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ABSTRACT 

Symbolic intervals which form temporal patterns are usually 

formulated through Allen’s interval relations that originate in 

temporal reasoning. But this representation is not advantages 

for knowledge discovery. The Hierarchical Time series 

Knowledge Representation (HTKR) is the hierarchical 

language which expresses the temporal aspects of coincidence 

and partial order, for interval patterns. We present mining 

procedural steps which are more efficient, effective and based 

on item set techniques. Pruning of the search space minimizes 

the mining result size considerably, thereby speeding up the 

procedural steps and easing the interpretations. When applied 

on the real data set, HTKR can provide the explanation of 

underlying temporal phenomena, but whereas the numerous 

Allen’s relation patterns only explains fragmented data. 
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Algorithms. 
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1. INTRODUCTION 
Temporal information is related to changes and the times of 

the changes [13].An important data format which discovers 

temporal knowledge is symbolic interval time series. Various 

methods used for converting numerical time series to 

symbolic interval time series are segmentation, discretization 

and clustering. Patterns extracted from symbolic interval data 

can explain the underlying temporal behavior. 

Allen’s interval relations [1] forms the main basis for the 

unsupervised pattern discovery in interval time series. 

Originally theses relations were developed in the temporal 

reasoning context, where the incomplete exact data and the 

temporal constraints are usually the inputs to the process. 

Typical problems include answering scenario queries which 

satisfy all the constraints. But in the context of data mining, 

incorrect and noisy interval data are inputted to search for 

understandable and meaningful patterns. Winarko [14] 

proposed an algorithm named ARMADA which is based on 

an efficient sequential pattern mining algorithm, MEMISP 

[15], to mine frequent temporal patterns. 

We think that Allen’s relations are not fit for interval time 

series pattern discovery due to their severe limitations. As an 

alternative we proposed the Hierarchical Time series 

Knowledge Representation (HTKR), the hierarchical language 

for creation of interval times series based temporal 

knowledge, which extends the Unification based Temporal 

Grammar (UTG) [9], [10]. We present efficient procedural 

steps for pattern mining expressed with HTKR using item set 

techniques.  

2. RELATED WORK AND 

MOTIVATION 
The temporal patterns from interval data are usually framed 

through using the 13 interval relations of Allen [1], such as 

before, after, starts, startedby, meets, metby, contains, during, 

overlaps, overlappedby, finishedby, finishes and equals. 

Variants of the Apriori algorithm usually perform the 

unsupervised rule mining with using Allen’s relations. The 

combination of two intervals or existing patterns along with a 

single relation, constructs the required interval pattern [3], [6]. 

All the pair wise interval relations contained within a pattern 

are listed through a representation [5]. Allen’s relations are 

not advantageous for pattern discovery from interval time 

series, as shown by the following examples. 

(i) Patterns extracted from the noisy interval data expressed 

through Allen’s interval relations lack robustness: 

Most of Allen’s relations require two or more interval end 

points to be equal. It creates patterns where a similar 

relationship between intervals is fragmented into different 

relations due to small disturbances in interval end points. 

Several almost equal intervals are shown in Figure 1. 

             X                               X                           X 

              Y                              Y                            Y 

(1) X During Y (2) X Overlaps Y (3) X Finishes Y 

Figure 1:  Different patterns which are fragments of same 

approximated relation almost equal. 

(ii) Patterns extracted and expressed with Allen’s interval 

relations show ambiguity: 

Various different situations can be visually and intuitively 

represented through Allen’s same relation. Different versions 

of overlaps relation are shown in Figure 2. 

      X                               X                              X 

                 Y                          Y                           Y 

(1) Negligible (2) Medium (3) Prominent 

Figure 2:  Different patterns of Allen’s overlaps relation. 

(iii) Patterns extracted and expressed with Allen’s interval 

relations are difficult to understand: 

The patterns represented through Allen’s relations do not 

follow the suggestions of Gricean maxims representation of 

knowledge discovery for humans [8]. For instance, the 

suggestion regarding maxim of quantity is violated. To avoid 

ambiguity due to the compact format, the list of all intervals’ 

pair wise relation patterns need to be expressed [5], which 

grows very quickly with the number of intervals. 
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Ultsch had proposed the UTG [9], [10], which is a 

hierarchical pattern language for the temporal knowledge 

discovery, and he had also implemented it [4]. Temporal 

abstraction is increased through each level of the hierarchy. 

