
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.8, February 2013

5

An Efficient Approximation Algorithm for Max-Cut

Abdullah Al-Malaise Al-

Ghamdi
Deptt of IS, FCIT

King Abdul Aziz University,
Jeddah, Saudi Arabia

Pawan Kumar Patel
Deptt of CSE

Indian Institute of Technology,
Kanpur, India

Kunal Gupta
Higher College of Technology,

Muscat,
Oman

ABSTRACT

Significant research effort has been devoted in the study of

approximation algorithms for NP-hard problems. Ap-

proximation algorithm for Max-Cut problem with

performance guarantee of 0.87856 is long known. In this work

we study balanced Max-Cut problem. We give a balancing

factor β for given α such that the approximate solution is at

least 0.87856 times the optimal α-balanced cut and it is itself

β-balanced.

General Terms

Approximation Algorithms.

Keywords

Approximation algorithm, Balancing factor in Max-Cut,

Graphs Partitioning.

1. INTRODUCTION

The paper will work on solving the NP-hard problem, namely

the MAX-CUT problem. Good approximation algorithms are

known in the literature for this problem. The objective is to

adopt an existing approximation algorithm for Max-Cut for a

variant of this problem.

A. Max-Cut of undirected edge-weighted graphs

Max-Cut of an undirected edge weighted graph seeks to

partition the graph into two sets of vertices so

that the sum of the weights of the edges joining these two sets

is maximized.

Several approaches are known for this problem which have

different objectives and/or technique:

• Whether an exact solution is desired, an approximation

with a performance guarantee is sought or simply a good

heuristic method is required.

• Some methods work with the input graph while others

reduce the problem to other problem and then solve it.

1) Exact Methods: The naive approach to an exact solution for

the Max-Cut problem enumerates the 2n possible cuts of

graph, calculates the weight of each cut and note the maximum

weight cut, where n is number of vertices in graph.

A heuristic approach can be developed based on the enu-

meration technique. In order to compute a close to optimum

cut(S,), we proceed to build S one vertex at a time. We

traverse the binary decision tree in which the two branches

denote the two options: to include or exclude a given vertex.

A heuristic function is evaluated based on the current state to

decide which branch to traverse. Such heuristics functions are

of two-types: upper bound based and lower bound based. In

the former case if the currently known weight is greater then

the upper bound for a branch, then that branch is abandoned.

In the latter case if the currently known weight is lower than

the lower bound of a branch, then that branch is pursued and

the current value of the weight is updated. Examples of this

approach and a variety of bounds used to limit the search in

this way are found in [1], [2].

Another approach involves decomposing the problem into

some subproblems. In this approach the problem is solved by

removing vertices of lower degree. The characteristics of the

rest of the vertices are suitably modified to account for the

removed vertices. Subsequently enumeration technique is

applied to the smaller graph. Gramm et.al. [3] showed that

this approach helps reduce the time complexity to

poly(m).2m/3, where m is the number of edges.

2) Approximation methods with performance

guarantee:Relaxing the requirement for an exact solution

leads to the study of p-approximation algorithms, or

polynomial time algorithms that provide a solution that is at

least p times the optimal value of a maximizing problem. The

constant p is called the performance guarantee of the

algorithm.

Sahni and Gonzales [4] presented a 0.5-approximation

algorithm for the max cut problem. Their algorithm iterates

through the vertices and assigns each vertex to maximize the

partial cut that has resulted from the assignment of the

preceding vertices.

Goemans and Williamson [5] were the first to apply

semidefinite programming to the solution of Max-Cut

problem. Algorithm proposed by Geomans and Williamson

that has the performance factor p = 0.878 for the problem.

Their algorithm uses a randomized rounding of the solution to

a non-linear relaxation of the Max-Cut.

3) Reformulation into different problem domain: The

Max- Cut problem can be reformulated in numerous ways.

One can map Max-Cut problem into an equivalent Max-2-Sat

problem. A Max-2-Sat problem takes a set of clauses in

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.8, February 2013

6

conjunctive normal form each containing at most two literals

and asks for the maximum number of clause that can be

simultaneously satisfied.

