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ABSTRACT 

Due to the popularity of mobile devices and increasing 

demands of software applications, more and more individual 

developers join this industry. However, software defects top at 

the cost of software development. Software metrics are able to 

show some indication of software defect. This paper reviews 

popular static code and object-oriented metrics and 

summarizes heuristics for using the metrics. Correlations 

between software defect and metrics are presented. Finally, 

advantages and disadvantages of metrics are 

discussed.According to the summary of correlation analyses, 

some metricsshow inconsistent relationships with software 

defect. Implications to practice and research are provided. 
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1. INTRODUCTION 
The demand of software development is getting stronger year 

after year. Specifically, due to the prevalence of mobile 

devices such as smartphones and tablets, the need of mobile 

applicationsis unimaginable. For example, 35 billion of Apps 

have been downloaded from Apple, Inc. and the company has 

paid more than $6.5 million dollars to the developers[26]. The 

cost, both time and money, for software development is 

normally high. Jim Johnson, a chairman of a research 

companyThe Standish Group, stated that “faulty software 

costs businesses $78 billion per year”[18].Most of the mobile 

applications such as Apps for Apple’s iOS devices are 

developed by individuals. The cost could be easily 

underestimated. Among the costs on software development, 

software defects usually top at the cost of software 

development. 

Software defects can be measured in two ways: defect density 

and failure density[4]. Defect density shows the total number 

of defects found in every thousand lines of program source 

code. Failure density indicates the total number of detected 

failures per thousand lines of code. In order to detect software 

defects, software metrics are normally used. In the literature, 

not all software metrics are found to be related to software 

defect. However, there is a limited amount of studies focusing 

on summarizing both static code and object oriented metrics 

in relations to software defect. This paper attempts to review 

popular static code and object oriented metrics, to highlight 

highly correlated metrics with software defect, to summarize 

heuristic values for using these metrics, and to offer pros and 

cons of these metrics. 

The rest of the paper is organized as follows.Popular static 

code metricsare first discussed in the second section and then 

object oriented metrics in the third section. In the fourth 

section, summary of heuristics, correlations between metrics 

and software defect, and advantages and disadvantages of the 

metrics are provided. Finally,implications to practice and 

research are provided. 

2. STATIC CODE METRICS 

2.1 Source Lines of Code (SLOC) 
SLOC is one of the oldest static code metrics for evaluating 

software defects. Akiyama [6] established an estimated 

regression relating lines of code LOC and defect DEF: 

LOCDEF 018.086.4 


 

Based on this regression equation, it is expected to see about 

41 software defects when the SLOC of the software program 

is 2,000. Park [23] further defined physical SLOC that it 

includes executable lines, declarations, compiler directives, 

and empty lines. Comments are excluded in counting physical 

SLOC. Logical SLOC was defined similarly to exclude begin 

and end symbols that delimit (sub)program bodies, then, else, 

otherwise symbols, etc. Bhatt et al. [8]defined executable 

physical LOC as the total LOC minus blank and comment 

lines. The executable logical LOC was defined as the number 

of statements that is executed. When the size of SLOC is 

larger, it is harder to understand and maintain the software 

program. Also, it is more prone to defect.O’Neill [22] 

suggested that it would take an hour to inspect 250 to 500 

lines of code during new development and 1000 to 1500 lines 

of code during maintenance stage. 

2.2 Comment Percentage (CP) 
The CP is defined as a ratio of the number of comment lines 

to the number of non-blank LOC [19]. Software development 

life cycle is normally long. In any stage of the life cycle, 

comments will help developers and maintainers to better 

understand the programs. Higher comment percentages will 

increase understandability and maintainability[27]. It is 

suggested to maintain at least 8% on comment percentage to 

enhance the understandability [21]. 

