
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.16, February 2013

23

Designing of 8-bit Synchronous FIFO Memory using

Register File

Harish Sharma

I.T.M. University, Gurgaon

Charu Rana

I.T.M. University, Gurgaon

ABSTRACT

FIFO is implies first in first out using queue methodology for

memories read and write of any information and data using

some control logic. The whole work of FIFO is fully

dependent on the control circuitry and clock domain. It is

often used to control the flow of data from source to

destination by the transition of every clock. Basically FIFO

differentiate by clock domain either Synchronous or

Asynchronous. There are various methods to designing and

synthesized FIFO but here fully focused on the memory

which is used to store the data in domain of clock either sync.

and async. or single and multiple clock cycles.

This paper will differentiate the design, synthesize and

analyze a Synchronous FIFO using Register file memory by

older version of Synchronous FIFO. In this paper, conclude

the effect of using register file instead of random access

memory for storage of data in FIFO memory. This work

shows change the parameters like on-chip components (clock,

signal, input and outputs etc), clock domain, type of

resources, and how to minimize and optimize hierarchy of the

device.The RTL description for the FIFO is written using

Verilog HDL (hardware description language). And design is

simulated and synthesizes in Xilinx ISE Design suit 12.4.The

RTL code simulated in ISim Simulator.

Keywords

Verilog, FIFO, RTL, fifo_full, fifo_empty, sync. fifo, async.

Fifo, RAM, Register file, read, write.

1. INTRODUCTION
A Synchronous FIFO describes the FIFO design where the

data and information is stored in the memory and transition a

data in a appropriate fashion using clock pulse. Both read and

write operation handle by control circuit. In computer

programming, FIFO (first-in, first-out) is an approach to

handling program work requests from queues or stacks so that

the oldest request is handled first. In hardware it is either an

array of flops or Read/Write memory that store data given

from one clock domain and on request supplies with the same

data to other clock domain following the first in first out logic.

Basically FIFO divided in two categories like Synchronous

and Asynchronous. In synchronous FIFO, write operation to

the FIFO buffer and read operation from a same FIFO buffer

are occurring in same clock domain. But in asynchronous

FIFO these two operation of write and read to and from

respectively FIFO buffer in different clock domain. As clear

that the clock domain is different in asynchronous FIFO.

Write operation is occurred in one clock domain, and read

operation is in another clock domain. In FIFO concept, there

is a restrictions for writing any data and read data from FIFO

memory. In other way we can say that we can’t write and read

data without fulfill some appropriate conditions, are called

fifo_full and fifo_empty [2]. Here we considered these are

two flags which shows status of FIFO condition.

In designing time we fully concern on these two flags. If

fifo_full flag is asserted then the user does not write any data

in FIFO buffer and for fifo_empty, user does not read any data

from FIFO buffer [4]. For assertion of these condition we

design pointers to check these conditions. So these pointers

are called write and read pointers or we can say,

Firstly Read Pointer/Read Address Register.

Secondly Write Pointer/Write Address Register.

1. FIFO Empty when read address register catches a write

address register, the FIFO asserts the Empty signal [4].

2. FIFO FULL when write address register catches a read

address register, the FIFO asserts the FULL signal [4].

FIFOs are often used to safely pass data from one clock

domain to another asynchronous clock domain FIFOs are

used in designs to safely pass multi-bit data words from one

clock domain to another. In Async FIFO, Data words are

placed into a FIFO buffer memory array by control signals in

one clock domain, and the data words are taken from another

port of the same FIFO buffer memory array by control signals

from a second clock domain. In Sync FIFO, FIFO where

writes to, and reads from the FIFO buffer are conducted in the

same clock domain.

2. NEED OF THIS RESEARCH
In this my paper I discuss about the FIFO designing using

register file instead of RAM for storage and passing the data

from source to destination, as well as I discuss the changes in

parameters. The effect of using register file, acting much

efficient, high speed, less power consumption, and minimize

the area of a on-chip components, in a FIFO memory.