Alber, Gramm and Niedermeier [6] have observed that Max-

Cut problem is theoretically equivalent to the Max-2-Sat

problem, in practice, random Max-Cut problems reformulated

as Max-2-Sat problems are generally harder to solve than

random Max-2-Sat problems owing to the special structure of

the transformed problem.

4) The variant of Max-Cut: In this thesis we study the

variant of the Max-Cut problem where the ratio of the two

vertex sets of the cut have a bounded ratio. In this version we

are given a parameter 0 < α < 0.5 such that α < mm{ |S| / | | ,

| | / |S| }

2. Goemans and Williamson’s solution of

MaxCut

Goemans and Williamson gave a randomized approximation

algorithm [5] for the Maximum cut problem (MaxCut) and

proved that their algorithm gives a cut of size at least

0.875856 times the optimal value. They used vector relaxation

and semi-definite programming to solve a quadratic program.

They pioneered this technique which was later used in many

approximation algorithms. They used randomized rounding

technique to compute an integral approximation.

MaxCut of a undirected edge-weighted graph G = (V, E) is

defined as to find a set of vertices S such that the sum of the

edges between the vertices of S and maximum. The set of

edges between the vertices of S and are called a cut. The

problem is known to NP-hard.

Goemans and Willaimson’s algorithm computes a cut with

expected weight equal to (γ - ϵ) times the optimal cut weight

where

and e is any positive scalar. The corresponding semidefinite

program can be solved in time polynomial in n (number of

vertices) and log l/ ϵ using ellipsoid algorithm [7].

A. The Randomized Approximation algorithm for MaxCut

Given undirected edge-weighted graph with verices x1,..., xn

and nonnegative weights wij = wji for each edge (i,j) E the

formulation of the problem by the integer quadratic program

is as follows.

Maximize

 Subject to

Here yi is the indicator variable for vertex xi which is

constrained to either +1 or — 1, indicating whether xi is in S

or in . Solving this integer quadratic program is NP-hard so

we consider the relaxation of the scalar variables yi to vectors

vi in an n-dimensional vector space. The products yiyj are

replaced by the inner-product vi . vj.

Maximize

 Subject to

 vi .vi = 1, vi ϵ V.

 Observe that if the solution vectors are restricted to a 1-

dimensional subspace, then the vector-program reduces to the

original quadratic program. Hence the optimal value of the

objective function in the vector program is an upper bound for

the optimal value of the original program.

A vector program can be converted to a semi-definite

program and can be solved to an arbitrary accuracy ϵ in time

polynomial in n2 and log(l/ ϵ). The optimal solution vectors

a1,..., an can not directly be used to approximate the values for

yi’s. Goemans and Willamson used a randomized technique to

“round” these vectors to a suitable integer in the set {1,-1}.

The corresponding semi-definite program is as follows.

 Maximize

Subject to

Let θi j denote the angle between the unit vectors ai and aj.

The contribution of ai . aj to the object function increases as

the angle approaches π. Hence we would like to place xi and xj

in different sets of the cut if θi j is large. In the randomized

rounding a random vector r is selected with equal probability

in every direction. Then in the approximation solution of the

quadratic program yi is set to 1 if and only if ai . r ≥ 0. We

repeat this randomized algorithm a certain number of times to

improve the probability of getting a large cut.

B. Analysis of Algorithm

In this section we will show that cut computed by the above

algorithm is at least 87.856 percent of the maximum cut in the

graph with probability at least 1 — 1/e.

Lemma 1: Let the solution of the vector program be vi = ai for

all i. Then the probability that vertex xi and xj are separated is

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.8, February 2013

7

θi j /π where θi j is the angle between ai and aj.