2.3 Halstead Metrics 
Halstead Metrics [16] is one of the earliest software program 

metrics using operators and operands to describe the 

complexity of software. At that time, most programs are 

procedural and each source code of the programs is stored in a 

single file. However, Halstead Metrics can be used to measure 

modern programs written in C, C++, and Java. When 

evaluating software programs using Halstead Metrics, 

programs’vocabulary, size, volume, difficulty, effort, errors, 

and testing time can be obtained. 

Four key parameters are prepared in the source code level: n1, 

n2, N1, and N2, where 

n1 is the number of distinct operators; n2 is the number of 

distinct operands; N1 is the number of operator instances; 

N2 is the number of operand instances. 
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The vocabulary n is the total number of distinct operators and 

distinct operands n1 + n2. The size of the program N is the 

total number of operator instances and operand instances N1 + 

N2. The volume of the program Vis nN 2log . The difficulty 

D to write or understand a program is 
2

21

2 n

Nn
 . Effort E can 

be measured by DV  . The number of delivered bugs 

(defects)B can be estimated by 
3000

3

2

E
. More recently, when 

estimating the number of delivered bugs in object oriented 

programs, 
3000

V
 is used instead. Also, time needed to write a 

program is related to effort E and can be estimated by 
18

E
 

seconds. 

In order to lower the chance of software defects, McCabe 

Software [21] suggested to limit the size of program N to 300, 

the volume V to 1500, difficult D to 30, effort E to 300,and 

estimated bugs B to 0.6. 

2.4 McCabe Cyclomatic Complexity (CC) 
McCabe Cyclomatic Complexity metric[20], based on a 

directed graph, is to quantify the complexity of a software 

program. The Cyclomatic Complexity is computed as follows: 

PNE Complexity Cyclomatic  

where 

Eis the number of edges of the graph; Nis the number of 

nodes of the graph; Pis the number of connected 

components. 

A high value of Cyclomatic Complexity indicates high 

complexity of a program which is harder to understand, test, 

modify, and maintain. In order to reduce the risk of software 

development, it is suggested to limit the Cyclomatic 

Complexity to 10[33]. Based on different level of risks, 

Foreman et al. [14] suggested different threshold values of 

Cyclomatic Complexity when evaluating the risk of a 

software program. When the Cyclomatic Complexity is less 

than or equal to 10, the program is simple and the risk is low. 

The program is more complex and it is considered moderate 

risk when the Cyclomatic Complexity is between 11 and 20. 

For a complex program, the Cyclomatic Complexity is 

between 21 and 50 and the risk is high. The value of 

Cyclomatic Complexity greater than 50 indicates that a 

program becomes untestable and the risk is very high. 

3. OBJECT-ORIENTED METRICS 

3.1 Chidamber & Kemerer (CK) Metrics 

Suite 
Although Halstead Metrics can be used in object-oriented 

programs, it does not cover important aspects of object 

oriented programming such as inheritance, coupling, etc. The 

CK metrics suite is designed for measuring object-oriented 

programs [13]. The suite includes six metrics discussed as 

follows. 

3.1.1 Weighted Method per Class (WMC) 
The WMC indicates the total complexity of an object-oriented 

class, measured by the number of methods defined in the class 

when all methods’ complexity are considered unity. 





n

i

iCW MC
0

, where n is the number of methods in a class 

and Ci is the complexity of class. 

In software development, it is suggested to have 

smalleramount of methods rather than larger amount of 

methods. Smaller amount of methods will reduce program 

complexity and increase readability of program [15]. 

3.1.2 Depth of Inheritance Tree (DIT) 
Assuming that class inheritance in object-oriented 

programming can be described as a hierarchical tree, a class in 

the lower level of the three has more methods and variables to 

inherit from its upper level of classes. The DIT indicates the 

maximum length from a class to its root class, which is the 

depth of the hierarchy. The larger the DIT, the higher the level 

of inheritance is. Cartwright and Shepperd[12] found that DIT 

is related to the defect density of classes. 

