
International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

15

Parallel Computing for Accelerated Texture

Classification with Local Binary Pattern Descriptors

using OpenCL

CYN Dwith
Department of Electronic and Communication

Engineering
NIT-Warangal, Warangal, Andhra Pradesh, India

Rathna.G.N, PhD.
Department of Electrical Engineering

Indian Institute of Science
Bangalore, India

ABSTRACT

In this paper, a novel parallelized implementation of rotation

invariant texture classification using Heterogeneous

Computing Platforms like CPU and Graphics Processing Unit

(GPU) is proposed. A complete modeling of the LBP operator

as well as its improvised versions of Complete Local Binary

Patterns (CLBP) and Multi-scale Local Binary Patterns

(MLBP) has been developed on a CPU and GPU based

Heterogeneous computing platforms using OpenCL. The tests

using these feature descriptors of Local Binary Pattern (LBP)

algorithms and their parallelized implementation using

OpenCL were also performed. Significant Improvement in

computation speed is achieved over traditional CPU-based

algorithms. To test the accuracy of the GPU implemented

algorithms a set of textures were classified using selected

LBP, CLBP and MLBP descriptors. Classification was

performed by applying these descriptors to several unique

texture classes at various spatial resolutions and rotations. The

primary focus of this paper is to provide an overview of these

algorithms, demonstrate observed performance gains and to

verify the validity of using these descriptors for texture

analysis on a CPU and GPU based Heterogeneous Platform.

General Terms

Heterogeneous Computing, Texture Classification, Graphics

Processing Unit, Parallel Programming

Keywords

Graphic Processing Unit, Local Binary Patterns, Texture

Classification, Heterogeneous computing and OpenCL

1. INTRODUCTION
In this paper we shall elaborate on how texture classification

algorithms, the Local Binary Pattern operator, can be

parallelized and processed by using Heterogeneous computing

platforms (CPU and modern graphics hardware) using

OpenCL Programming Model in image processing. Texture

analysis plays a vital role in the development of many

computer vision and image processing solutions. The potential

applications of the texture analysis include such as biomedical

image analysis, satellite surveillance systems, face

recognition, inspection of industrial surfaces and object

recognition. Many texture classification methods have been

proposed, which assume that the samples to be classified are

of similar scale, orientation and grayscale. These methods

emphasize on the statistical analysis of the texture images i.e.

co-occurrence matrix method [1] and the filtering based

methods [2]. Kashyap and Khotanzad [3], first studied the

rotation invariant texture classification using a circular

autoregressive model. Later, Varma and Zisserman [4-5]

proposed another texton based algorithm by using the image

local patch to represent features directly. Most recently

proposed methods for texture classification include scale and

affine invariant texture classification by using fractal analysis

[6-7] and affine adaption [8-9]. The LBP was first proposed

by Ojala et al [10]. LBP is an effective tool, which gives a

simple and efficient description of the local patterns in an

image. The LBP patterns provide efficient results in various

applications of texture classification, face recognition [11],

pattern recognition, dynamic texture classification [12], shape

localization [13] and much other application in the field of

image processing. It eliminates the variance in the

illumination, rotation and gray scale variation, retaining the

texture details of the image. The great success of LBP in

image processing and computer vision led to the study of its

underlying mechanism, which makes it efficient for

describing the local patterns in an image. Many augmented

versions of the LBP have been proposed to improve the

efficiency of classification. Ojala et al proposed LBP [13] to

measure the absolute gray level difference and use the sign

instead of the magnitude of the difference to represent the

local pattern. Further, Local Ternary Pattern (LTP) was

proposed by Tan and Triggs [14] to divide the difference the

magnitudes of the pixels values to three quantized levels.

Many variants of LBP, weighted LBP, rotation Invariant LBP,

Completed LBP (CLBP) [15], Multi-scale LBP (MLBP) [16],

have been proposed recently, which are described in the

Section II.ask that authors follow some simple guidelines. In

essence, we ask you to make your paper look exactly like this

document. The easiest way to do this is simply to download

the template, and replace the content with your own material.