Proof: Project the randomly generated vector r on the plane

formed by ai and aj. The two vertices will be separated if and

only if the projection passes through the arc between ai and aj

or that between -ai and -aj. Since r is uniformly chosen, the

probability of the projection intersecting one of the arcs is

2θij/2π. ■

Lemma 2: Let W be the weight of the cut computed by one

run of the above algorithm. Then E[W]>γOptv, where Optv is

the optimal value of the objective function in the vector

program and γ = (2/Π)min0 ≤ θπ θ/(1 - cos θ).

Proof: By the definition of γ, for any 0 ≤θ≤π, θ/π ≥γ(1 —cos

θ)/2. Using the result of Lemma 1 we have E[W] = ∑i < j wijPr

(xi and xj are separated) = ∑i < j wijθij / π ≥ γ∑i < j (1/2)wij (1-

cosθij) = γOptv . ■

The optimal value after relaxation optv is upper bound of the

MaxCut optmc. So we conclude that E[W] > γ•optv ≥ γ•optmc.

Theorem 1: [5] There is a randomized approximation algo-

rithm for MaxCut which, with high probability, achieves an

approximation factor of at least γ > 0.87856.

Proof: Let T denotes the sum of the weights of all edges in

graph, define a parameter a such that E[W] = aT. Let p

denote Pr[W < (1 — ϵ)aT]. Hence E[W] = aT ≤ p(1 — ϵ)aT +

(1 — p)T for any ϵ > 0. Therefore, p ≤ (1 — a)/(l — a + aϵ).

The unfriendly partition of the graph vertices shows that T/2 ≤

optmc.

Hence

T ≥ E[W] = aT ≥ γoptv ≥ γoptmc ≥ γT/2.

Therefore, 1 ≥ a ≥ γ/2. Plugging the lower bound for a in the

inequality for p we get p ≤ 1 — (eγ/2)/(1 — (1 — ϵ)γ/2) = 1

— c, where c = (ϵγ/2)/(1 — (1 — ϵ)γ/2). If W’ is the best

MaxCut after running the algorithm 1/c times, then Pr[W’ ≥

(1 — ϵ)aT] ≥ 1 — (1 — c) 1 / c ≥ 1 — 1/e. ■

3. EXTENDING THE SOLUTION TO

BALANCED MAXCUT

Given a parameter 0 ≤ α ≤ 0.5, an α-cut is a cut (V1,V\V1)

such that α| V | ≤ | Vi | ≤ (1 — α) | V |. The Balanced Max Cut

(BMC) problem is to find the maximum α-cut, for a given α.

In this section we describe a suitable modification to

Goemans and Williamson’s randomized approximation algo-

rithm to approximate a BMC.This algorithm computes a β-cut

which is at least 0.87856 of the maximum α-cut where β ≤ α.

In particular we show that the proposed algorithm computes a

0.325-balanced cut which is 0.87856 approximation of the

maximum bisection-cut (0.5-balanced cut).

Continuing with the Goemans and Williamson formulation,

we use variables yi to define the cut where yi=1 if the vertex xi

belongs to the first set and yi = — 1 otherwise. Then we have

the following characterization for α-balanced cut.

Lemma 3: A cut is a-balanced cut iff ∑ij yiyj ≤ n
2(l — 2α)2.

Proof: Let the cut be (V1, V \ V) where | v1| = n1 ≤ | V \ V1| =

n — n1

so,

If the cut is a-balanced then,

Conversely if n2(l — 2n1/n)2 ≤ n2(l — 2α)2 then,

(n1/n)2 — n1/n ≤ α2 — α,

So,

So in any a-balanced cut ∑i j yiyj ≤ n2(l — 2α)2. This condition

captures the balancing requirement. Adding it to the original

conditions in the quadratic program proposed by Geomens

Williamson we get the following program.

Maximize

Subject to

Relaxing the quadratic program into a vector program leads to

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.8, February 2013

8

Maximize

Subject to

where vi are vectors in ℝn
. The semidefinite program to solve

this vector program is as follows.

Maximize C • Y

subject to Di • Y = di, 1 ≤ i ≤ n,

0 ≤ D0 •Y ≤ n2 (1 — 2α)2 ,

Here the operator • denotes Hadamard product. The D0 is the

nxn matrix, in which all entries is 1 and Di is also nxn matrix

where (i, i) -entry is 1 and remaining entries are zero. C is the

weight matrix o f nxn where (i, j)-entry is —wij.