3.1.3 Number of Children (NOC) 
NOC shows the number of immediate sub-classes derived 

from a base class. The NOC represents the width of the class 

hierarchy. High value of NOC indicates high reuse of the base 

class.If the base class is thoroughly tested, high reuse of the 

base class could reduce the chance of defect. However, in the 

software defect literature, there is no conclusive result relating 

the NOC to defect (see summary of studies in Table 2 

discussed later). NOC was found to be positively, negative, or 

none related with software defect in those studies. 

3.1.4 Coupling between Object Classes (CBO) 
Coupling is defined as “the measure of the strength of 

association established by a connection from one module to 

another”[30].CBO measures the interdependence of two 

classes. Coupling between two classes happens when one 

class uses methods or variables defined by another class. It is 

harder for another program to reuse the highly coupled classes 

in a program due to the complexity. When coupling between 

classes is high, it would be more time consuming for 

programmers to clearly understand the codes and make further 

changes.Sahraoui et al. [25] suggested to avoid CBO values 

above 14. 

3.1.5 Response for a Class (RFC) 
RFC is defined as “a set of methods that can potentially be 

executed in response to a message received by an object of 

that class”[13].RFC indicates the number of methods in the 

response set of the class. Prior studies (e.g. [29, 36])found that 

high value of RFC is associated with software defect. When 

RFC is high, the classes are more complex and hard to 

understand, test, and even debug. A low RFC, therefore, is 

preferred. 

3.1.6 Lack of Cohesion (LCOM) 
In object oriented programming, cohesion refers to the degree 

to which the elements of a module belongs together[34].The 

unrelated elements are supposed to be kept outside the module. 

Therefore, when the cohesion is high, the abstraction of a 

module is well managed and readability and manageability of 

the program is also increased. High cohesion could also 

reduce the risk of program errors. LCOM is a measure to 

identify the cohesion of a class.The LOCM is defined as the 

number of pairs of dissimilar methods in a class minus the 

number of pairs of methods in a class that have something in 

common.It is possible to obtain a negative LCOM, and 0 is 

assigned in this case. As desired to reach high cohesion, a low 
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value of LOCM is preferred. LCOM was found to be a 

significant measure indicating software defects[5, 29, 35, 36]. 

 

3.2 Metrics for Object-Oriented Design 

(MOOD) 
Abreuand Carapuça[1] proposed a set of metrics called 

Metrics for Object Oriented Design (MOOD) to measure 

object-oriented programs, meeting the following criteria: 

metrics determination should be formallydefined 

non-size metrics should be system sizeindependent 

metrics should be dimensionless or expressed in some 

consistent unit system 

metrics should be obtainable early in thelife-cycle 

metrics should be down-scalable 

metrics should be easily computable. 

metrics should be language independent. 

A set of six metrics were suggested as follows. 

3.2.1 Method Hiding Factor (MHF) 
MHF is to measure the ratio of the sum of the invisibilities of 

all methods in all classes to the total number ofall methods. 

Invisibility of a method indicates a ratio of total invisible 

classes to the number of classes, excluding itself. 

 MHF is defined as 



 



 


TC

i id

TC

i

CM

m mi

CM

MV
id

1

1

)(

1

)(

)(1(

,

where

)( id CM is total number of methods defined,TC is the total 

number of classes in the program, )( miMV is the visibility of 

the method Mmi. )( miMV is prepared using  

1

),(_
)( 1



 

TC

CMvisibleis
MV

TC

i jmi

mi  

and   

                      0

 callmay  
       1

),(_










 



otherwise

MC

ij
iff

CMvisibleis
mijjmi  

In object oriented programming, an interface of an object is 

created to include a group of methods without implementing 

the behavior of methods. The interface is visible to the whole 

program. However, the implementation of the interface is 

hidden to itself. MHF is 0 when all methods are public. When 

all methods are private, the MHF is 1. MHF was found to be 

moderately and negatively correlated with defect density[4]. 

Defect density would decrease when MHF increases. 

However, higher MHF shows limited functionality since most 

methods are specific and hard for reuse, which is 

contradicting to the spirit of object-oriented programming 

advocating object reuse. 