Firstly we fully concern on the basic architecture of register

file and then after designing verilog code of FIFO, and check

test bench, with series of data input till better response is

coming. After that checking parameters of that, and compare

the FIFO design with the older design of FIFO memory using

RAM.

3. DESIGN METHODOLOGY
(A). FIFO memory using “RAM”.

(B). FIFO memory using “Register File”.

Finally a full concern on architecture and designing of register

file as a memory device for FIFO, and details of how we use

and application of these.

3.1 Register file
A register file is an array of registers in a central processing

unit (CPU). In digital VLSI and computer applications,

register files are usually implemented by way of fast SRAMs

with multiple ports. Basically registers are storage addressed

locations in the processor. CPU instructions operate on these

http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Static_RAM

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.16, February 2013

24

values directly. On RISC processors, all data must be moved

into a register before it can be operated. On CISC (Intel)

chips, there are a few operations that can load data from

RAM, process it, and save the result back out, but the speed of

operations of work by using register file compare then random

access memory is fast. In another way the designing and

manufacturing cost of “RAM” is much expensive to “REG’s”.

The register files also called as memory array.

In these memory array both write and read operation take

place at a same clock domain. Here horizontal and vertical

wires for read and write operations or vice-versa. But we have

a simple disadvantage with registers that it store 1 slot of bit

patterns at a clock cycle, compare then RAM. The basic

architecture of register file is shown in fig.1.

Figure 1: Register file

The fig 1. Shows array of the memory cell where describes

flow of data in memory. We can write data by

w0,w1,……Wn, and read data by r0,r1……Rn. So in this

array we pass the data safely to the output port or read_port

through input port or write_data port.Now above from this

description of register file we concern on its designing of RTL

code, synthesize and simulation part. In this paper I am

presenting the Synchronous FIFO using register file and

compare the effects are involved.

4. RTL DIAGRAMS AND

SIMULATIONS
In this section, after written the verilog code of fifo using

register files, and create rtl diagrams of fifo using “ram” and

fifo using “register file”. After this, concern on output

corresponding to given inputs in xilinx(software) simulator.

The name of simulator is ISim. In this simulator we observe

test benches. In test bench we get waveforms representation of

the given parameters and response of the system according to

given parameters.

4.1 RTL diagram of fifo using “ram”

Figure 2: RTL diagram of fifo using ram

In fig 2 “ram_dp_ar_aw(dual port random access memory

with asynchronous read and write)” implies the top level

module name of FIFO. A RAM and FIFO both are

instantiated by this name. here,

1. cs_0,cs_1 are chip selector pins (dual port).

2. oe_0,oe_1 are output enable pins (dual port).

3. we_0,we_1 are write enable pins (dual port).

4. address_0(7:0), address_1(7:0),data_0(7:0) and

data_0(7:0) are input and output pins respectively,

both are 8 bits.

In this my paper I design synchronous FIFO using register file

by verilog code and simulate it, and parameterize the effects.

4.2 Rtl diagram of fifo using “register file”

Figure 3: RTL diagram of fifo using register file

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.16, February 2013

25

In fig 3 “sync_fifo_reg_file(synchronous fifo using register

file)” implies the top level module name of FIFO. A REG.

and FIFO, both are instantiated by this name. here

1. rd , wr are read enable and write enable.

2. Clk is clock.

3. Empty and full are flags for showing that FIFO is either full

and empty.

4. w_data and r_data are input and output ports respectively.

5. TEST BENCH SIMULATION

RESULTS
The test bench of this FIFO is shown below in box.

Figure (a): Verilog code of test bench

5.1 TB for write data

Figure 3: TB for write data

Figure 4 shows tb waveform of the write data. The data is

write in fifo memory. In this figure wdata=00000100 taking as

a example for write data in fifo memory.

5.2 TB for read data

Figure 4: TB for read data

Figure 5 shows the output waveform. Here the read data is

same as the write data in fifo memory. The time and user

constraints are same for initial process. But in this waveform

write data is read after some delay because of un-stability of

output. The output take some time to give the response against

write data in fifo memory. But we have a exact output from

fifo buffer. Here these fig. 4 and 5 shows test bench of write

and read data. Let assume we pass a 8 bit data “00000100”

passes from w_data, then after some delay (because of

unstability) the data read from the r_data, which is clear in

Test Bench. After that we concern on the flags that is empty

and full.

