

broadcasting services.

2.1. Basic Broadcast Service:
In system any process is send its messages by using broadcast

service. A broadcast message is received by all destined

process at different time. Internally the causal delivery of

messages is guaranteed by the broadcast service.

The basic broadcasting services receive the messages and

keep causal order of messages and deliver them. In the system

broadcasting service not guarantee the same delivery

sequence of concurrent messages on all processes [9].

2.2. Total Order Broadcast:
A Total order broadcast can be defined as a reliable broadcast

that satisfies total order requirement. For concurrent messages

causal order extends to total order. Assume m1 and m2 are

two total order broadcast messages-

 If m1 causally precedes m2, then all machines

deliver m1 before m2.

 If machine p delivers m1 before m2 and m1 and m2

are concurrent messages, then machine q that

belongs to the same partition with p delivers m1

before m2.

In other words if two processes p and q both deliver the

messages m1 and m2then p delivers m1 before m2 if and only

if q delivers m1 before m2 [3,9].

3. REVIEW OF TOTAL ORDER

PROTOCOLS
In the absence of failures survey of total order broadcast

algorithms is given [3]. In algorithms there are three different

roles those participating processes that are

 Sender (from which a message originates)

 Destination (to which a message is destined)

 Sequencer (involved in ordering of messages)

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.10, February 2013

19

 According to these three different roles Total order protocols

classifies in five different classes

 Fixed sequencer

 Moving sequencer

 Privilege based

 Communication history

 Destination agreement

In Fixed Sequencer Algorithm single process is elected as a

sequencer and responsible for ordering of messages on behalf

of other processes in the system. Failure of this sequencer is

not tolerated.

In Moving Sequencer Algorithm sequencer is not a fixed

which means the role of sequencer is to be transferred

between several processes for ordering of messages. It is a

token based algorithm.

The idea behind privilege based algorithm is that the process

can broadcast message only when they are granted to do it. At

every moment if only one process is allowed to broadcast

messages, then the total order can be easily set using a global

sequence number [3]. Generally privilege circulates among

several processes in the form of token. Only owner of the

token is allowed to broadcast messages. When a process

wants to broadcast a message must wait until it receives the

token messages. Then, it assigns a sequence number to each

of its messages and sends them to all destinations. So sender

updates the token and sends it to the next sender. Destination

processes deliver messages in increasing sequence numbers

[3,9].

In communication history algorithm, processes use historical

information about message sending, reception and delivery to

total order messages. The delivery order is determined by the

senders. There are two variants that are Causal history and

Deterministic merge.

In destination agreement algorithms, delivery order results

from an agreement between destination processes. There are

different variants of agreement-

Agreement on a message sequence number, Agreement on a

message set, Agreement on the acceptance of a proposed

message order.

4. FORMAL METHOD: EVENT-B
Event-B which is based on set theory. It used event driven

approach. The event system is defined by its state and it

contains a number of events. An event is consisting of three

elements that are its name, guard and actions. For the

occurrence of an event, guards are required. B uses abstract

machine which encapsulate state and operations. Abstract

machine consist set, constant and variable clauses. It also

includes a design step called refinement step which is closer

to an implementation. At each refinement state initialization

event which has no guard helps to model the system such that

new details are added [6,7].

5. DESCRIPTION OF MODEL
For the reliable total ordering of messages fixed sequencer,

moving sequencer, privilege based algorithm, communication

history and destination agreement are used [3]. In proposed

model, consider privilege based algorithm which is also called

token based algorithm because token is responsible for

broadcasting of messages. In the abstract model used privilege

based algorithm which allow to only one process to send

messages at every moment so total order can easily be set

using global sequence number and each site deliver the

messages in total order [9]. In the refinement model, introduce

privilege based algorithm in which only owner of the token

can broadcast its messages. When a process wants to

broadcast a message must wait until it receives the token

messages and destination processes deliver messages in

increasing sequence numbers [9]. In further refinement steps

we detect failures like two different messages receive same

sequence number and higher sequence number message

delivered before the lower sequenced number messages and

token is lost or not received by any process [3,9]. Following B

notations are [6,7]