The rest of the paper is organized as follows: Section II, we

discuss the process of LBP conversion and LBP as a

descriptor for texture classification. It further extends the idea

of the original LBP and gives an over view on CLBP and

MLBP descriptors, explaining its role as a texture descriptor.

We then describe the implementation and experimental setup

for this algorithm in Section IV. Section V, experimental

results are discussed, before conclusions are drawn from the

performance of the algorithms as observed on the GPU and

CPU.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

16

Fig 1: Generation of Binary LBP code from the

Sampled (P,R) window

Fig 2: Circular Sampling of neighbor pixels Points P at

a radius R i.e. (P, R)

2. OVERVIEW OF ALGORITHMS

2.1 LOCAL BINARY PATTERNS

Local Binary Pattern (LBP) is a very powerful tool to describe

the textures and shape of a digital image. It is a simple and

efficient tool to contain the texture detail, by eliminating

variation in the illumination, rotation and grayscale variance.

In the basic LBP operator, the neighborhood pixels of the

given 3x3 window, threshold is applied with respect to the

centre pixel value. The LBP operators consider only the signs

of the magnitude difference, which are relatively unaffected

by the variation in illumination changes, gray scale variation

and other kind of noises. These signs of differences are used

to generate binary code, which is converted to its equivalent

decimal form to give the labels of the corresponding center

pixel.

The basic LBP code is generated by comparing with its

neighboring pixel values.

1
1, 0

(,) (,) 0, 0

0

()2 , () {
P

p x

P R p i j c x

p

LBP s I I s x








  

Where
(,)p i jI is the pixel intensity in image at the pth sample

point, where P is the total number of the sample point at a

radius of R denoted by (P, R). The P circularly and evenly

spaced sampling points of the window are used to calculate

the difference between the centre pixel and its surrounding

pixel values. It characterizes the local pattern of the image as

the absolute value of the pixel are not considered and the

centre pixel values are removed which make the pattern

robust to any changes in the illumination conditions. These

features are more effective in pattern matching then the

original image patterns as they are sensitive to the noise and

illumination conditions. The generalized representation of the

sampling point is taken along a circle with radius R around

the centre pixel as shown in Fig2. The sampling points are

selected using the interpolation, if (xc,yc) are the co-ordinates

of the centre pixel and the sampling points (xp,yp) are given by

cos(2 /)p cx x R p P 

sin(2 /)p cy y R p P 

The generated local binary patterns are used to evaluate the

histogram of the local region, which are cascaded to form the

feature vector of the image.

(,)

1 1

(,) (,), [0, (1) 3]
I J

s P R

i j

H p k f LBP p p P P
 

   
Where k is an integer to represent the number of sub

Histograms k=[1,2,….K], K is the total number of histograms

,and f(x,y) is given by
1,

0,(,) { x y

otherwisef x y  . The generated

pattern LBP pattern are further classified into Uniform and

Non uniform patterns based on the number of the transition in

the local binary pattern generated. In case of Uniform patterns

the numbers of transitions is restricted to less than 2 i.e. (U
2), where U is the number of transitions within the circular

representation of the binary pattern.

(,)

1 1

() ((,), [0, (1) 3]
heightwidth

s P R

i j

H p U f LBP p p P P
 

    

Where
,

(1) 2,(,) {p x p

P P x pU x p 

  

 The Uniform LBP pattern is defined as the Limited transition

or discontinuities binary representation reduces the length of

the histogram bin form the 2P to P (P-1) + 3 distinct output bin

values. Similar to Uniform Patterns, the mapping from

LBP(P,R) to rotation invariant LBP i.e.
2

(,)

riu

P RLBP , which has

P+2 distinct output values, given by

1

(,)

0

() () 2
2

(,)
1

P

p c P R

p

s I I ifU LBP
riu

P R
P otherwise

LBP





 




 


These labeled images (LBP images) are further processed to

generate the local histogram, which give the spatial

information of the texture image. These locally generated

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

17

Fig 3: Multi-scale Local Binary Pattern representation

LBP patterns are concatenated into a single feature vector to

represent the LBP feature of the texture image.

