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ABSTRACT 

Significant research effort has been devoted in the study of 

approximation algorithms for NP-hard problems. Ap-

proximation algorithm for Max-Cut problem with 

performance guarantee of 0.87856 is long known. In this work 

we study balanced Max-Cut problem. We give a balancing 

factor β for given α such that the approximate solution is at 

least 0.87856 times the optimal α-balanced cut and it is itself 

β-balanced. 
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1. INTRODUCTION 

The paper will work on solving the NP-hard problem, namely 

the MAX-CUT problem. Good approximation algorithms are 

known in the literature for this problem. The objective is to 

adopt an existing approximation algorithm for Max-Cut for a 

variant of this problem. 

A. Max-Cut of undirected edge-weighted graphs 

Max-Cut of an undirected edge weighted graph seeks to 

partition the graph into two sets of vertices so  

that the sum of the weights of the edges joining these two sets 

is maximized. 

Several approaches are known for this problem which have 

different objectives and/or technique: 

• Whether an exact solution is desired, an approximation 

with a performance guarantee is sought or simply a good 

heuristic method is required. 

• Some methods work with the input graph while others 

reduce the problem to other problem and then solve it. 

1) Exact Methods: The naive approach to an exact solution for 

the Max-Cut problem enumerates the 2n possible cuts of 

graph, calculates the weight of each cut and note the maximum 

weight cut, where n is number of vertices in graph. 

A heuristic approach can be developed based on the enu-

meration technique. In order to compute a close to optimum 

cut(S,   ), we proceed to build S one vertex at a time. We 

traverse the binary decision tree in which the two branches 

denote the two options: to include or exclude a given vertex. 

A heuristic function is evaluated based on the current state to 

decide which branch to traverse. Such heuristics functions are 

of two-types: upper bound based and lower bound based. In 

the former case if the currently known weight is greater then 

the upper bound for a branch, then that branch is abandoned. 

In the latter case if the currently known weight is lower than 

the lower bound of a branch, then that branch is pursued and 

the current value of the weight is updated. Examples of this 

approach and a variety of bounds used to limit the search in 

this way are found in [1], [2]. 

Another approach involves decomposing the problem into 

some subproblems. In this approach the problem is solved by 

removing vertices of lower degree. The characteristics of the 

rest of the vertices are suitably modified to account for the 

removed vertices. Subsequently enumeration technique is 

applied to the smaller graph. Gramm et.al. [3] showed that 

this approach helps reduce the time complexity to 

poly(m).2m/3, where m is the number of edges. 

2) Approximation methods with performance 

guarantee:Relaxing the requirement for an exact solution 

leads to the study of p-approximation algorithms, or 

polynomial time algorithms that provide a solution that is at 

least p times the optimal value of a maximizing problem. The 

constant p is called the performance guarantee of the 

algorithm. 

Sahni and Gonzales [4] presented a 0.5-approximation 

algorithm for the max cut problem. Their algorithm iterates 

through the vertices and assigns each vertex to maximize the 

partial cut that has resulted from the assignment of the 

preceding vertices. 

Goemans and Williamson [5] were the first to apply 

semidefinite programming to the solution of Max-Cut 

problem. Algorithm proposed by Geomans and Williamson 

that has the performance factor p = 0.878 for the problem. 

Their algorithm uses a randomized rounding of the solution to 

a non-linear relaxation of the Max-Cut. 

3) Reformulation into different problem domain: The 

Max- Cut problem can be reformulated in numerous ways. 

One can map Max-Cut problem into an equivalent Max-2-Sat 

problem. A Max-2-Sat problem takes a set of clauses in 
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conjunctive normal form each containing at most two literals 

and asks for the maximum number of clause that can be 

simultaneously satisfied. 

Alber, Gramm and Niedermeier [6] have observed that Max-

Cut problem is theoretically equivalent to the Max-2-Sat 

problem, in practice, random Max-Cut problems reformulated 

as Max-2-Sat problems are generally harder to solve than 

random Max-2-Sat problems owing to the special structure of 

the transformed problem. 