B Symbols Description

Mapping

Partial Function

Total Function

Element Of

For All

Natural Number

Domain

Restriction

Power Set

There Exists

6. ABSTRACT MODEL:
In the abstract model, the privilege based algorithm to ensure

total order delivery of messages. In proposed model use

privilege based algorithm which allow to only one process to

send messages at every moment so total order can easily be

set using global sequence number [9].To define set of

processes and messages in the system propose two sets

PROCESS and MESSAGE. Some variables sender,

totalorder, tdeliver, counter, seqno are declare. Sender is

defined as partial function from MESSAGE to PROCESS and
mapping between them indicates that

message m was sent by process p. The partial function ensures

that message is associated with only one sender process.

Invariant of sender is

sender

 The variable tdeliver is a relation between PROCESS and

MESSAGE and indicates that a process p

has delivered a message m in total order. Invariant of tdeliver

is

tdeliver

The totalorder variable is a relation between MESSAGES and

the mapping) indicate that message

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.10, February 2013

20

m1 is totally order before message m2. The invariant of

totalorder is

totalorder

The variable seqno is used to assign the sequence number to

the messages. The counter, initialized to zero, is maintained

by the sequencer process and incremented by one each time a

control message is sent out by the sequencer process.

 seqno &

 counter NAT

In this machine a broadcast message is delivered to its sender

as well as all other processes. It may be noticed that all

delivered messages must be messages that have been sent.

This is proof by following invariant

ran(tdeliver)

Initially all variables contain an empty set. In ordering event

total order indicates that all messages delivered to sequencer

in the system are ordered before mm.

totalorder:=totalorder
 (tdeliver[{sequencer}]*{mm})

The total order delivery of message at total order delivery

event is

if m1 precedes m2 then the sequence number assigned to m1

is less than the sequence number assigned to m2.

In this model one sequencer work as sender, is used as a

constant which is responsible for sequencing of messages.

Following invariant for one sender as sequencer is used

ran(tdeliver)

this indicate that that the message delivered elsewhere in the

system has also been delivered to the sequencer.

MACHINE Total

SETS PROCESS={p1,p2,p3};MESSAGE

={m1,m2,m3}

VARIABLES sender, totalorder, tdeliver, seqno,

 counter

CONSTANTS sequencer

PROPERTIES sequencer PROCESS

INVARIANTS

 /*I1*/ sender &

 /*I2*/ totalorder &

 /*I3*/ tdeliver &

 /*I4*/ ran(tdeliver) dom(sender) &

 /*I5*/ seqno &

 /*I6*/ counter NAT &

 /*I7*/

 &

 /*I8*/

OPERATIONS

BROADCAST (pp,mm)

 PRE pp PROCESS & mm MESSAGE THEN

 SELECT mm dom(sender)

 THEN

 sender:= sender U{mm pp} ||

 END

END;

ORDER (pp,mm)

 PRE pp PROCESS & mm MESSAGE THEN

 SELECT mm dom(sender) & pp = sequencer

 & (sequencer mm) tdeliver

 & ran(tdeliver) tdeliver[{sequencer }]

 &
 (pp mm tdeliver)

 (pp mm tdeliver)

 THEN

 tdeliver:= tdeliver U{pp mm}

 || totalorder:=totalorderU(tdeliver[{sequencer}])*{mm})

 || seqno:= seqno U {mm }

 || counter:= counter+1

END

END;

TODELIVER(pp,mm) =

 PRE pp PROCESS & mm MESSAGE

 THEN

 SELECT mm dom(sender)

 & pp mm deliver)

 & mm ran(tdeliver) & pp

 & ran(tdeliver) tdeliver[{sequencer }]

 & totalorder
)
 (pp mm tdeliver)

 THEN

 tdeliver:=tdeliverU{ pp mm }

END

END

END

7. REFINEMENT MODEL:
In the refinement model introduce token based privilege

algorithm is used in which only owner of the token can

broadcast its messages for building a total order on the

messages. Refinement of abstract model we introduce new

variable as enumerated set prostatus, profaultstatus, movinsen,

token and counter. The PROSTATUS set contains the element

PREPARE AND SENDER. If any process having a token and

broadcast its messages then its status is sender. TOKEN

enumerated set contains ENABLE and DESABLE. If token is

active to any process, it is called enable token and if not active

to any process called disable. The PROFAULTSTATUS is

defined as enumerated set which contain FAULTY,

NONFAULTY, FAIL_DETECT. If any process found faulty

then the process status set as faulty and if not then set as

nonfaulty.