2.2 Complete Local Binary Pattern (CLBP)

CLBP is an improvised version of the basic LBP operator.

The LBP operator successfully eliminates the illumination and

brightness variations but in turn losses some data in the

image. It can be significantly improvised by the including the

data pertaining to the centre pixel value and the local binary

patterns can be represented at a global scale by comparing

with the average gray scale pixel value.

 In CLBP the locally generated patterns is quantized to binary

levels after applying a global thresholding, the obtained bit

map is called the LBP Center (LBPC) as it contains the data

of the centre pixel values. Similarly LBP-Mean is generated

by thresholding the neighboring pixel values with respect to

the Mean gray scale level of the image, which are then

represented as binary codes by quantizing them into two

quantization levels. Where LBPS is the basic implementation

of the LBP discussed earlier. Hence, in case of CLBP the

basic LBP is complemented with addition data corresponding

to the centre pixel and mean gray scale level, which aids in

the classification and improves the efficiency of the system.

The above mentioned CLBP involves the evaluation of three

LBP codes maps LBPS, LBPM and LBPC. As

implementation of the LBP pattern generation involves direct

access to the each of the image pixels, as the size of the image

increases the time complexity of the algorithm is supposed to

increase linearly in case of traditional sequential approach. As

CLBP involves an enormous amount of computational time to

access the image pixel, in order to overcome the

computational inefficiency we propose a parallelized

algorithms which speeds up the CLBP feature generation to

implement CLBP in real time application like face recognition

systems, mobile applications, security surveillance and

outdoor robotics.

In case of generation of the LBPM the values of the LBPM

are given by

1
1,

(,) 0,

0

(,)2 , (,) {
P

p x c

P R p x c

p

LBPM s I M s x c








 

(,)

1 1

() (,), [0, (1) 3]
heightwidth

m P R

i j

H p f LBP p p P P
 

    
Where M is the mean pixel value of the image used as a

threshold, and Ip is the gray scale intensity at the sampled

pixel value.

In case of LBPC, the at each pixel value the thresholding is

done with respect to the Mean pixel value of the whole image

which is used to generate the image. The generated bit pattern

is further encoded to reduce its size to 256

1,

(,) 0,(,), (,) { x c

P R p x cLBPC t I M t x c 

 

The histogram for LBPC is given by

(,)

(,) 1, (,) 0

(,) (,), 0

1 1

() (), {
i j

I J
C i j I i j

c i j C i j I

i j

H k C I C  



 

 

'

0

()
K

c c

k

H H k




Meanwhile, LBP technique has been able to represent the

local patterns of an image very effectively. Additional

discriminative information can be provided to include the

centre pixel value, as well the magnitude component of the

local difference within a window relative to the average gray

scale value. Through CLBP we try to explore all the three

types of data, for a better and efficient way of representing

image features. Initially the image is represented by the gray

scale values of its central pixel (LBPC), the local difference is

further decomposed into the LBPS and LBPM components,

finally a CLBP images, then the local histogram are generated

of the each layers of the image RGB to generate the CLBP

feature vector by concatenating the LBPS, LBPM and LBPC

feature vectors which can be used for texture classification.

These features are used for classification by using the nearest

neighbor classifier with distance measurement.

2.3 Multi-Scale Local Binary Pattern

In the general definition of the LBP operator, arbitrary

circular neighbor sets are used instead of the eight-neighbors.

The number of samples as well as the sampling radius is

varied in case of an Multi-Scale Local Binary Pattern. In

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

18

Fig 4: Implementation of LBP based LBP Operator on

Heterogeneous Platform

addition, operators with different parameters can be combined

to obtain a multi-scale description of texture. In Fig3, three

neighborhoods with a varying number of samples (P) and

different neighborhood radii (R) are shown. The

corresponding LBP operators are denoted by LBPP, R.