5.3 TB for flags

Figure 5: TB for flags

In fig. 6 shows that at the time of reading operation the,

EMPTY flag is “1”, so the FIFO memory is able to read input

data till empty flag is “0”, and FULL flag is “0” which mean

FIFO memory is not full, when read and write enable are both

“1” and reset signal falls to “0”.

So after simulation part there is comparison between FIFO

using RAM and REGISTER FILE.

5.4 COMPARISONS

There are different types of categories to compare the fifo

design like by clock domain, by hierarchy, by input and

outputs, and by resources type.

initial begin
 // Initialize Inputs

 clk = 0;
 reset = 1;

 rd = 0;

 wr = 0;
 wdata = 0;

 rd=1'b1;

 wr=1'b1;
 #10 reset=1'b0;

 #100 wdata=8'b00000000;
 #100 wdata=8'b00000001;

 #100 wdata=8'b00000010;

 #100 wdata=8'b00000100;
 #100 wdata=8'b00001000;

 #100 wdata=8'b00010000;

 #100 wdata=8'b00100000;
 #100 wdata=8'b01000000;

 #100 wdata=8'b10000000;

 #100 wdata=8'b11111111;
 #1500 $finish;

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.16, February 2013

26

5.4.1 By clock domain

Table 1. By clock domain

Components Synchronous-fifo

using “ram”

Synchronous-fifo

using “register

file”

Fan-Out 1916 19

Slice Fan-Out 1008 17

5.4.2 By hierarchy

Table 2. by Hierarchy

Components Synchronous-

fifo using

“ram”

Synchronous-fifo

using “register

file”

Fan-Out 1916 19

Slice Fan-Out 1008 17

5.4.3 By input and outputs

Table 3. By input and output

Components Synchronous-fifo

using “ram”

Synchronous-fifo

using “register

file”

Fan-out 1916 19

Slice fan-out 1008 17

5.4.4 By recourse type

Table 4. By resource type

On

chip

Synchronous-fifo

using “ram”

Synchronous-fifo using

“register file”

Us

ed

Availa

ble

Utiliat

ion

Us

ed

Avil

able

Utilizatio

n(%

Cloc

k

1 Na Na 1 Na Na

Logi

c

540

2

9312 54 37 9312 0

Sign

al

468

0

Na Na 56 Na Na

Inpu

t-

outp

ut

38 232 16 32 232 9

6. CONCLUSION

The paper has presented a fifo memory design for multiple

read and writes operations in a single clock domain [2], and

generating fifo full and empty conditions. The paper has

discussed the relevance of fifo in synchronization between

input and output data [1]. we have designed, simulated and

synthesized a memory using register file for minimize on-chip

area, and reduce cost of memory compare then random access

memory.

7. REFERENCES
[1] Clifford E. Cummings, “Synthesis and Scripting

Techniques for Designing Multi-Asynchronous Clock

Designs,” SNUG 2001 (Synopsys Users Group

Conference, San Jose, CA, 2001) User Papers, March

2001, Section MC1, 3rd paper..

[2] Dinesh Tyagi, former CAE Manager for Synopsys

DesignWare product, personal communication.

[3] Clifford E. Cummings and Don Mills, “Synchronous

Resets? Asynchronous Resets? I am so confused! How

will I everknow which to use?,” SNUG 2002 (Synopsys

Users Group Conference, San Jose, CA, 2002) User

Papers, March 2002,Section TB2, 1st paper.

[4] Clifford E. Cummings and Peter Alfke, “Simulation and

Synthesis Techniques for Asynchronous FIFO Design

with Asynchronous Pointer Comparisons,” SNUG 2002

(Synopsys Users Group Conference, San Jose, CA, 2002)

User Papers,March 2002, Section TB2, 3rd paper.