In the proposed model detect sender is failure in following

conditions:

 If destination process receives two different

messages with same sequence number.

 If higher sequence number message is delivered

before a message having lower sequence number at

destination process.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.10, February 2013

21

 Sender process is not receiving a token for

broadcasting its messages.

A process can broadcast message, if token is active on

particular process. Follwing given for active token

ACTIVE_TOKEN(pp,mm)

 PRE pp PROCESS

 & pp movinsen

 & mm MESSAGE THEN

 SELECT profaultstatus(pp) = NONFAULTY

 & token(pp) = DESABLE

 & prostatus(pp) = PREPARE &

 (p) . (p PROCESS & p movinsen token(p) =

DESABLE)

 THEN

 token(pp) := ENABLE

 || prostatus(pp) := SEQUENCER

 END

In the proposed model the following invariant constructed the

total order

In the case when same sequence number messages are not

delivered by processes.

If the following condition is found then the sender process

which is responsible for ordering of messages becomes faulty

so the profaultstatus is fail_detect. In other words sender is

faulty, no two different messages can receive same sequence

number.

In the other case if at the destination site a higher sequenced

number message is delivered before the lower sequenced

number message then the sender is becomes faulty and the

profaultstatus is fail_detect and the following condition is

occur

Privilege based algorithm enforced that only owner of the

token can broadcast its messages and the process wants to

broadcast messages then it must wait until it receives the

token and if any sender process is not received a token, it

becomes faulty that it cannot broadcast its messages. In the

proposed model by using of ack variable can detect that the

sender receives the token or not. If the sender not receives the

token then the variable unack is active and the status of token

is set enable which means the process becomes faulty and the

profaultstatus is fail_detect.

8. CONCLUSION
In this paper presented a formal analysis of privilege based

total order broadcasting system using Event-B. In the abstract

model to ensure the total order, only one process is send

messages at every moment so total order can easily be set

using global sequence number. In the refinement model

introduce privilege based algorithm in which only owner of

the token can broadcast its message.

The sender process is faulty if the destination process receives

two different messages with same sequence number or if

the higher sequence number message is delivered before a

message having lower sequence number at destination process

or sender process is not receiving a token for broadcasting its

messages. The proof obligation is done on Rodin platform and

by the prover of the tool, these proofs are discharged

automatically.

9. REFERENCES
[1] Louise E. Moser and P.M.Melliar –Smith, Byzantine

Resistant Total Ordering Algorithms.

[2] Emili Mides, Frances D- Adding Priorities to Total Order

Broadcast Protocols,2007

[3] Xavier D´efago, Andr´e Schiper, and P´eter Urb´an.

Total order broadcast and multicast algorithms:

Taxonomy and survey. ACM Comput. Surv., 2004.

[4] Nilima Fulmare and Divakar Yadav, Rigorous Analysis

of Byzantine Immune Causal Order using Event-B.

[5] Divakar Yadav and Michael Butler, Formal

Specifications and Verification of Message Ordering

Properties in a Broadcasting Using Event-B

[6] Rodin User’s Handbook v.2.4 http://handbook.event-

b.org/release-2012-04-04/html/index.html.

[7] C Metayer, J R Abrial, and L Voison. Event-B language.

RODIN deliverables 3.2,

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, 2005.

[8] Raghuraj Suryavanshi and Divakar Yadav , Formal

Development of Byzantine Immune Total Order

Broadcast Systen Using Event-B. 2012

[9] Li Ou, Xubin He, Christian, Stephen L. Scott, A Fast

Delivery Protocol for Total Order Broadcasting, 2007

[10] Michael Butler, Relations in B, University of

Southampton Lecture Notes.

http://handbook.event-b.org/release-2012-04-04/html/index.html
http://handbook.event-b.org/release-2012-04-04/html/index.html