Samples that do not exactly fall on pixels are obtained with

bilinear interpolation. The value of the center pixel (gray) is

used as a threshold in producing a P-bit binary code that

describes the local pattern in the texture. These are future

classified as Uniform local patterns and rotation invariant

uniform patterns. These codes have been shown to dominate

the LBP distribution. The resulting operators are denoted by

2

(,)

riu

P RLBP . Ojala [10] reported in their experiment, that

uniform patterns account for 90.6% of all patterns when using

(8,1) neighborhood and 85.2% when using (8,2) neighborhood

and 70% for (16,2) neighborhood. In order to reduce the

feature vector length we take into consideration only the

uniform patterns in the image which constitutes above 85-

90% of the image data in case of (8,1) and (8,2)

neighborhoods. In case of (8,1) neighborhood, the Uniform

patterns effectively reduce the bin size from 256 to 59, which

in turn reduces the feature vector length. This effectively

reduces the length of feature vector, but still retaining almost

90% of the image data. These generated feature vectors are

used to match the image from the database of image features.

In [16], a multi-scale LBP was constructed by extracting a

number of LBP codes for each pixel with different P and R

values. The marginal distributions of these codes were used as

a texture descriptor. This approach has some shortcomings, as

detailed in the following. From a signal processing point of

view, the sparse sampling exploited by LBP operators with

large neighborhood radii may not result in an adequate

representation of the two-dimensional image signal. Aliasing

effects are an obvious problem. So might be noise sensitivity

as sampling is made at single pixel positions, without low-

pass filtering. One might argue that collecting information

from a larger area would thus make the operator more robust.

From the statistical point of view, even sparse sampling is

however acceptable provided that the number of samples is

large enough. Hence, to avoid the problem of aliasing the

sampling is restricted to a radius of 3 units with 8 sampling

points. To improve the performance of the algorithm and

eliminate the possible aliasing effect an exponentially

growing multi-resolution LBP combined with Gaussian

filtering is implemented in case MLBP. These MLBP bins are

further processed to generate spatial histogram, which are

concatenated to form the required feature descriptor for

texture classification.

2.4 Metrics for Classification

We have various metrics for quantizing the difference

between two feature vectors like histogram intersection, log-

likelihood ratio and chi square statistics. The Chi-square

statistics outperform the histogram intersection and log-

likelihood statistics in terms of accuracy of detection [17].

The chi-square distance, used to measure the dissimilarity

between two LBP images S and M is given by

2

1

(,) () / ()
L

i

D S M Sx Mx Sx Mx


  

Where L is the length of the feature vector of the image and

Sx and Mx are respectively the values of the sample and model

images at the xth bin. The Nearest-Neighborhood classifier is

implemented with chi-square distance because it is equivalent

to the optimal Bayesian classification [18].

3. IMPLEMENTATION
In this section we describe the overview of the variants of

LBP implementation using OpenCL model. The LBP value of

a pixel is evaluated, by sampling a selected number of pixels

over a circle at a distance R around the every pixel of the

image. In parallelized approach, each Kernel of the OpenCL

computation involves sampling P points by using circular

neighborhood from selected centre pixel. The GPU based

parallelized implementation involves designing a

computational Kernel for evaluating the LBP values of the

input Image. The Kernel takes gray scale or colored input

image, the labeled pixels are updated to generate the LBP

image. The parallelized algorithm is implemented as a

sequence of GPU kernels using OpenCL programming

language. The kernel program takes an input image and

transforms it into an output image.

