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ABSTRACT 

In this paper, a novel parallelized implementation of rotation 

invariant texture classification using Heterogeneous 

Computing Platforms like CPU and Graphics Processing Unit 

(GPU) is proposed. A complete modeling of the LBP operator 

as well as its improvised versions of Complete Local Binary 

Patterns (CLBP) and Multi-scale Local Binary Patterns 

(MLBP) has been developed on a CPU and GPU based 

Heterogeneous computing platforms using OpenCL. The tests 

using these feature descriptors of Local Binary Pattern (LBP) 

algorithms and their parallelized implementation using 

OpenCL were also performed. Significant Improvement in 

computation speed is achieved over traditional CPU-based 

algorithms. To test the accuracy of the GPU implemented 

algorithms a set of textures were classified using selected 

LBP, CLBP and MLBP descriptors. Classification was 

performed by applying these descriptors to several unique 

texture classes at various spatial resolutions and rotations. The 

primary focus of this paper is to provide an overview of these 

algorithms, demonstrate observed performance gains and to 

verify the validity of using these descriptors for texture 

analysis on a CPU and GPU based Heterogeneous Platform. 
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Processing Unit, Parallel Programming 
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1. INTRODUCTION 
In this paper we shall elaborate on how texture classification 

algorithms, the Local Binary Pattern operator, can be 

parallelized and processed by using Heterogeneous computing 

platforms (CPU and modern graphics hardware) using 

OpenCL Programming Model in image processing. Texture 

analysis plays a vital role in the development of many 

computer vision and image processing solutions. The potential 

applications of the texture analysis include such as biomedical 

image analysis, satellite surveillance systems, face 

recognition, inspection of industrial surfaces and object 

recognition. Many texture classification methods have been 

proposed, which assume that the samples to be classified are 

of similar scale, orientation and grayscale. These methods 

emphasize on the statistical analysis of the texture images i.e.  

 

co-occurrence matrix method [1] and the filtering based 

methods [2]. Kashyap and Khotanzad [3], first studied the 

rotation invariant texture classification using a circular 

autoregressive model.  Later, Varma and Zisserman [4-5] 

proposed another texton based algorithm by using the image 

local patch to represent features directly. Most recently 

proposed methods for texture classification include scale and 

affine invariant texture classification by using fractal analysis 

[6-7] and affine adaption [8-9]. The LBP was first proposed 

by Ojala et al [10]. LBP is an effective tool, which gives a 

simple and efficient description of the local patterns in an 

image.  The LBP patterns provide efficient results in various 

applications of texture classification, face recognition [11], 

pattern recognition, dynamic texture classification [12], shape 

localization [13] and much other application in the field of 

image processing. It eliminates the variance in the 

illumination, rotation and gray scale variation, retaining the 

texture details of the image. The great success of LBP in 

image processing and computer vision led to the study of its 

underlying mechanism, which makes it efficient for 

describing the local patterns in an image. Many augmented 

versions of the LBP have been proposed to improve the 

efficiency of classification. Ojala et al proposed LBP [13] to 

measure the absolute gray level difference and use the sign 

instead of the magnitude of the difference to represent the 

local pattern. Further, Local Ternary Pattern (LTP) was 

proposed by Tan and Triggs [14] to divide the difference the 

magnitudes of the pixels values to three quantized levels. 

Many variants of LBP, weighted LBP, rotation Invariant LBP, 

Completed LBP (CLBP) [15], Multi-scale LBP (MLBP) [16], 

have been proposed recently, which are described in the 

Section II.ask that authors follow some simple guidelines. In 

essence, we ask you to make your paper look exactly like this 

document. The easiest way to do this is simply to download 

the template, and replace the content with your own material. 

The rest of the paper is organized as follows: Section II, we 

discuss the process of LBP conversion and LBP as a 

descriptor for texture classification. It further extends the idea 

of the original LBP and gives an over view on CLBP and 

MLBP descriptors, explaining its role as a texture descriptor. 

We then describe the implementation and experimental setup 

for this algorithm in Section IV. Section V, experimental 

results are discussed, before conclusions are drawn from the 

performance of the algorithms as observed on the GPU and 

CPU.  
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Fig 1: Generation of Binary LBP code from the 

Sampled (P,R) window 

 

 

Fig 2: Circular Sampling of neighbor pixels Points P at 

a radius R i.e. (P, R) 

 

2. OVERVIEW OF ALGORITHMS 

2.1   LOCAL BINARY PATTERNS 

Local Binary Pattern (LBP) is a very powerful tool to describe 

the textures and shape of a digital image. It is a simple and 

efficient tool to contain the texture detail, by eliminating 

variation in the illumination, rotation and grayscale variance. 