Events and Sequences form the core element of the patterns. 

Almost simultaneous intervals are described by Events while 

the total orders of the events are described by Sequences. The 

UTG is comparatively more robust than Allen’s relations, but 

the later are more expressible [7],[17]. The UTG’s 

hierarchical structure offers new relevant feedback 

possibilities during the process of knowledge discovery and 

result analysis [10]. In order obtain a temporal description of 

the multivariate data, basic temporal abstractions (extracted 

from each variable in the previous step) are combined to form 

complex temporal patterns. For example, a domain expert 

may want to describe a pattern in a time series data such as: 

“an increase in variable X is followed by a decrease in 

variable Y”. This is the idea behind the temporal abstraction 

framework of Shahar [16]. These core ideas are extended in 

HTKR to achieve greater robustness and ability to express. 

3. REPRESENTING KNOWLEDGE IN 

TIME SERIES 
Temporal knowledge present in the interval data is expressed 

through the hierarchical language HTKR. Each level describes 

the duration, coincidence and partial order temporal aspects 

successively. 

Let Σ be a collection of finite set of symbols s. 

Definition 1. A symbolic time interval is a set consisting of {s, 

start, end} where s Є Σ, pair {start, end} is a time interval, 

start ≤ end, {start, end} Є T X T i.e. T2 and 

T = {1, 2 … n} and N ⊃ {1, 2 … n}. 

Definition 2. Time interval {start, end} ⊆ {start’, end’} if 

start’ ≤ start and end’ ≤ end and 

time interval {start, end} = {start’, end’} if start’ = start and 

end’ = end. 

Definition 3. A symbolic interval duration is denoted as 

duration ({start, end}) = end – start +1. 

Definition 4. Two time intervals {start, end}and {start’, end’ 

} overlap if {start, … end } ∩ {start’, … end’ } ≠ ∅. 

Tones basically represent duration in HTKR, which consists 

of a label, a symbol and a symbolic interval series. Chords are 

the simultaneously occurring tones, which represent 

coincidence. 

Definition 5. A chord pattern C describes a time interval 

where t chords coincide, for t > 0. 

Definition 6. Chord Ci describes a superset coincidence of 

tones from Cj, then Ci ⊃ Cj. 

Definition 7. The merged chord of Ci and Cj is denoted as Ci U 

Cj. 

Definition 8. The numbers of tones that coincide are |C|. 

Definition 9. The support of a chord Supportd(C) is the 

maximal observation intervals having minimum duration of d. 

Definition 10. The chord Ci is marginally closed w.r.t. a 

threshold tr (tr < 1) if no super chords exist with 

approximately same support. ∀Cj ⊃ Ci, [Support (Cj) / 

Support (Ci)] < 1 – tr. 

  

Phrases are formed by the collection of several chords 

connected through a partial order. 

Definition 11. A phrase pattern is a partial order of p chords 

(p > 1), starting with the first chord and ending with the last 

chord and no overlapping is allowed within the chords of a 

phrase. 

Definition 12. Phrase Pi describes partial order of the superset 

of the chords of Pj, then Pi ⊃ Pj, and the same partial order 

exists for all common chords. 

Definition 13. The support of a phrase Support (P) is the 

number of observations. 

                X                     X                 X                      X 

                      Y                                            Y 

                               Z                                                 Z 

 

        XY    XYZ      YZ   XZ              XY    YZ   XYZ    XZ 

  (1)   Phrase instance      (2)    Similar phrase instance 

Figure 3: Summarizing overlapping tones in chords 

                                        XYZ 

 

                  XY                                       XZ 

 

                                          YZ 

Figure 4: Partial order of chords within phrase. 

4. HIERARCHICAL TIME SERIES 

KNOWLEDGE MINING 
We discuss the procedural steps for mining the coincidence 

and the partial order from a given symbolic interval data.  

4.1 Coincidence mining 
A set of tones, forming the chords, act as input for the 

coincidence mining process. A chord is taken into 

consideration only when there is a coincidence of Sizemin 

different tones having a minimum duration of d. A chord is 

considered as frequent only if the total duration of all the 

intervals where it has been considered, is greater than the 

minimum support Supportmin. Thus the mining process 

involves selection of a subset from all the tones and 

comparison with all the super chords to find margin closed 

chords. Since it is similar to the mining of closed frequent 

item sets, we therefore follow the CHARM [12] algorithm. 