3.2.2 Attribute Hiding Factor (AHF) 
AHF is very similar to MHF, while AHF measures the 

invisibilities of attributes defined and MHF indicates the 

invisibilities of methods defined. AHF follows the ratio of the 

sum of the invisibilities of all methods in all classes to the 

total number of all methods. AHF can be calculated by



 



 


TC

i id

TC

i

CA

m mi

CA

AV
id

1

1

)(

1

)(

)(1(

, 

where )( id CA is total number of 

attributes defined, TC is the total number of classes in the 

program, )( miAV is the visibility of the method Ami. )( miAV is 

prepared using  

1

),(_
)( 1



 

TC

CAvisibleis
AV

TC

i jmi

mi  

and   

                                   0

 referencemay  
       1

),(_










 



otherwise

AC

ij
iff

CAvisibleis
mijjmi  

A minimum value of AHF is 0, happened when all attributes 

are publicly declared. If all attributes are hidden and only 

accessible by their corresponding methods, AHF is 1. 

However, AHF was found not influencing software quality[4]. 

3.2.3 Coupling Factor (CF) 
Similar to the CBO in Chidamber & Kemerer Metrics, CF is a 

measure for coupling of classes. CF represents a ratio of non-

inherence couplings to maximum possible couplings. The 

possible value of CF ranges from 0 (no classes are coupled) to 

1 (all classes are coupled to all other classes).Abreuand 

Carapuça [1] suggested that CF should be below 0.52. It is 

found that CF is highly correlated with software defect 

density [4]. 

3.2.4 Method Inheritance Factor (MIF) 
MIF measures the ratio of total number of inherited methods 

in all classes to the total number of available methods for all 

classes. It is defined as









TC

i ia

TC

i ii

CM

CM

1

1

)(

)(
,  

where )()()( iiidia CMCMCM  , )( id CM is total number 

of methods defined in class Ciand )( ii CM is total number of 

inherited methods in class Ci. A high MIF indicates a large 

portion of methods in a class were inherited from parent 

classes. When a class defines more of its own methods, the 

MIF is getting lower.It is suggested to keep the MIF between 

0.25 and 0.37 [1]. 

3.2.5 Attribute Inheritance Factor (AIF) 
AIF is very similar to MIF while AIF is a measure for 

inherited attributes and MIF is a measure for inherited 

methods.AIF indicates the ratio of total number of inherited 

attributes in all classes to the total number of available 

attributes in all classes. AIF is prepared as 









TC

i ia

TC

i ii

CA

CA

1

1

)(

)(
,  

where )()()( iiidia CACACA  , )( id CA is total number of 

attributes defined in class Ci and )( ii CA is total number of 

inherited attributes in class Ci. The AIF was found to be 

negatively correlated with software defect [4]. 

3.2.6 Polymorphism Factor (PF) 
Polymorphism is an object-oriented programming principle 

which allows message passing with different implementations. 

PF is to measure the ratio of the total number of overriding 

methods in all classes to the sum of maximum number of 

possible distinct polymorphic situations in all classes. When a 

larger amount of methods are overridden in derived classes, 

the PF increases.It is more or less conclusive to keep PF lower 

than 0.1[2, 3, 4, 17]. 

4. SUMMARY OF METRICS 
In order to reduce the chance of software defect, 

recommended values of metrics were suggested in the 

literature. The results are included in subsection 4.1. 
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Correlations between software defect and software metrics are 

discussed in the subsection 4.2. Finally, the advantages and 

disadvantages of the software metrics are discussed in 

subsection 4.3. 

4.1 Heuristics of Metrics 
Table 1 shows the heuristics of metrics suggested in the 

literature.The abbreviations of metrics, used in prior sections, 

are applied in the first column of Table 1. Second column 

includes the heuristic of the corresponding metric in the first 

column. The third column reports their source studies. 