In the basic LBP operator, the neighborhood pixels of the 

given 3x3 window, threshold is applied with respect to the 

centre pixel value. The LBP operators consider only the signs 

of the magnitude difference, which are relatively unaffected 

by the variation in illumination changes, gray scale variation 

and other kind of noises. These signs of differences are used 

to generate binary code, which is converted to its equivalent 

decimal form to give the labels of the corresponding center 

pixel. 

The basic LBP code is generated by comparing with its 

neighboring pixel values.   

1
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Where 
( , )p i jI  is the pixel intensity in image at the pth   sample 

point, where P is the total number of the sample point at a 

radius of R denoted by (P, R). The P circularly and evenly 

spaced sampling points of the window are used to calculate 

the difference between the centre pixel and its surrounding 

pixel values. It characterizes the local pattern of the image as 

the absolute value of the pixel are not considered and the 

centre pixel values are removed which make the pattern 

robust to any changes in the illumination conditions. These 

features are more effective in pattern matching then the 

original image patterns as they are sensitive to the noise and 

illumination conditions. The generalized representation of the 

sampling point is taken along a circle with radius R around 

the centre pixel as shown in Fig2. The sampling points are 

selected using the interpolation, if (xc,yc) are the co-ordinates 

of the centre pixel and the sampling points (xp,yp) are given by 

cos(2 / )p cx x R p P   

sin(2 / )p cy y R p P   

The generated local binary patterns are used to evaluate the 

histogram of the local region, which are cascaded to form the 

feature vector of the image. 
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Where k is an integer to represent the number of sub 

Histograms k=[1,2,….K], K is the total number of histograms 

,and f(x,y) is given by 
1,

0,( , ) { x y

otherwisef x y  . The generated 

pattern LBP pattern are further classified into Uniform and 

Non uniform patterns based on the number of the transition in 

the local binary pattern generated. In case of Uniform patterns 

the numbers of transitions is restricted to less than 2 i.e. (U
2), where U is the number of transitions within the circular 

representation of the binary pattern. 
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 The Uniform LBP pattern is defined as the Limited transition 

or discontinuities binary representation reduces the length of 

the histogram bin form the 2P to P (P-1) + 3 distinct output bin 

values. Similar to Uniform Patterns, the mapping from 

LBP(P,R) to rotation invariant LBP i.e. 
2

( , )

riu

P RLBP ,  which has 

P+2 distinct output values, given by 
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These labeled images (LBP images) are further processed to 

generate the local histogram, which give the spatial 

information of the texture image. These locally generated 
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Fig 3:  Multi-scale Local Binary Pattern representation 

  

LBP patterns are concatenated into a single feature vector to 

represent the LBP feature of the texture image. 

2.2 Complete Local Binary Pattern (CLBP) 

CLBP is an improvised version of the basic LBP operator. 

The LBP operator successfully eliminates the illumination and 

brightness variations but in turn losses some data in the 

image. It can be significantly improvised by the including the 

data pertaining to the centre pixel value and the local binary 

patterns can be represented at a global scale by comparing 

with the average gray scale pixel value. 

 In CLBP the locally generated patterns is quantized to binary 

levels after applying a global thresholding, the obtained bit 

map is called the LBP Center (LBPC) as it contains the data 

of the centre pixel values. Similarly LBP-Mean is generated 

by thresholding the neighboring pixel values with respect to 

the Mean gray scale level of the image, which are then 

represented as binary codes by quantizing them into two 

quantization levels. Where LBPS is the basic implementation 

of the LBP discussed earlier. Hence, in case of CLBP the 

basic LBP is complemented with addition data corresponding 

to the centre pixel and mean gray scale level, which aids in 

the classification and improves the efficiency of the system. 

The above mentioned CLBP involves the evaluation of three 

LBP codes maps LBPS, LBPM and LBPC. As 

implementation of the LBP pattern generation involves direct 

access to the each of the image pixels, as the size of the image 

increases the time complexity of the algorithm is supposed to 

increase linearly in case of traditional sequential approach. As 

CLBP involves an enormous amount of computational time to 

access the image pixel, in order to overcome the 

computational inefficiency we propose a parallelized 

algorithms which speeds up the CLBP feature generation to 

implement CLBP in real time application like face recognition 

systems, mobile applications, security surveillance and 

outdoor robotics.  

In case of generation of the LBPM the values of the LBPM 

are given by 
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Where M is the mean pixel value of the image used as a 

threshold, and Ip is the gray scale intensity at the sampled 

pixel value.