4) The variant of Max-Cut: In this thesis we study the 

variant of the Max-Cut problem where the ratio of the two 

vertex sets of the cut have a bounded ratio. In this version we 

are given a parameter 0 < α < 0.5 such that α < mm{ |S| / |  | , 

|  | / |S| }  

2. Goemans and Williamson’s solution of 

MaxCut 

Goemans and Williamson gave a randomized approximation 

algorithm [5] for the Maximum cut problem (MaxCut) and 

proved that their algorithm gives a cut of size at least 

0.875856 times the optimal value. They used vector relaxation 

and semi-definite programming to solve a quadratic program. 

They pioneered this technique which was later used in many 

approximation algorithms. They used randomized rounding 

technique to compute an integral approximation. 

MaxCut of a undirected edge-weighted graph G = (V, E) is 

defined as to find a set of vertices S such that the sum of the 

edges between the vertices of S and    maximum. The set of 

edges between the vertices of S and    are called a cut. The 

problem is known to NP-hard. 

Goemans and Willaimson’s algorithm computes a cut with 

expected weight equal to (γ - ϵ) times the optimal cut weight 

where 

  
 

 
          

 

      
          

and e is any positive scalar. The corresponding semidefinite 

program can be solved in time polynomial in n (number of 

vertices) and log l/ ϵ using ellipsoid algorithm [7]. 

A. The Randomized Approximation algorithm for MaxCut 

Given undirected edge-weighted graph with verices x1,..., xn 

and nonnegative weights wij = wji for each edge (i,j)  E the 

formulation of the problem by the integer quadratic program 

is as follows. 

Maximize   
 

 
         

       

    

  Subject to 

  
            

            

Here yi is the indicator variable for vertex xi which is 

constrained to either +1 or — 1, indicating whether xi is in S 

or in   . Solving this integer quadratic program is NP-hard so 

we consider the relaxation of the scalar variables yi to vectors 

vi in an n-dimensional vector space. The products yiyj are 

replaced by the inner-product vi . vj. 

Maximize 

 

 
         

       

     

  Subject to 

          vi .vi = 1, vi ϵ V. 

 Observe that if the solution vectors are restricted to a 1-

dimensional subspace, then the vector-program reduces to the 

original quadratic program. Hence the optimal value of the 

objective function in the vector program is an upper bound for 

the optimal value of the original program. 

A vector program can be converted to a semi-definite 

program and can be solved to an arbitrary accuracy  ϵ in time 

polynomial in n2 and log(l/ ϵ). The optimal solution vectors 

a1,..., an can not directly be used to approximate the values for 

yi’s. Goemans and Willamson used a randomized technique to 

“round” these vectors to a suitable integer in the set {1,-1}. 

The corresponding semi-definite program is as follows. 

  Maximize 

 

 
          

       

  

Subject to 

            

     

Let θi j denote the angle between the unit vectors ai and aj. 

The contribution of ai . aj to the object function increases as 

the angle approaches π. Hence we would like to place xi and xj 

in different sets of the cut if θi j is large. In the randomized 

rounding a random vector r is selected with equal probability 

in every direction. Then in the approximation solution of the 

quadratic program yi is set to 1 if and only if ai . r ≥ 0. We 

repeat this randomized algorithm a certain number of times to 

improve the probability of getting a large cut. 

B. Analysis of Algorithm 

In this section we will show that cut computed by the above 

algorithm is at least 87.856 percent of the maximum cut in the 

graph with probability at least 1 — 1/e. 

Lemma 1: Let the solution of the vector program be vi = ai for 

all i. Then the probability that vertex xi and xj are separated is 
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θi j /π where θi j is the angle between ai and aj. 

Proof: Project the randomly generated vector r on the plane 

formed by ai and aj. The two vertices will be separated if and 

only if the projection passes through the arc between ai and aj 

or that between -ai and -aj. Since r is uniformly chosen, the 

probability of the projection intersecting one of the arcs is 

2θij/2π.                                                                                 ■ 

Lemma 2: Let W be the weight of the cut computed by one 

run of the above algorithm. Then E[W]>γOptv, where Optv is 

the optimal value of the objective function in the vector 

program and γ = (2/Π)min0 ≤ θπ θ/(1 - cos θ). 