In the literature, heuristics were provided to most of metrics 

discussed in the paper except Depth of Inheritance Tree, 

Number of Children, and Lack of Cohesion from CK metrics 

suite. Although different values were suggested from different 

studies, Cyclomatic Complexity, Weighted Method per Class, 

Coupling between Object Classes, Response for a Class, and 

Polymorphism Factor received similar recommended values. 

Because of the design of metrics in MOOD suite, the values 

range from 0 to 1. However, prior experimental studies failed 

to offer a consistent range of values for five out of six MOOD 

metrics. 

 

Table 1.Summary of heuristic values for using software 

metrics 

Metric Value Study 

Source 

Linesof 

Code 

Inspection speed of 

250-500 lines per 

hour during new 

development and 

1000-1500 lines per 

hour during 

maintenance 

O’Neill 1996 [22] 

Comment 

Percentage 

≥8% to enhance 

understandability 

McCabe Software 2012 

[21] 

Halsted 

SizeN 

≤300 McCabe Software 2012 

[21] 

Halsted 

Volume V 

≤1500 McCabe Software 2012 

[21] 

Halsted 

Difficult D 

≤30 McCabe Software 2012 

[21] 

Halsted 

Effort E 

≤300 McCabe Software 2012 

[21] 

Halsted 

Estimated 

Bugs B 

≤0.6 McCabe Software 2012 

[21] 

Cyclomatic 

Complexity 

≤10 

≤10 low risk 

11-20 moderate risk 

21-50 high risk 

>50 very high risk 

Watson et al. 1996 [33] 

Foreman et al. 1997 

[14] 

CK WMC 100(risk prob.=.1) 

5 (risk prob.=.06) 

46 (risk prob.=.075) 

98 (risk prob.=.10) 

Rosenberg 1997 [24] 

Shatnawi 2010 [28] 

CK DIT N/A N/A 

CK NOC N/A N/A 

CK CBO 5(risk prob.=.06) 

≤ 14 

 

6 (risk prob.=.06) 

16 (risk prob.=.075) 

29 (risk prob.=.10) 

Rosenberg 1997 [24] 

Sahraoui et al. 2000 

[25] 

Shatnawi 2010 [28] 

CK RFC 100(risk prob.=.08) 

17 (risk prob.=.06) 

Rosenberg 1997 [24] 

Shatnawi 2010 [28] 

80 (risk prob.=.075) 

164 (risk prob.=.10) 

CK LCOM N/A N/A 

MOOD 

MHF 

0.154≤MHF≤ 0.387** 

0.077≤ MHF≤0.254* 

Abreu et al. 1996 [2] 

Harrison et al. 1998 

[17] 

MOOD 

AHF 

0.192≤ AHF≤0.355** 

0.44≤AHF≤0.675* 

Abreu et al. 1996 [2] 

Harrison et al. 1998 

[17] 

MOOD CF <0.52 

 

0.013 ≤CF≤ 0.055** 

0.031 ≤ CF ≤ 0.063* 

Abreuand Carapuça 

1994 [1] 

Abreu et al. 1996 [2] 

Harrison et al. 1998 

[17] 

MOOD 

MIF 

0.25≤MIF≤0.52 

 

0.606≤MIF≤0.771** 

0.143≤MIF≤0.455* 

Abreuand 

Carapuça1994 [1] 

Abreu et al. 1996 [2] 

Harrison et al. 1998 

[17] 

MOOD 

AIF 

0.633≤AIF≤0.815** 

0.113≤AIF≤0.468* 

Abreu et al. 1996 [2] 

Harrison et al. 1998 

[17] 

MOOD PF 0.03≤PF≤0.12* 

0.053≤PF≤0.108** 

≤ 0.1 

 

0.029≤PF≤0.089* 

Abreu et al. 1995 [3] 

Abreu et al. 1996 [2] 

Abreu and Melo 1996 

[4] 

Harrison et al. 1998 

[17] 

* indicates findings from experimental results 

** indicates a 90% confidence interval of estimations 

 

4.2 Software Defect and Metrics 
The software metrics,no matter static code metrics or object-

oriented metrics, covered in this study are not all highly 

correlated with software defect. This section summarizes the 

findings in the literature and organizes the results in Table 2. 

