
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.7, February 2013

12

Enhanced Mobile Cloud Computing Platform

Iraky Khalifa

Department of Computer
Science, Faculty of Computers

and Information, Helwan
University, Egypt

Hala El-Sayed
Department of Computer

Science, Faculty of Computers
and Information, Helwan

University, Egypt

Islam Abd El-Gaber
Department of Computer

Science, Faculty of Computers
and Information, Helwan

University, Egypt

ABSTRACT

Mobile Cloud Computing is a technology that influences

integrated resources of varied clouds and network

technologies toward limitless mobility, functionality and

storage. It serves a mass of mobile devices anywhere, anytime

through different channels, being either Ethernet or Internet

regardless of diverse environments and platforms; it also

means to provide mobile users with data storage and

processing power on a cloud computing platform. Still there

are some problems integrating both Cloud Computing and

Mobile Computing as Cloud Computing is not initially

designed to be consumed from mobile devices with its limited

resources; however the mobile devices could interact with

cloud services containing drawbacks such as resources

limitation, bandwidth, and unstable connection.

In this paper we present Enhanced Cloud Computing

Platform, which enhances the interaction between the mobile

devices and web services through cloud platform for

optimized mobile web service communication by providing

an alternative architecture for the XML based SOAP services.

Keywords

Mobile computing, cloud computing and mobile cloud

computing.

1. INTRODUCTION
According to a new study from ABI Research [3] has revealed

that Cloud computing will completely transform future of

mobile applications development, and their use. Cloud

Computing will dramatically reduce the requirement of

advanced handsets for running mobile applications, according

to the study. According to the latest study from Juniper

Research, the market for cloud-based mobile applications will

grow 88% from 2009 to 2014. The market was just over $400

million this past year, says Juniper, but by 2014 it will reach

$9.5 billion.

Currently the number of mobile devices is 4 Billion 1.08

Billion devices are smart phones with internet enabled

expecting to reach 5.8 Billion by 2013 however there exists

only 1.1 Billion PC willing to grow up to 2 Billion by 2015.

Given the fact that the mobile devices have limited resources

including memory, storage and processing; their internet

consumption mainly depend on web services. Today the most

popular websites such as Google, YouTube, Facebook and

Twitter are exposed as web services to be consumed through

mobile devices with different manufactures such as Apple,

Samsung, HTC, Nokia and BlackBerry are using large

number of operating systems for example IOS, Android,

Symbian, QNX OS and Windows phone.

Web services are Web-based applications composed of

business functions accessed through the Internet. From a

technical perspective, Web services are a standardized way of

integrating Web-based applications using open standards

including XML, the simple object access protocol known as

SOAP, the Web Services Description Language WSDL [5],

and the universal description, discovery, and integration

specification. XML structures the message, SOAP transfers

the message, WSDL describes the available services, and

UDDI lists them. XML describes both the nature of each self-

contained function and the data that flows to and from it.

Considering mobile devices’ tenuous capabilities, Web

services are one of the best ways to enable lightweight mobile

devices to share the computing capability of workstations [1].

Though, a direct integration of mobile computing and web

services imposes performance limitations because of XML’s

verbose nature and physical limitations of mobile computing.

Even a half a decade ago, there are a few users who access

remote information from their mobile device. The information

access from mobile devices, however, has become easier than

ever recently with the help from advanced mobile devices and

availability of internet phone networks. There are many

projects that try to adopt mobile devices with data connections

as major elements in Web Services.

However, the verbose nature of current XML based SOAP

approach shows performance limitations in integrating mobile

computing applications and conventional Web Services

directly. SOAP achieves ubiquity by using highly universal

XML as a form of data exchanging between distributed

computing resources. Though, XML based SOAP possesses

three major characteristics that may affect SOAP

performance. First, the in-memory data model must be

converted to textual format to build a SOAP message object

and to extract information from it. Secondly, because of

inevitable mobile computing characteristics – high latency,

narrow bandwidth, limited computation, and small memory

space, SOAP message processing consumes valuable

resources. Finally, Mobile networks have limited bandwidth

and are often billed based on the amount of data transferred

which is usually not a problem on the powerful wired

networks.