Proof: By the definition of γ, for any 0 ≤θ≤π, θ/π ≥γ(1 —cos 

θ)/2. Using the result of Lemma 1 we have E[W] = ∑i < j wijPr 

(xi and xj are separated) = ∑i < j wijθij / π ≥ γ∑i < j (1/2)wij (1-

cosθij) = γOptv . ■ 

The optimal value after relaxation optv is upper bound of the 

MaxCut optmc. So we conclude that E[W] > γ•optv ≥ γ•optmc. 

Theorem 1: [5] There is a randomized approximation algo-

rithm for MaxCut which, with high probability, achieves an 

approximation factor of at least γ > 0.87856. 

Proof: Let T denotes the sum of the weights of all edges in 

graph, define a parameter a such that E[W] = aT. Let p 

denote Pr[W < (1 — ϵ)aT]. Hence E[W] = aT ≤ p(1 — ϵ)aT + 

(1 — p)T for any ϵ > 0. Therefore, p ≤ (1 — a)/(l — a + aϵ). 

The unfriendly partition of the graph vertices shows that T/2 ≤ 

optmc.  

Hence 

T ≥  E[W] = aT ≥ γoptv ≥ γoptmc  ≥ γT/2. 

Therefore, 1  ≥ a ≥ γ/2. Plugging the lower bound for a in the 

inequality for p we get  p ≤ 1 — (eγ/2)/(1 — (1 — ϵ)γ/2) = 1 

— c, where c = (ϵγ/2)/(1 — (1 — ϵ)γ/2). If W’ is the best 

MaxCut after running the algorithm 1/c times, then  Pr[W’ ≥  

(1 — ϵ)aT] ≥ 1 — (1 — c) 1 / c  ≥ 1 — 1/e.   ■ 

3. EXTENDING THE SOLUTION TO 

BALANCED MAXCUT 

Given a parameter 0 ≤ α ≤ 0.5, an α-cut is a cut (V1,V\V1) 

such that α| V | ≤ | Vi | ≤ (1 — α) | V |. The Balanced Max Cut 

(BMC) problem is to find the maximum α-cut, for a given α. 

In this section we describe a suitable modification to 

Goemans and Williamson’s randomized approximation algo-

rithm to approximate a BMC.This algorithm computes a β-cut 

which is at least 0.87856 of the maximum α-cut where β ≤ α. 

In particular we show that the proposed algorithm computes a 

0.325-balanced cut which is 0.87856 approximation of the 

maximum bisection-cut (0.5-balanced cut). 

Continuing with the Goemans and Williamson formulation, 

we use variables yi to define the cut where yi=1 if the vertex xi 

belongs to the first set and yi = — 1 otherwise. Then we have 

the following characterization for α-balanced cut. 

Lemma 3: A cut is a-balanced cut iff ∑ij yiyj ≤ n
2(l — 2α)2. 

Proof: Let the cut be (V1, V \ V) where | v1|  = n1 ≤ | V \ V1|  = 

n — n1  

so, 

       

   

  
     

         

    
          

              

    
         

                  
  

     
            

         
  

             
  

If the cut is a-balanced then,    

       

   

           

Conversely if  n2(l — 2n1/n)2 ≤ n2(l — 2α)2 then,  

(n1/n)2 — n1/n  ≤ α2 — α, 

So, 

  
 
  

 

 
  

 

 
                            

  
 
   

So in any a-balanced cut ∑i j yiyj ≤ n2(l — 2α)2. This condition 

captures the balancing requirement. Adding it to the original 

conditions in the quadratic program proposed by Geomens 

Williamson we get the following program. 