 
In case of LBPC, the at each pixel value the thresholding is 

done with respect to the Mean pixel value of the whole image 

which is used to generate the image. The generated bit pattern 

is further encoded to reduce its size to 256 
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The histogram for LBPC is given by 
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Meanwhile, LBP technique has been able to represent the 

local patterns of an image very effectively. Additional 

discriminative information can be provided to include the 

centre pixel value, as well the magnitude component of the 

local difference within a window relative to the average gray 

scale value. Through CLBP we try to explore all the three 

types of data, for a better and efficient way of representing 

image features. Initially the image is represented by the gray 

scale values of its central pixel (LBPC), the local difference is 

further decomposed into the LBPS and LBPM components, 

finally a CLBP images, then the local histogram are generated 

of the each layers of the image RGB to generate the CLBP 

feature vector by concatenating the LBPS, LBPM and LBPC 

feature vectors which can be used for texture classification. 

These features are used for classification by using the nearest 

neighbor classifier with distance measurement. 

2.3 Multi-Scale Local Binary Pattern 

In the general definition of the LBP operator, arbitrary 

circular neighbor sets are used instead of the eight-neighbors. 

The number of samples as well as the sampling radius is 

varied in case of an Multi-Scale Local Binary Pattern. In 
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Fig 4: Implementation of LBP based LBP Operator on 

Heterogeneous Platform 

 

addition, operators with different parameters can be combined 

to obtain a multi-scale description of texture. In Fig3, three 

neighborhoods with a varying number of samples (P) and 

different neighborhood radii (R) are shown. The 

corresponding LBP operators are denoted by LBPP, R. 

Samples that do not exactly fall on pixels are obtained with 

bilinear interpolation. The value of the center pixel (gray) is 

used as a threshold in producing a P-bit binary code that 

describes the local pattern in the texture. These are future 

classified as Uniform local patterns and rotation invariant 

uniform patterns. These codes have been shown to dominate 

the LBP distribution. The resulting operators are denoted by

2

( , )

riu

P RLBP  . Ojala [10] reported in their experiment, that 

uniform patterns account for 90.6% of all patterns when using 

(8,1) neighborhood and 85.2% when using (8,2) neighborhood 

and 70% for (16,2) neighborhood. In order to reduce the 

feature vector length we take into consideration only the 

uniform patterns in the image which constitutes above 85-

90% of the image data in case of (8,1) and (8,2) 

neighborhoods.  In case of (8,1) neighborhood, the Uniform 

patterns effectively reduce the bin size from 256 to 59, which 

in turn reduces the feature vector length. This effectively 

reduces the length of feature vector, but still retaining almost 

90% of the image data. These generated feature vectors are 

used to match the image from the database of image features. 

In [16], a multi-scale LBP was constructed by extracting a 

number of LBP codes for each pixel with different P and R 

values. The marginal distributions of these codes were used as 

a texture descriptor. This approach has some shortcomings, as 

detailed in the following. From a signal processing point of 

view, the sparse sampling exploited by LBP operators with 

large neighborhood radii may not result in an adequate 

representation of the two-dimensional image signal. Aliasing 

effects are an obvious problem. So might be noise sensitivity 

as sampling is made at single pixel positions, without low-

pass filtering. One might argue that collecting information 

from a larger area would thus make the operator more robust. 

From the statistical point of view, even sparse sampling is 

however acceptable provided that the number of samples is 

large enough. Hence, to avoid the problem of aliasing the 

sampling is restricted to a radius of 3 units with 8 sampling 

points. To improve the performance of the algorithm and 

eliminate the possible aliasing effect an exponentially 

growing multi-resolution LBP combined with Gaussian 

filtering is implemented in case MLBP. These MLBP bins are 

further processed to generate spatial histogram, which are 

concatenated to form the required feature descriptor for 

texture classification. 

2.4 Metrics for Classification 

We have various metrics for quantizing the difference 

between two feature vectors like histogram intersection, log-

likelihood ratio and chi square statistics. The Chi-square 

statistics outperform the histogram intersection and log-

likelihood statistics in terms of accuracy of detection [17]. 

The chi-square distance, used to measure the dissimilarity 

between two LBP images S and M is given by  

2

1

( , ) ( ) / ( )
L

i

D S M Sx Mx Sx Mx


    

Where L is the length of the feature vector of the image and 

Sx and Mx are respectively the values of the sample and model 

images at the xth bin.  The Nearest-Neighborhood classifier is 

implemented with chi-square distance because it is equivalent 

to the optimal Bayesian classification [18]. 