In this paper, we introduce a cloud based architecture

designed to overcome some of mobile cloud computing

problems including bandwidth, mobile limited resources, loss

of connection and mobile devices multiple operating systems

through adapting the cloud services to commensurate with

mobile devices..

2. Background and Related Work
There are several notable researches from industry and

academia that try to overcome performance limitations of

current Web Services approach. The report of the W3C

Workshop [4] on Binary Interchange of XML Information

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.7, February 2013

13

Item Sets (Infoset) is the result of the increasing demand of

binary form of XML based communication.

W3C XML Protocol Working Group released the draft of

Message Transmission Optimization Mechanism (MTOM)

and XML-binary Optimized Packaging (XOP). The XML

encoding would damage the data integrity. XOP is an

alternate serialization that looks like a MIME package. It

avoids data binding overhead, though still preserves XML

structure - tags. Thus, XOP and MTOM, which describes how

XOP is layered into SOAP HTTP transport, still possess a

parsing issue inherited from SOAP/XML. Cross Format

Schema Protocol (XFSP) is another project that serializes

XML document based on schema. Initially it is motivated by

the flexible definition of network protocols. It is written in

Java and uses DOM4J model to parse the schema. With XML

Schema-based Compression (XSBC), XFSP provides binary

serialization and parsing framework.

All previous remarkable efforts tried to modify the XML

based SOAP. There is another approach called RESTful web

service that needs to be investigated as traditional SOAP web

services are memory and processor intensive, which does not

naturally lend itself to the limited memory and processing of

smart mobile device environment. on the other hand RESTful

web services lend themselves perfectly to smart mobile device

environments as they are easy to invoke, produce a discretely

formatted response and can usually be easily parsed using

event-driven XML parsing which is less memory intensive

than tree based parsing.

2.1 Cloud Computing
Cloud computing [8] is the delivery of computing services

over the Internet. Cloud services allow individuals and

businesses to use software and hardware that are managed by

third parties at remote locations. Examples of cloud services

include online file storage, social networking sites, webmail,

and online business applications. The cloud computing model

allows access to information and computer resources from

anywhere that a network connection is available. Cloud

computing provides a shared pool of resources, including data

storage space, networks, computer processing power, and

specialized corporate and user applications.

The main characteristics of cloud computing include on-

demand self-service, broad network access, resource pooling,

rapid elasticity and measured service. On demand self-service

means that customers (usually organizations) can request and

manage their own computing resources. Broad network access

allows services to be offered over the Internet or private

networks. Pooled resources means that customers draw from a

pool of computing resources, usually in remote data centres.

Services can be scaled larger or smaller; and use of a service

is measured and customers are billed accordingly.

The cloud computing service models are Software as a

Service (SaaS), Platform as a Service (PaaS) and

Infrastructure as a Service (IaaS). In Software as a Service

model, a pre-made application, along with any required

software, operating system, hardware, and network are

provided. In PaaS, an operating system, hardware, and

network are provided, and the customer installs or develops its

own software and applications. The IaaS model provides just

the hardware and network; the customer installs or develops

its own operating systems, software and applications.

Cloud Computing offers advantages by allowing users to use

infrastructure, platforms, and software (e.g., application

programs) provided by cloud providers like Google, Amazon,

Microsoft and Salesforce at low cost. In addition Cloud

Computing enables users to elastically utilize resources in an

on-demand fashion. As a result, mobile applications can be

rapidly provisioned and released with the minimal

management efforts or service provider’s interactions [8].

With the explosion of mobile applications and the support of

Cloud Computing for a variety of services for mobile users,

Mobile Cloud Computing is introduced as an integration of

cloud computing into the mobile environment. Mobile cloud

computing brings new types of services and facilities for

mobile users to take full advantages of cloud computing.

2.2 Mobile Computing

Mobile devices allow users to run powerful applications

that take advantage of the growing availability of built-in

sensing and better data exchange capabilities of mobile

devices. As a result, mobile applications seamlessly integrate

with realtime data streams and Web 2.0 applications, such as

mashups, open collaboration, social networking and mobile

commerce [1], [2]. The mobile execution platform is being

used for more and more tasks, e.g., for playing games;

capturing, editing, annotating and uploading video; handling

finances; managing personal health, micro payments, ticket

purchase, interacting with ubiquitous computing

infrastructures. Even mobile device hardware and mobile

networks continue to evolve and to improve, mobile devices

will always be resource-poor, less secure, with unstable

connectivity, and with less energy since they are powered by

battery. Resource poverty is major obstacle for many

applications [3]. Therefore, computation on mobile devices

will always involve a compromise.