Maximize 

 

 
         

       

    

Subject to 

  
            

       

   

                     

            

Relaxing the quadratic program into a vector program leads to 
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Maximize 

 

 
         

       

    

Subject to 

               

       

   

                   

            

where vi are vectors in ℝn
. The semidefinite program to solve 

this vector program is as follows. 

Maximize     C • Y 

subject to     Di • Y = di, 1 ≤ i ≤ n, 

0 ≤ D0 •Y ≤ n2 (1 — 2α)2 , 

     

      

Here the operator • denotes Hadamard product. The D0 is the 

nxn matrix, in which all entries is 1 and Di is also nxn matrix 

where (i, i) -entry is 1 and remaining entries are zero. C is the 

weight matrix o f  nxn where (i, j)-entry is —wij. 

We use the randomized relaxation technique proposed by 

Goemens and Williamson to compute an approximate solution 

for the balanced MaxCut problem. 

A. Analysis of Algorithm 

Suppose after randomized relaxation the computed values of 

yi are   
 
. Suppose the resulting cut is β-balanced and let    

denote the expected value of β. Then E[ ∑ i j   
   

 
] = n2 (1-2 

  )2 

Let θij denote the angle between the vectors vi and vj. Then the 

probability of xi and xj getting separated is θij/π. 

Pγ[xi and xj are separated]     =    Pγ[  
   

 
= —1]    = 

 

   

 
                                        

   
     

   
   

 
                                  

   
    

  

So the expected value of   
   

 
 is E[  

   
 
] = 1 — 

    

 
  

vi and vj are unit vectors so the internal product of these two 

vectors is vi.vj = cosθij. By definition of γ we have  

  

 
            for every 0 ≤ θ ≤ π. Hence E[  

   
 
] = 

   
    

 
                 

      
   

  

   

                   

   

 

                    

   

 

                    

  From the definition of    we have n2(1 —2   )2  ≤ (1 —γ)n2 + 

γ(1 — 2α)2.n2. Simplifying this inequality we get 

                           

  
 
              

  
 
                 

 

 
  

 

 
                   

In particular, if α = 0.5, then    = 0.325. The analysis for 

the expected size of the cut computed by this algorithm 

remains same as in unbalanced case. Hence the expected 

size of the computed cut is greater than or equal to γ 

times the maximum feasible cut. Due to the additional 

condition all feasible cuts are α-cuts. Hence this 

algorithm computes a cut which is at least 0.87856 times 

the maximum α-cut. 

B. Experimental Results 

We performed some experiments on small graphs with various 

values of α. Following table gives the optimal α-cut, computed cut 

and the balance of the computed cut b. 

 

Table 1. Result Table 

Number of 

vertices 

Α b Optimal  α-cut Computed 

cut 10 .2 

.3 

.4 

.5 

.3 .5 

.5 .5 

1287  

1490  

1514  

1514 

1041  

1381  

1512  

1514 12 .2 

.3 

.4 

.5 

.416 

.416 

.416 

.416 

2341  

2263  

2393  

2359 

1811  

2149  

2359  

2405 
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14 .2 

.3 

.4 

.5 

.428 

.428 

.428 

.428 

2967  

2967  

2793  

3015 

2072  

2783  

3015  

3052 
16 .2 

.3 

.4 

.5 

.5 

.437 

.5 

.5 

4110 

4004  

4110  

4110 

3049  

3466  

4004  

4110 
18 .2 

.3 

.4 

.5 

.444 

.444 

.388 

.5 

4696  

4501  

4643  

4593 

3342  

4308  

4696  

4638 

20 .2 

.3 

.4 

.5 

.5 .5 

.5 

.45 

5955  

5878  

5847  

5724 

3880  

4989  

5669 

5955 
 

4. CONCLUSION 

In this work we revisited the Williamson and Geomans’ 

algorithm for MAX-CUT problem that used semidefinite 

programming to give a performance guarantee of .878. We 

presented a modification of their algorithm in which for a 

given α, we compute a cut which is at leats 0.87856 of the 

optimum α-balanced cut and itself is a   

 
 

 
  

 

 
                    balance cut. 
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