Algorithm 4.1 applies a depth first search method for finding 

the margin closed chords. It consists of repetitive recursive 

steps, involving a prefix chord Chordprefix and the set of super 

chords Superchords. The algorithm is initially started by 

taking an empty chord and all trivial frequent chords as 

anticipated extensions. All combinations of the super chords 

from Superchords extends the prefix chord Chordprefix. The 

initial super chord extension by Chordi is stored in a variable 

Chordi’. The minimum support factor filters the extensions 

along with another chord Chordj. The idea of support 

comparison between the super chord (Chordi’ U Chordj) and 

both the individual sub chords Chordi’ and Chordj forms the 

core calculation part of the algorithm. Its conditions are based 

on the generalized view of the four item set properties [12]. 

The addition of the current chord Chordi’ to the set of margin 
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 < 1 – threshold 

If                                                                  ≥1- threshold 

Else If                                                          ≥1- threshold 

and                                                           < 1- threshold 

Else If                                                         < 1- threshold 

and                                                           ≥ 1- threshold 

closed chords occurs, only if none of the previously found 

margin closed chords subsumes it. The recursion continues 

with the super chords Superchords’ of current chord Chordi’ 

until the maximum chord size is reached. The process stops 

when set of extensions Superchords becomes empty. 

CHARM algorithm [12] scales up linearly with the quantity of 

transactions, and this algorithm also follows that behavior. 

The minimum chord duration d has to be carefully chosen 

w.r.t. the application domain and should be long enough for 

the consideration of coincidence. The number of chords 

retrieved is directly controlled by the minimum support 

(Supportmin) and the margin closedness threshold (threshold). 

Thus the upper ranges of these parameters are provided and 

the algorithm tries to slowly squeeze these values, if the 

previous found results need refinement. 

Algorithm 4.1 Mining margin closed chords using DFS 

Input 

   The set of given tones Tones 

   The minimum duration of the chords d 

   The minimum support of the chords Upper_Supportmin  

            (only upper range is provided) 

   The minimum size of the chord Sizemin 

   The maximum size of the chord Sizemax 

   The margin closedness threshold Upper_threshold  

            (only upper range is provided) 

Output 

   The set of margin closed chords Return 

 

Algorithm 

1.  Supportmin = Upper_Supportmin  

     and threshold = Upper_threshold 

2.  Loop 

3.      Update Supportmin 

4.      Loop 

5.         Update threshold 

6.         Superchords = {tЄTones|Supportmin ≤ Support(t)} 

7.         Return =Extension (∅,Superchords,∅,Supportmin, threshold) 

8.         If Return is already refined then 

9.             Output Return and Stop 

10.       End If 

11.       Decrement threshold by 0.1 

12.    End Loop 

13.    Decrement Supportmin by 0.01 

14. End Loop 

Algorithm 

Extension (Chordprefix, Superchords, Supportmin, threshold) 

1.  Loop for each Chordi Є Superchords 

2.     Chordi’ = Concat (Chordprefix, Chordi) 

        Superchords’ = ∅ 

3. Loop for each Chordj Є Superchords and i < j 

4. If Supportd(Union(Chordi’,Chordj)) >= Supportmin  

5.         Supportd(Union(Chordi’, Chordj)) 

         Max(Supportd(Chordi’), Supportd(Chordj)) 

6.              Chordi’ = Union(Chordi’, Chordj) 

                 Superchords = Diff(Superchords, Chordj) 

7.              Supportd(Union(Chordi’, Chordj)) 

                       Supportd(Chordi’) 

                 Supportd(Union(Chordi’, Chordj)) 

                       Supportd(Chordj) 

8.               Chordi’ = Union(Chordi’, Chordj) 

9.              Supportd(Union(Chordi’, Chordj)) 

                       Supportd(Chordi’) 

               Supportd(Union(Chordi’, Chordj)) 

                       Supportd(Chordj) 

10.      Superchords’ =Union(Superchords’, Union(Chordi’, Chordj)) 

               Superchords = Diff (Superchords, Chordj) 

11.   Else 
           Superchords’ = Union(Superchords’, Union(Chordi’, Chordj)) 

12.   End If 

13.  End If 

14. End Loop 

15, If | Chordi’ | ≥ Supportmin  

          and ∀Chord Є Return with Chordi’ ⊆ Chord,  

          Supportd(Chord) 

          Supportd(Chordi’) 

16.    Return = Union(Return, Chordi’) 

17.  End If 

18. If | Chordi’ | < Supportmax then 

19. Return = Extension(Chordi’, Superchords’, Supportmin, threshold) 

20. End If 

21. End Loop. 

 

4.2 Partial order mining 
Phrases describe the partial order of time intervals. The steps 

for margin closed phrases mining are similar to the steps for 

closed partial order mining [2].  