We use the randomized relaxation technique proposed by

Goemens and Williamson to compute an approximate solution

for the balanced MaxCut problem.

A. Analysis of Algorithm

Suppose after randomized relaxation the computed values of

yi are

. Suppose the resulting cut is β-balanced and let

denote the expected value of β. Then E[∑ i j

] = n2 (1-2

)2

Let θij denote the angle between the vectors vi and vj. Then the

probability of xi and xj getting separated is θij/π.

Pγ[xi and xj are separated] = Pγ[

= —1] =

So the expected value of

 is E[

] = 1 —

vi and vj are unit vectors so the internal product of these two

vectors is vi.vj = cosθij. By definition of γ we have

 for every 0 ≤ θ ≤ π. Hence E[

] =

 From the definition of we have n2(1 —2)2 ≤ (1 —γ)n2 +

γ(1 — 2α)2.n2. Simplifying this inequality we get

In particular, if α = 0.5, then = 0.325. The analysis for

the expected size of the cut computed by this algorithm

remains same as in unbalanced case. Hence the expected

size of the computed cut is greater than or equal to γ

times the maximum feasible cut. Due to the additional

condition all feasible cuts are α-cuts. Hence this

algorithm computes a cut which is at least 0.87856 times

the maximum α-cut.

B. Experimental Results

We performed some experiments on small graphs with various

values of α. Following table gives the optimal α-cut, computed cut

and the balance of the computed cut b.

Table 1. Result Table

Number of

vertices

Α b Optimal α-cut Computed

cut 10 .2

.3

.4

.5

.3 .5

.5 .5

1287

1490

1514

1514

1041

1381

1512

1514 12 .2

.3

.4

.5

.416

.416

.416

.416

2341

2263

2393

2359

1811

2149

2359

2405

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.8, February 2013

9

14 .2

.3

.4

.5

.428

.428

.428

.428

2967

2967

2793

3015

2072

2783

3015

3052
16 .2

.3

.4

.5

.5

.437

.5

.5

4110

4004

4110

4110

3049

3466

4004

4110
18 .2

.3

.4

.5

.444

.444

.388

.5

4696

4501

4643

4593

3342

4308

4696

4638

20 .2

.3

.4

.5

.5 .5

.5

.45

5955

5878

5847

5724

3880

4989

5669

5955

4. CONCLUSION

In this work we revisited the Williamson and Geomans’

algorithm for MAX-CUT problem that used semidefinite

programming to give a performance guarantee of .878. We

presented a modification of their algorithm in which for a

given α, we compute a cut which is at leats 0.87856 of the

optimum α-balanced cut and itself is a

 balance cut.

5. REFERENCES
[1] H. Shen and H. Zhang, “Improving exact algorithms for

max-2-sat,” Annals of Mathematics and Artificial

Intelligence, vol. 44, April 2004.

[2] “Study of lower bound functions for max-2-sat,”

American Association for Artificial Intelligence, April

2004.

[3] J. Gramm, E. A. Hirsch, R. Niedermeier, and P.

Rossmanith, “New worst-case upper bounds for max-2-

sat with application to max-cut,” ECCC, 2000.

[4] S. Sahni and T. Gonzalez, “P-complete approximation

problems,” Journal of The ACM, pp. 555–565, 1976.

[5] M. X. Goemans and D. Williamson, “Improved

approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming,”

Journal of the ACM, vol. 42, pp. 1115–1145, 1995.

[6] J. Alber, J. Gramm, and R. Niedermeier, “Faster exact

algorithms for hard problems: A parameterized point of

view,” Discrete Mathematics, vol. 229, pp. 3–27, 2000.

[7] M. Grtschel, L. Lovsz, and A. Schrijver, “The ellipsoid

method and its consequences in combinatorial

optimization,” Combinatorica, pp. 169– 197, 1981.