2.3 Web Services
The Web Services architecture [9] has been based on a

number of open and freely available internet standards such as

XML, SOAP and WSDL. Its main purpose is to provide a

basic architecture for interoperability between applications.

The Web Services architecture consists of several

components. One of them is an interface description language

that defines the methods and bindings of the Web Service,

which constitute the API of the Web Service. An XML-based

interface description language, called the Web Service

Description Language (WSDL), is used for this purpose.

To invoke a Web Service, the request and response are sent

using the Simple Object Access Protocol (SOAP). The

transmitted parameter names, values and possible error

conditions are encoded through XML. HTTP is often used as

an underlying transport protocol, but other protocols can also

be employed. The discovery of the service and its interface

description can be achieved by querying the UDDI (Universal

Description, Discovery and Integration) registry. A response

from the UDDI contains the description of a service and a

URL pointing to its WSDL file.

In the current Web Services architecture there exist a small

number of well-known global UDDIs that maintain

information about available Web Services and replicate data

among themselves. Since the code for a UDDI registry is

freely available, it is possible to deploy UDDI registries

locally in order to reduce internet traffic. This is especially

interesting for services that are to be hidden from anyone

outside the local domain.

Representational State Transfer (REST) was originally

introduced as an architectural style for building large-scale

distributed hypermedia systems. This architectural style is a

rather abstract entity, whose principals have been used to

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.7, February 2013

14

explain the excellent scalability of the HTTP 1.0 protocol and

have also constrained the design of its following version,

HTTP 1.1. Thus, the term REST very often is used in

conjunction with HTTP.

RESTful Web services are perceived to be simple because

REST leverages existing well-known W3C/IETF standards

(HTTP, XML, URI, and MIME) and the necessary

infrastructure has already become pervasive. HTTP clients

and servers are available for all major programming languages

and operating system/hardware platforms, and the default

HTTP port 80 is commonly left open by default in most

firewall configurations.

Such lightweight infrastructure, where services can be built

with minimal tooling, is inexpensive to acquire and thus has a

very low barrier for adoption. The effort required to build a

client to a RESTful service is very small as developers can

begin testing such services from an ordinary Web browser,

without having to develop custom client-side software.

Deploying a RESTful Web service is very similar to building

a dynamic Web site.

2.4 Mobile Applications
Mobile Application is a type of application software designed

to run on a mobile device such as a smartphone or tablet

computer. Mobile applications frequently serve to provide

users with similar services to those they access on their PCs.

There are three types of mobile applications:

1. Native Application: An application specifically

designed to run on a device’s operating system and

machine firmware; it typically needs to be adapted

and adjusted for different devices.

2. Web Application: An application in which all or

some parts of the software are downloaded from the

Web each time it is run; it can usually be accessed

from all web-capable mobile devices.

3. Hybrid Application: Hybrid Application combines

mobile web development with native development;

it enables the use of HTML, CSS (Cascading Style

Sheets) and JavaScript in a mobile application and it

also extends native device capability into the mobile

web browser.

Table 1: Native vs. Web vs. Hybrid Mobile Applications

Feature Native Web Hybrid

Development

Language

Native

Language
Web Language

Native and

Web

Code

Portability
Low High High

Access to

Device APIs
High Low Moderate

User

Interface
High Low Moderate

Upgrade

Flexibility
Low High Moderate

Installation

Experience
High Low High

Development

Time
High Low Moderate

As shown in table 1 hybrid application contains most of the

advantages of the two types because it is implemented by

developing a native application containing a customized web

browser.

3. Proposed System Architecture
This section presents system architecture of mobile cloud

computing platform that is designed to provide enhanced

communication between the cloud and mobile devices. First

the overview system architecture is introduced, and then both

of the bridge server and mobile client designs will be

discussed.