Metrics are included in the first column. The second column 

shows the relationships between metrics and a commonly 

used software defect variable—defect density. The third 

column reports the corresponding studies. 

In CK suite, consistent relationships were identified between 

defect and metrics (Weighted Method per Class, Response for 

a Class, and Lack of Cohesion). However, inconsistent 

relationships were identified between defect and the rest of 

three metrics (Depth of Inheritance Tree, Number of Children, 

Coupling between Object Classes). AHF was the only metric 

found in MOOD suite not correlated with defect. 

Table 2.Summary of correlation analyses between 

software defect and software metrics 

Metric 
Correlation 

with Defect 
Study 

Source 

Lines of 

Code 

+ 

+ (High) 

+: C++ 

+ (High): Java 

+ (High) 

+ (High) 

Akiyama 1971 [6] 

Briand et al. 2000 [9] 

Subramanyamet al. 2003 [31] 

Subramanyamet al. 2003 [31] 

Yu et al. 2002 [35] 

Zhou and Leung 2006 [36] 

CK WMC + 

+ 

+ 

+ (High) 

+ 

+: C++ 

N/C: Java 

Aggarwal et al. 2009 [5] 

Basiliet al. 1996 [7] 

Briand et al. 2000 [9] 

Briand et al. 2001 [11] 

Shatnawi and Li 2008 [29] 

Subramanyamet al. 2003 [31] 

Subramanyamet al. 2003 [31] 
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+ 

+ (High) 

+ (High) 

Tang et al. 1999 [32] 

Yu et al. 2002 [35] 

Zhou and Leung 2006 [36] 

CK DIT N/C 

+ (High) 

+ (High) 

− 

+ 

 

+ 

− 

N/C 

N/C 

N/C 

Aggarwal et al. 2009 [5] 

Basili et al. 1996 [7] 

Briand et al. 2000 [9] 

Briand et al. 2001 [11] 

Cartwright and Shepperd 2000 

[12] 

Shatnawi and Li 2008 [29] 

Subramanyamet al. 2003 [31] 

Tang et al. 1999[32] 

Yu et al. 2002 [35] 

Zhou and Leung 2006 [36] 

CK NOC N/C 

− (High) 

− 

N/C 

− 

N/C 

+ 

− (High) 

Aggarwal et al. 2009 [5] 

Basili et al. 1996 [7] 

Briand et al. 2000[9] 

Briand et al. 2001 [11] 

Shatnawi and Li 2008 [29] 

Tang et al. 1999 [32] 

Yu et al. 2002 [35] 

Zhou and Leung 2006 [36] 

CK CBO + 

+ 

+ (High) 

+ (High) 

+ (High) 

+ 

+: C++ 

−: Java 

N/C 

+ 

+ (High) 

Aggarwal et al. 2009 [5] 

Basili et al. 1996 [7] 

Briand et al. 2000 [9] 

Briand et al. 1999 [10] 

Briand et al. 2001[11] 

Shatnawi and Li 2008 [29] 

Subramanyamet al. 2003 [31] 

Subramanyamet al. 2003 [31] 

Tang et al. 1999 [32] 

Yu et al. 2002 [35] 

Zhou and Leung 2006 [36] 

CK RFC + 

+ (High) 

+ 

+ (High) 

+ (High) 

+ 

+ 

+ 

+ (High) 

Aggarwal et al. 2009 [5] 

Basili et al. 1996 [7] 

Briand et al. 2000 [9] 

Briand et al. 1999 [10] 

Briand et al. 2001 [11] 

Shatnawi and Li 2008 [29] 

Tang et al. 1999 [32] 

Yu et al. 2002 [35] 

Zhou and Leung 2006 [36] 

CK 

LCOM 

+ 

+ 

+ 

+ 

Aggarwal et al. 2009 [5] 