3.1 OpenCL Programming Model
In this Section, a brief overview of the various architectural

issues and programming models using OpenCL has been

detailed to describe the implementation. The OpenCL

framework is used for its platform independent and

heterogeneous programming capabilities, to implement the

GPU programs. The experimental setup to measure is

performance of the systems is as shown in Fig4. Algorithms

which use linear addressing and involving similar

computation on large instants of inputs can be implemented

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

19

Fig 5: Memory Model of GPU

Table I: a) Pseudo-Code for CPU LBP Implementation b) Parallelized GPU Kernel

Void CLBP(int *input,int *output, int* Avg)

for i {

 for j {

 //Access the pixels values

 // Apply LBP/CLBP/MLBP operator

 Y(i,j)=CLBP(I(i,j),Avg);

 // Algorithms on each Pixel Values

 }

}

__Kernel

Void CLBP(__global int* input, __global int* output, __global

int* Avg)

{

int x= get_global_id(0);

int y= get_global_id(1);

//Apply LBP/CLBP/MLBP operator

 Y(x,y)=CLBP(I(x,y),Avg);

// Algorithms on each Pixel Values

}

more effectively on SPMD platforms like GPUs. In this

regard various image and video processing algorithms involve

the regular access of the image pixels or frames and applying

similar operation on every instance of the input, parallelizing

such algorithms can boost the performance of the system by

many times. The challenge related to proposed algorithm is to

achieve task parallelism through a hierarchy of memory

through effective utilization of memory storage area, memory

bandwidth and the access and update of the data.

OpenCL is a promising language for portable GPU

programming, which enables targeting heterogeneous parallel

processing devices. In this section, we present a brief

understanding of the names, labels and concepts, which are

essential for basic understanding of the algorithm. The

computational ‘kernels’ is the most important concept; it

represents a function that gets executed on GPU. A ‘work

item’ is used to apply the compute kernel on the input data. A

group of work items is called a ‘work group’. Each work item

is assigned its own location through localized and globalised

work group. The local memory will be shared through local

references to a work group. An extensive study of these

concepts is covered in the OpenCL specifications [19]. The

programming model of OpenCL broadly contains: (i)

Platform Model (ii) Memory Model (iii) Execution Model.

3.1.1 Platform Model
A host (CPU) is connected to one or more OpenCL devices.

OpenCL device is a collection of one or more computational

unit, each computational unit is composed of multiple

processing elements. Each processing elements is used to

execute an SIMD (GPU) or SPMD operations.

3.1.2 Memory Model
In case of OpenCL the memory hierarchy is divided into

four categories as shown in Fig5, (i) Private memory: this

memory is exclusive to the work items (ii) Local Memory:

this is a fast memory shared between the host processors (iii)

Global Memory: this constitutes the main memory of the GPU

(iv) Constant Memory: it is a part of the global memory,

which is marked read only.

3.1.3 Execution Model
Data parallelism is achieved in the OpenCL through multiple

work-item execution on the input image. We can define an N-

dimensional computation domain (N = 1, 2 or 3). Each

independent element of execution in N-D domain is called a

work-item. The N-D domain defines the total number of

work-items that execute in parallel i.e. processing a 512 x 512

image.

Initially the input gray scale input image is uploaded, which is

spread over different color channels available. These channels

are processed independently using Gaussian filter Kernels.

The Gaussian Filters sigma is chosen according to the

sampling radius of the corresponding LBP ring in the MLBP

operator. Then a second kernel is queued to compute the LBP

values of the blurred images. For the data parallelized model,

a data parallelized reformulation of the standard algorithm has

been developed as shown in Table I. Going from the abstract

view of the framework to the concrete implementation as

shown in Fig, the kernel program sequence executed in order

to compute the LBP image is depicted in Fig4. Execution

model utilizes in addition to data parallelism the vector

parallelism inherent to the OpenCL. This support of vector

parallelism which can be used in image processing to

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

20

Fig 8: Sample Images of Texture Classes used for

Experiment

Fig 7: Sample Images of Texture Class “brick” at

Different Angles of Rotation

Fig 6: Parallelized Framework for generation of CLBP using the different access layers of the image

process RGBA images, where each image pixel is 4 byte data

represented by uchar4. Similarly the extended version of the

vectors floatN, ucharN can also be used where N is the

number of elements in the vector. We utilize the capability of

the processing vector data types, four floating point

represented by ‘floatn’; where ‘n’ is the number of channels

accessed in parallel which can be used for RGBA image

format. In case of CLBP, we use these channels to compute

LBPS, LBPM and LBPC within each layer of the output

image as shown in Fig6. Similarly in case of MLBP, within

each layer of the image we evaluate the Multi-scale LBP

using (8,1),(8,2) and (8,3) sampling.