3.1 Architecture Overview
The main goal of the mobile cloud computing architecture is

to provide a proxy for mobile clients connecting to cloud

services. Figure 1 shows an overview of the mobile cloud

computing and its main features. The architecture consists of

three parts, the mobile clients, the bridge server and the cloud

services. Since cloud services are usually controlled by

service providers, the bridge server performs all the necessary

adaptation to the mobile clients.

Figure 1: Proposed architecture overview

Some services require real-time updates, for example, RSS,

Facebook, and Twitter service. The bridge server also pushes

updates of service results to mobile clients via HTTP or email

immediately after it receives the updates.

The main function of the bridge server is to consume raw

could services whether they are SOAP or RESTful and deliver

it to mobile clients; it also provides a JSON based RESTful

Services which will be consumed through the mobile clients.

Figure 2 shows how Bridge Server interacts with mobile

clients; when a mobile client sends a request to the Bridge

Server, the following phases are executed:

1. The mobile client sends a HTTP GET request to the

Bridge Server.

2. The Bridge Server calls the cloud servers and

generates the results.

3. The Bridge Server converts and optimizes the

results and sends the optimized results back to the

mobile client.

The bridge server is the main component in the architecture as

it is responsible for all the business logic and adaptation

phases that are based on web services as communication

objects.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.7, February 2013

15

Figure 2: Consuming cloud services through mobile clients

3.2 Bridge Server Architecture
The bridge server architecture as shown in figure 3 has a

RESTful service repository which is responsible for handling

the mobile clients’ requests through receiving those requests

then processes it by passing it to the service handler and

finally sends the result back to the mobile client. The service

handler has two main components: the service executer and

optimizer; the service executer creates a web requests and

dispatch them to be executed at the cloud services; the

executer receives the raw results and deliver them back to the

handler which sends them to be processed and optimized at

the result optimizer. The bridge server mainly performs the

following processes:

Figure 3: Bridge server architecture

1. Protocol Transformation: the bridge server

transforms the SOAP services into the RESTful

services; the server handler executes the SOAP

services using normal HTTP web request to

consume the SOAP service based on its provided

WSDL then send the result back to the mobile

clients through RESTful service.

2. Result Optimization: the raw service is formatted in

a structure that may be not suitable for the mobile

clients; the bridge server Optimizer receives the raw

results and extracts the result core converting it into

JSON format. For example, the user may only need

5 instead of 10 news stories. Second, the original

data format may also not be efficient for mobile

clients. The result optimizer first extracts the

required part of data from the raw response, and

then makes a copy of the extracted result in various

formats, for example, mobile HTML for mobile

browsers and JSON for native mobile applications.

The bridge server also caches these copies of result

in the service repository.

3. Client Subscription: the Bridge Server also allows

results caching; after optimizing the results the

Bridge Server saves a local copy from it to be

pushed back to the client in case of connection error

or client’s starting up.

After the result processing at the Optimizer, it is returned to

the Service Repository to be cashed at the system storage to

be used when needed and the service calling is recorded in the

database then the result is sent back to the mobile client for

user usage.

Like most bridge server, scalability is always a major concern;

the approach is to take advantage of the cloud platforms to

host the bridge server. Microsoft Azure is the cloud platform

examined in this research. It has a very complex service

model and performance characteristics.

3.3 Mobile Client Design
The proposed mobile client architecture is a hybrid solution

which according to the comparative study provide in section

2.4 combines both native and embedded browser application.

Figure 4 is the overview of the client architecture. It follows a

basic Model View Controller pattern. The User Interface is

designed within the embedded browser using HTML, CSS

and JavaScript. When the UI components need service data,

they invoke the custom JavaScript libraries to pull the data

from local cache. If the local cache does not contain a recent

copy of inquired data, the RESTful client interacts with the

middleware to get the data. The data are then passed to the

data module and stored in the local file system. Note that the

data passed to the embedded browser is in JSON format

which can be easily parsed by JavaScript.

Figure 4: Mobile client architecture

The separation of UI components and the client makes the

architecture platform independent. To change the application

to a pure native application, the embedded browser UI can be

replaced by native UI and the client can be reused. The

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.7, February 2013

16

RESTful client can also implement push technology. Push

technology enables a server to push content to the clients, in

order to optimize the data traffic, energy and bandwidth used.