Shatnawi and Li 2008 [29] 

Yu et al. 2002 [35] 

Zhou and Leung 2006 [36] 

MOOD 

MHF 
− (Moderate) Abreu and Melo 1996 [4] 

MOOD 

AHF 

N/C Abreu and Melo 1996 [4] 

MOOD 

CF 

+ (Very high) Abreu and Melo 1996 [4] 

MOOD 

MIF 
− (Moderate) Abreu and Melo 1996 [4] 

MOOD 

AIF 
− (Low) Abreu and Melo 1996 [4] 

MOOD 

PF 
− (High) Abreu and Melo 1996 [4] 

Note: + means positive correlation; − means negative 

correlation; N/C means not correlated 

4.3 Advantages and Disadvantages of 

Metrics 
Based on the features and functionalities of the software 

metrics discussed in this paper, the pros and cons of software 

metrics are provided in Table 3.  

Table 3.Advantages and disadvantages of software metrics 

Metric Advantage Disadvantage 

Source 

Lines of 

Code 

 Easy to use 

 Easy to compute 

 Language 

independent  

 May be used to 

measure 

productivity 

 Positively correlated 

with software defect 

 Only program size 

being measured 

 Not a standard 

measure due to 

different counting 

methods 

 Not supporting 

object-oriented 

features 

 Language dependent 

for counting logical 

and physical lines of 

code 

 Not well reflecting 

programmers’ effort 

and program 

efficiency 

Comment 

Percentage 

 Easy to use 

 Easy to compute 

 Language 

independent  

 May be used to 

measure 

understandability of 

a program 

 High comment 

percentage may not 

ensure the quality of 

a program 

 Not supporting 

object-oriented 

features 

 Not used for 

software defects 

prediction 

Halsted 

Metrics 

 Easy to compute 

 Applicable for all 

languages 

 Good measurement 

of program 

complexity 

 Able to estimate 

program 

defects/bugs 

 Not supporting 

object-oriented 

features 

 Not used for 

software defect 

prediction 

Cyclomatic 

Complexity 

 May be used to 

measure 

understandability of 

a program 

 Language 

independent 

 Not supporting 

object-oriented 

features 

 Not used for 

software defect 

prediction 

CK Metrics  Supporting object-

oriented features 

 Some metrics are 

highly correlated 

with defect 

 Language 

independent 

 Consistent 

relationships 

identified between 

metrics (WMC, 

RFC, LCOM) and 

defect 

 Not available for 

early stage of life 

cycle 

 Inconsistent 

relationships 

identified between 

metrics (DIT, NOC, 

CBO) and defect 

MOOD 

Metrics 

 Supporting object-

oriented features 

 All metrics are well 

bounded between 0 

and 1 

 Obtainable early in 

thelife-cycle 

 Language 

independent 

 Limited guidance on 

the heuristics of 

metrics 

 AHF is not 

correlated with 

defect 
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5. CONCLUSIONS AND 

IMPLICATIONS 
Based on the summary of heuristics using metrics and 

correlations between software defect and metrics, some 

consistency and inconsistency were identified.Next, the 

potential implications of this paper for practice as well as 

research are discussed. 

5.1 Implication for practice 
There are severalimplications for practice, especially for 

software developers and project managers. Some metrics were 

found to be highly correlated with software defect. When 

conducting software development projects, some of the 

metrics can be easily prepared even during early development 

life cycle. Based on their suggested values, projects can be 

better managed and controlled. 

5.2 Implication for research 
Due to the inconsistent findings of some metrics relating to 

software defect, future studies could systematically validate 

these metrics using different projects in different scales. 

Different programming languages may have different impacts 

on the use of metrics. Future studies can compare and contrast 

the same projects written in different languages or for 

different platforms. Mobile applications could be one of the 

best candidates since the same application may be prepared 

using different programming languages and target to different 

platforms such as iOS, Android, Microsoft Windows Phone, 

etc. 
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