4. RESULTS AND ANALYSIS
The performance of the proposed algorithm was tested on

AMD 6500 GPU. The feature description methods for texture

classification have been evaluated against Brodatz album [20],

standard benchmark texture image database. The experimental

dataset included images with resolution of 256×256, 8

bits/pixel. The images are from 5 different texture classes,

namely bark, brick, grass, leather and straw have been

considered. The source images were rotated to obtain 7

different rotation angles of 0°, 30°, 60°, 90°, 120°, 150°, and

200°. The dataset included 10 images for each rotation angle

of a texture class.

In this analysis, two images have been used to generate the

texture features in each class required for the classification

using Nearest-Neighbor classification and the remaining

images were used as the testing sets. Therefore, both the

training and the testing dataset included texture images of

different illumination variations and rotation angles. The

classification efficiency of the algorithms have been studied

extensively in the literature [15-16, 21], hence our primary

emphasis is on the execution time and performance of the

algorithm on the Heterogeneous platform.

The results pertaining to the efficiency achieved in the

computation time of the algorithm when compared with the

traditional LBP operators implementation in CPU is shown in

Table II. Further, the comparative study of the algorithm

implementation based on the percentage accuracy achieved

with CPU and GPU tabulated in Table II. In all cases, the

generated binary codes were converted to rotation invariant

patterns using the method discussed in earlier Section II.

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

21

Fig 10: Relative Improvement in the

Computational Time of Different LBP operators

Table II. Comparison of CPU vs OpenCL Performance in Texture Classification using Different LBP Operator

Feature Descriptor CPU (Core 2 duo) OpenCL Model (AMD 6500 GPU)

Classification Rate

(%)

Feature Ext.

Time(ms)

Classification Rate

(%)

Feature Ext. Time

(ms)

LBP 72.2 134.6 73.5 28.5

CLBP 76.5 197.4 75.5 31.2

MLBP ((8,1)+(8,2)) 72.45 162.6 73.45 29.9

MLBP((8,1)+(8,2)+(8,3)) 78.9 162.4 77.6 29.7

Fig 9: Computational Efficiency of CPU vs OpenCL

Model (GPU)

Further, the analysis of the improvement in the computational

time using GPU is tabulated in Table II, and a study of

relative performance increase is depicted in the Fig9 and

Fig10. Shows, that the variation of the computational time is

of different LBP operators in the GPU based implementation.

5. CONCLUSION
In this paper, we presented a reformulation of the Local

Binary Pattern Operators for Texture Analysis. GPU

implementation with its parallel computing paradigm

outperforms the other approaches. GPUs have addressed the

problem of performing image operations serially by allocating

mathematical operations to multiple threads, in parallel. This

enables texture analysis becomes possible even for systems

with limited resources, such as mobile outdoor robots.

Combined with a relatively low cost, the modern GPU is a

powerful piece of computer processing hardware for its price

with a wide range of applications face recognition,

surveillance systems, mobile applications, texture analysis,

medical imaging, robotics and many other industrial

applications.

6. ACKNOWLEDGMENTS
This work was partially supported by AMD Development

Team, by supporting us with AMD GPU.

7. REFERENCES
[1] R.M. Haralik, K. Shanmugam, and I. Dinstein, “Texture

features for image classification,” IEEE Trans. on

Systems, Man, and Cybertics, vol. 3, no. 6, pp. 610-621,

1973.

[2] T. Randen, and J.H. Husy, “Filtering for texture

classification: a comparative study,” IEEE Trans. on

Pattern Analysis and Machine Intelligence, vol. 21, no. 4,

pp. 291-310, 1999.