4. Proposed System Implementation
This section covers the implementation of the system

architecture for mobile cloud computing platform described in

the system architecture section; In order to gain better

understanding to the architecture a prototype for both bridge

server and mobile client was implemented.

4.1 Bridge Server Implementation
The Bridge Server is implemented based on Microsoft Azure

Cloud (see Figure 5) to be able to use the features of

scalability and interoperability which are required by the

platform architecture to support various mobile platforms. The

Mobile Client is developed via Phone Gap; it is an open

source framework for building cross platform mobile

applications using HTML5, Javascript and CSS, the main

purpose of using this framework is to solve the problem of

building a separate application for each device such as iPhone,

Android, Windows Mobiles and more.

Figure 5: Bridge server implementation

The Bridge Server architecture is implemented as Microsoft

.Net web application hosted on Microsoft Azure cloud. The

application mainly exposes Repository Windows

Communication Foundation (WCF) RESTful service layer to

be consumed via mobile clients as RESTful service is more

suitable to the mobile usage; the Repository Service layer

mainly depend on exchanging JSON data through RESTful

services with the mobile clients in order to maintain

processing efficiency with minimum amount of exchanged

data.

When the Service Repository receives a mobile client request,

it passes the request to Executor module which sends HTTP

Web Requests for external cloud services using .Net

WebClient library for initiating the requests and receiving

results; then the results is delivered to the Service Optimizer

module which uses JSON.Net library for converting SOAP

XML results to small sized JSON objects to be used at the

mobile client after cashing the results at the database storage

via the Service Repository.

4.2 Mobile Client Implementation
The mobile client is developed via PhoneGap framework

which is open source mobile development framework which

builds applications for mobile devices using JavaScript,

HTML5 and CSS3, instead of lower-level languages such as

Objective-C, C/C++ or C#. The resulting applications are

hybrid based, meaning that produced applications are neither

fully native applications nor purely web based applications;

the output application is developed once and through a quick

conversion process, it could be deployed at multiple mobile

platforms such as Android, BlackBerry OS and Windows

Phone OS.

Figure 6: Mobile client implementation

The mobile client as shown in figure 6 sends web requests

which access the Bridge Server exposed WCF REST services

through GET / POST / PUT / DELETE verbs. Those web

requests are sent using JQuery library by calling Ajax method

which performs an asynchronous HTTP Ajax request. The

optimized JSON formatted results will be displayed at the

web view of the mobile client.

5. System Evaluation
This section summarizes the performance benchmark results

of the prototype implementation of Mobile Cloud Computing

Platform architecture. In order to obtain the benchmark two

experiments have been developed.

5.1 Experiment 1: Bridge Server

Evaluation
The main goal of this experiment is to evaluate the Bridge

Server and its ability for interaction with both SOAP and

REST services. eBay API provides both types of the web

service in both XML and JSON formats; “Find Products” is

used for the test; it searches for stock product information,

such as information about a particular kind of mobile or

camera. Also, retrieves up to 200 eBay listings associated

with a product. The size of JSON result is 11.3 KB, XML

SOAP size is 14 KB and the XML REST is 13.3 KB. To

better evaluate the Bridge Server the following sub-

experiments are done:

1. Consume RESTful service directly without the

Bridge Server obtaining JSON results.

2. Consume RESTful service directly without the

Bridge Server obtaining XML results.

3. Consume RESTful service through the Bridge

Server obtaining JSON results.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.7, February 2013

17

4. Consume RESTful service through the Bridge

Server obtaining XML results.

5. Consume RESTful service through the Bridge

Server with processing obtaining JSON results.

6. Consume RESTful service through the Bridge

Server with processing obtaining XML results.

7. Consume SOAP service through the Bridge Server.

The results obtained from the previously mentioned

experiments are shown in table 1. Each experiment is tested

ten times calculating highest, lowest and mean values for

response time.

Table 2: Bridge server evaluation results

Experiment Low(s) Mean(s) Highest(s)

Consume RESTful

service directly without

the Bridge Server

obtaining JSON results

0.6 1.0 1.8

Consume RESTful

service directly without

the Bridge Server

obtaining XML results.