3. IMPLEMENTATION 
In this section we describe the overview of the variants of 

LBP implementation using OpenCL model. The LBP value of 

a pixel is evaluated, by sampling a selected number of pixels 

over a circle at a distance R around the every pixel of the 

image. In parallelized approach, each Kernel of the OpenCL 

computation involves sampling P points by using circular 

neighborhood from selected centre pixel. The GPU based 

parallelized implementation involves designing a 

computational Kernel for evaluating the LBP values of the 

input Image. The Kernel takes gray scale or colored input 

image, the labeled pixels are updated to generate the LBP 

image. The parallelized algorithm is implemented as a 

sequence of GPU kernels using OpenCL programming 

language. The kernel program takes an input image and 

transforms it into an output image. 

3.1 OpenCL Programming Model 
In this Section, a brief overview of the various architectural 

issues and programming models using OpenCL has been 

detailed to describe the implementation. The OpenCL 

framework is used for its platform independent and 

heterogeneous programming capabilities, to implement the 

GPU programs. The experimental setup to measure is 

performance of the systems is as shown in Fig4. Algorithms 

which use linear addressing and involving similar 

computation on large instants of inputs can be implemented 
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Fig 5: Memory Model of GPU 

 

Table I: a) Pseudo-Code for CPU LBP Implementation b) Parallelized GPU Kernel 

Void CLBP(int *input,int *output, int* Avg ) 

for i { 

   for j { 

     //Access the pixels values 

     // Apply LBP/CLBP/MLBP operator 

      Y(i,j)=CLBP(I(i,j),Avg); 

     // Algorithms on each Pixel Values 

   } 

} 

__Kernel 

Void CLBP(__global int* input, __global int* output, __global 

int* Avg) 

{ 

int x= get_global_id(0); 

int y= get_global_id(1); 

//Apply LBP/CLBP/MLBP operator 

 Y(x,y)=CLBP(I(x,y),Avg); 

// Algorithms on each Pixel Values 

} 

 

 

more effectively on SPMD platforms like GPUs. In this 

regard various image and video processing algorithms involve 

the regular access of the image pixels or frames and applying 

similar operation on every instance of the input, parallelizing 

such algorithms can boost the performance of the system by 

many times. The challenge related to proposed algorithm is to 

achieve task parallelism through a hierarchy of memory 

through effective utilization of memory storage area, memory 

bandwidth and the access and update of the data. 

OpenCL is a promising language for portable GPU 

programming, which enables targeting heterogeneous parallel 

processing devices. In this section, we present a brief 

understanding of the names, labels and concepts, which are 

essential for basic understanding of the algorithm. The 

computational ‘kernels’ is the most important concept; it 

represents a function that gets executed on GPU. A ‘work 

item’ is used to apply the compute kernel on the input data. A 

group of work items is called a ‘work group’.  Each work item 

is assigned its own location through localized and globalised 

work group. The local memory will be shared through local 

references to a work group. An extensive study of these 

concepts is covered in the OpenCL specifications [19]. The 

programming model of OpenCL broadly contains: (i) 

Platform Model (ii) Memory Model (iii) Execution Model. 

3.1.1 Platform Model 
A host (CPU) is connected to one or more OpenCL devices. 

OpenCL device is a collection of one or more computational 

unit, each computational unit is composed of multiple 

processing elements. Each processing elements is used to 

execute an SIMD (GPU) or SPMD operations. 

3.1.2 Memory Model 
In case of OpenCL the memory hierarchy is divided into 

four categories as shown in Fig5, (i) Private memory: this 

memory is exclusive to the work items (ii) Local Memory: 

this is a fast memory shared between the host processors (iii) 

Global Memory: this constitutes the main memory of the GPU 

(iv) Constant Memory: it is a part of the global memory, 

which is marked read only. 

3.1.3 Execution Model 
Data parallelism is achieved in the OpenCL through multiple 

work-item execution on the input image. We can define an N-

dimensional computation domain (N = 1, 2 or 3). Each 

independent element of execution in N-D domain is called a 

work-item. The N-D domain defines the total number of 

work-items that execute in parallel i.e. processing a 512 x 512 

image.  

Initially the input gray scale input image is uploaded, which is 

spread over different color channels available. These channels 

are processed independently using Gaussian filter Kernels.  