[3] R.L. Kashyap, and A. Khotanzed, “A model-based

method for rotation invariant texture classification,”

IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 8, no. 4, pp. 472-481, 1986.

[4] M. Varma and A. Zisserman, “Texture classification: are

filter banks necessary?” in Proc. International

International Journal of Computer Applications (0975 – 8887)

Volume 64– No.1, February 2013

22

Conference on Computer Vision and Pattern

Recognition, 2003, pp. 691-698.

[5] M. Varma, and A. Zisserrman, “A statistical approach to

material classification using image patch examplars,”

IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 31, no. 11, pp. 2032-2047, 2009.

[6] Y. Xu, H. Ji, and C. Fermuller, “A projective invariant

for texture,” in Proc. International Conference on

Computer Vision and Pattern Recognition, 2005, pp.

1932-1939.

[7] M. Varma, and R. Garg, “Locally invariant fractal

features for statistical texture classification,” in Proc.

International Conference on Computer Vision, 2007,

pp.1-8.

[8] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture

representation using local affine regions,” IEEE Trans.

on Pattern Analysis and Machine Intelligence, vol. 27,

no. 8, pp. 1265-1278, 2005.

[9] J. Zhang, M. Marszalek, S. Lazebnik and C. Schmid,

“Local features and kernels for classification of texture

and object categories: a comprehensive study,”

International Journal of Computer Vision, vol. 73, no. 2,

pp. 213-238, 2007.

[10] T.Ojala, M.Pietikainen, T.Maeopaa, “Multiresolution

Gray-Scale and Rotation Invariant Texture Classification

with Local Binary Patterns”, IEEE transactions on

Pattern Analysis and Machine Intelligence, vol.24, 2002,

pp.971-987.

[11] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face

recognition with Local Binary Patterns: application to

face recognition,” IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 28, no. 12, pp. 2037-2041,

2006.

[12] G. Zhao, and M. Pietikäinen, “Dynamic texture

recognition using Local Binary Patterns with an

application to facial expressions,” IEEE Trans. On

Pattern Analysis and Machine Intelligence, vol. 27, no. 6,

pp. 915-928, 2007.

[13] X. Huang, S. Z. Li, and Y. Wang, “Shape localization

based on statistical method using extended local binary

pattern,” in Proc. International Conference on Image and

Graphics, 2004, pp.184-187.

[14] X. Tan, and B. Triggs, “Enhanced Local Texture Feature

Sets for Face Recognition Under Difficult Lighting

Conditions,” in Proc. International Workshop on

Analysis and Modeling of Faces and Gestures, 2007, pp.

168-182.

[15] Guo, Z., Zhang, L, "A Completed Modeling of Local

Binary Pattern Operator for Texture Classification. IEEE

Trans. IP 19,1657-1663, 2010.

[16] Maenpaa,T.,Pietikainen,M. "Multi-scale binary patterns

for texture analysis." In"Scandinavian Conference on

Image Analysis, Lecture Notes in Computer Science,

vol.2749,pp.885-892.Springer, Berlin (2003).

[17] T. Ahonen, A. Hadid and M. Pietik¨ainen. Face

recognition with Local Binary Patterns. Machine Vision

Group, University of Oulu, Finland, 2004.

[18] M.Varma, A.Zisserman , Unifying statistical texture

classification framework, Image and Vision Computing

22 (14) (2004) 1175–1183.

[19] KHRONOS: OpenCL overview web page,

http://www.khronos.org/opencl/,2009.

[20] P. Brodatz, “Textures: A Photographic Album for Artists

and Designers,” Dover Publications, New York, 1966.

[21] C Y N Dwith, Dr. G N Rathna :” Parallel Implementation

of LBP based Face Recognition on GPU using OpenCL”,

The Thirteenth International Conference on Paralle and

Distributed Computing, Applications and Technologies

(PDCAT'12), Beijing, China (2012).