Algorithm 4.2 tries to find margin closed phrases. The item 

set interval series are first formed from the interval sequences. 

For each interval having minimum duration dmin where no 

changes of chords occur, it creates one item set, which 

contains all currently active chords’ symbols. Shorter sub 

series are formed by creating a sequence of intervals from a 

single item set interval series. Next the standard closed 

sequence mining algorithm CLOSPAN [11], can be used with 

a restriction which excludes overlapping chords. This results 

in obtaining pairs (CSpattern, TWindow) i.e. closed sequential 

pattern CSpattern in transaction window TWindow. In the 

margin closed partial orders’ mining the pairs, formed consist 

of set of CSpattern and the transaction list where they all 

occur, are needed to be maximal. Partial order is then 

converted from each group of closed sequences. Again the 

algorithm is controlled by the minimum duration (dmin) and 

the margin closedness threshold (threshold). Thus the upper 

ranges of these parameters are again provided and the 

algorithm tries to slowly squeeze these values, if the previous 

found results need refinement. The required conditions for the 

conversion of the set of sequences into partial order form the 

last step of the algorithm [2], which ultimately constructs the 

final phrases representation. 

Algorithm 4.2 Finding margin closed phrases 

Input 
   A set of chords Chords 

   Chords’ minimum duration in phrase Upper_dmin  

              (only upper range is provided) 

   The minimum support of the phrase Supportmin  

             (default value is 1) 

   The minimum size length in phrase Sizemin 

   The margin closedness threshold Upper_threshold  

             (only upper range is provided) 

   Transaction Window 

                       Window = {(CSpatterni, ei) | i=1… w} 

Output 

   A set of phrases 

Algorithm 

1.  dmin = Upper_dmin and threshold = Upper_threshold 

2.  Loop 

3.       Update dmin 

4.       Loop 

5.           Update threshold 

6.           Chords conversion to item set interval series 

              by  using dmin 
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7.           Find pairs (CSpattern, TWindow), consisting 

              of closed sequential patterns CSpattern  

              occurring within transaction window TWindow 

              ⊆ Window, using Supportmin and Sizemin 

8.           Creation of margin closed maximal pairs  

              (CSpatternmax, TWindow), 

               CSpatternmax  is set of all closed sequential  

               patterns occurring in all transaction windows  

               TWindow ⊆ Window, using Supportmin and  

               threshold 

9.           If margin closed maximal pairs are already  

               refined then 

10.                Building of partial order chords for each  

                     set CSpatternmax and Stop 

11.          End If 

12.          Decrement threshold by 0.1 

13.       End Loop 

14.       Reduce dmin by half 

15. End Loop 

 

5. DISCUSSION 
All algorithms for mining Allen’s relations are based on the 

A-priori rule. The patterns are formed following a breadth 

first technique [5]. The breadth first technique is far inferior to 

the depth first technique, on the basis of performance 

measure. The margin closedness concept helps to reduce the 

complexity by pruning the search space. The coarse results 

obtained can be further refined, if required, by further 

continuing that loop. Phrases and sequential patterns have a 

great degree of structural similarities, involving highly 

redundant data. So this conversion to item set intervals 

reduces the redundancy to a great extent. 

6. SUMMARY 
We presented the unsupervised mining algorithms for HTKR, 

a temporal pattern language, which were quite efficient, 

effective and tailored from the item set and sequential pattern 

mining. The number of patterns produced was greatly reduced 

through the pruning of the search space, with the help of 

margin closedness which ultimately made the mining process 

faster. The mining algorithm was further enhanced by 

embedding the extra features of result refinements. Mining the 

patterns of HTKR was found to have deeper meaning, greater 

efficiency and higher effectiveness then Allen’s relations. 
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