The Gaussian Filters sigma is chosen according to the 

sampling radius of the corresponding LBP ring in the MLBP 

operator. Then a second kernel is queued to compute the LBP 

values of the blurred images. For the data parallelized model, 

a data parallelized reformulation of the standard algorithm has 

been developed as shown in Table I. Going from the abstract 

view of the framework to the concrete implementation as 

shown in Fig, the kernel program sequence executed in order 

to compute the LBP image is depicted in Fig4. Execution 

model utilizes in addition to data parallelism the vector 

parallelism inherent to the OpenCL. This support of vector 

parallelism which can be used in image processing to  
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Fig 8: Sample Images of Texture Classes used for 

Experiment 

 

    

 

Fig 7: Sample Images of Texture Class “brick” at 

Different Angles of Rotation 

 

 

Fig 6: Parallelized Framework for generation of CLBP using the different access layers of the image 

 

 

process RGBA images, where each image pixel is 4 byte data 

represented by uchar4. Similarly the extended version of the 

vectors floatN, ucharN can also be used where N is the 

number of elements in the vector.  We utilize the capability of 

the processing vector data types, four floating point 

represented by ‘floatn’; where ‘n’ is the number of channels 

accessed in parallel which can be used for RGBA image 

format. In case of CLBP, we use these channels to compute 

LBPS, LBPM and LBPC within each layer of the output 

image as shown in Fig6. Similarly in case of MLBP, within 

each layer of the image we evaluate the Multi-scale LBP 

using (8,1),(8,2) and (8,3) sampling. 

4. RESULTS AND ANALYSIS 
The performance of the proposed algorithm was tested on 

AMD 6500 GPU. The feature description methods for texture 

classification have been evaluated against Brodatz album [20], 

standard benchmark texture image database. The experimental 

dataset included images with resolution of 256×256, 8 

bits/pixel. The images are from 5 different texture classes, 

namely bark, brick, grass, leather and straw have been 

considered. The source images were rotated to obtain 7 

different rotation angles of 0°, 30°, 60°, 90°, 120°, 150°, and 

200°. The dataset included 10 images for each rotation angle 

of a texture class. 

In this analysis, two images have been used to generate the 

texture features in each class required for the classification 

using Nearest-Neighbor classification and the remaining 

images were used as the testing sets. Therefore, both the 

training and the testing dataset included texture images of 

different illumination variations and rotation angles. The 

classification efficiency of the algorithms have been studied  

extensively in the literature [15-16, 21], hence our primary 

emphasis is on the execution time and performance of the 

algorithm on the Heterogeneous platform. 

The results pertaining to the efficiency achieved in the 

computation time of the algorithm when compared with the 

traditional LBP operators implementation in CPU is shown in 

Table II. Further, the comparative study of the algorithm 

implementation based on the percentage accuracy achieved 

with CPU and GPU tabulated in Table II. In all cases, the 

generated binary codes were converted to rotation invariant 

patterns using the method discussed in earlier Section II. 
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Fig 10: Relative Improvement in the                  

Computational     Time of Different LBP  operators 

 

Table II. Comparison of CPU vs OpenCL Performance in Texture Classification using Different LBP Operator  

Feature Descriptor CPU ( Core 2 duo) OpenCL Model ( AMD 6500 GPU) 

Classification Rate 

(%) 

Feature Ext. 

Time(ms) 

Classification Rate 

(%) 

Feature Ext. Time 

(ms) 

LBP 72.2 134.6 73.5 28.5 

CLBP 76.5 197.4 75.5 31.2 

MLBP ((8,1)+(8,2)) 72.45 162.6 73.45 29.9 

MLBP((8,1)+(8,2)+(8,3)) 78.9 162.4 77.6 29.7 

 

 

Fig 9: Computational Efficiency of CPU vs OpenCL 

Model (GPU) 

 

 

Further, the analysis of the improvement in the computational 

time using GPU is tabulated in Table II, and a study of 

relative performance increase is depicted in the Fig9 and 

Fig10. Shows, that the variation of the computational time is 

of different LBP operators in the GPU based implementation. 

5. CONCLUSION 
In this paper, we presented a reformulation of the Local 

Binary Pattern Operators for Texture Analysis. GPU 

implementation with its parallel computing paradigm 

outperforms the other approaches. GPUs have addressed the 

problem of performing image operations serially by allocating 

mathematical operations to multiple threads, in parallel. This 

enables texture analysis becomes possible even for systems 

with limited resources, such as mobile outdoor robots.              

Combined with a relatively low cost, the modern GPU is a 

powerful piece of computer processing hardware for its price 

with a wide range of applications face recognition, 

surveillance systems, mobile applications, texture analysis,  

 

medical imaging, robotics and many other industrial 

applications. 
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