0.5 1.3 3.2

Consume RESTful

service directly through

the Bridge Server

obtaining JSON results.

0.5 0.9 1.7

Consume RESTful

service directly through

the Bridge Server

obtaining XML results.

0.6 1.4 4.9

Consume RESTful

service through the

Bridge Server with

processing obtaining

JSON results.

0.6 1.2 3.1

Consume RESTful

service through the

Bridge Server with

processing obtaining

XML results.

0.6 1.7 5.5

Consume SOAP service

through the Bridge

Server obtaining XML

results.

0.8 3.1 6.1

However there is a time delay in the processes related to the

bridge server compared with the direct consumption but also a

reduction in the response size as the optimization also

increases the execution time. SOAP services have a higher

response time than RESTful services. JSON has lower

response time than XML as XML has more size than the

JSON.

5.2 Experiment 2: Mobile Client

Evaluation
In order to evaluate the mobile client the experiment will be

tested at both windows phone (Windows Phone 7 version) and

android (4.0 Ice Cream Sandwich version) mobile clients

generated by PhoneGap. Each mobile client sends 10

HTTP/GET to the Bridge Server Restful service which returns

both JSON and XML responses with fixed size 14 KB

calculating the mean and standard deviation values for

response time between sending the request till results UI

displaying.

Table 3: Mobile client evaluation results

Experiment Format Mean(s) Highest(s)

Consume Bridge Server

RESTful service through

Android mobile client

XML 98.7 29.6

JSON 23.3 8.1

Consume Bridge Server

RESTful service through

Windows Phone mobile

client

XML 178.6 38.5

JSON 112.4 24.2

Table 3 shows that experiment results even when the message

size is fixed the response time for JSON data is faster than

XML data because the parsing time needed for XML is much

larger from the time JSON parsing time although according to

experiment 1 always the JSON message smaller than XML

message. Hence the optimum choice for the mobile client to

communicate with the Bridge Server is JSON based RESTful

services.

6. Conclusion
In this paper an enhanced mobile cloud computing platform is

introduced describing the interaction problems between cloud

and mobile devices which are the motive for exploring this

space. The main purpose for providing this platform is to

adopt could services to be consumed via mobile devices.

The prototype implementation for the platform demonstrated

the advantages and disadvantages of the platform architecture

through the evaluation of all the options provided by the

platform prototype. The evaluation also showed that the

server ability to communicate with other cloud services

besides exposing the service layer for the mobile clients.

Mobile clients are able to consume both XML and JSON

result formats, demonstrating that the JSON is suitable for

mobile consumption more than XML.

Future work in this area has to include more wide scale

development for the prototype. Also automatic user service

definition option should be developed to allow the user to

interact with other cloud services which are not pre-defined

by the platform.

7. References
[1] M. Satyanarayanan, “Fundamental challenges in mobile

computing,” in Proceedings of the 5th annual ACM

symposium on Principles of distributed computing, pp.

1-7, May 1996

[2] J. Jing, A. S. Helal, and A. Elmagarmid, “Client-server

Computing in Mobile Environments,” ACM Computing

Surveys (CSUR), vol. 31, no. 2, pp. 117–157, 1999.

[3] ABI Research. http://www.abiresearch.com/. 2010

[4] World Wide Web Consortium, “Report from the W3C

Workshop on Binary Interchange of XML Information

Item Sets”, Sep. 2003,

http://www.w3.org/2003/08/binary-

interchangeworkshop/

[5] World Wide Web Consortium, Web Services Description

Language (WSDL) 1.1, Mar. 2001,

http://www.w3.org/TR/wsdl.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.7, February 2013

18

[6] World Wide Web Consortium, “XML-binary Optimized

Packaging (XOP)”, Aug. 2004,

http://www.w3.org/TR/2005/REC-xop10-20050125/

[7] E. Serin and D. Brutzman, “XML Schema-Based

Compression (XSBC)”,

http://www.movesinstitute.org/xmsf/projects/XSBC/03M

ar_Serin.pdf

[8] Michael Armbrust and Armando Fox, "Above the

Clouds: A Berkeley View of Cloud Computing",

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EEC

S-2009-28.html

[9] Web Services Activity http://www.w3.org/2002/ws/

