
International Journal of Computer Applications (0975 – 8887)  

Volume 61– No.9, January 2013 

23 

Tasks Scheduling on Parallel Heterogeneous Multi-

Processor Systems using Genetic Algorithm 

 
Mohammad Sadeq Garshasbi 

Department of Computer Engineering, Germi 
branch, Islamic Azad University, Germi, Iran. 

 

Mehdi Effatparvar 
ECE Department, Ardabil Branch, Islamic Azad 

University, Ardabil, Iran 

 

ABSTRACT 

With the increasing use of computers in research 

contributions, added need for faster processing has become an 

essential necessity. Parallel Processing refers to the concept of 

running tasks that can be run simultaneously on several 

processors. There are conditions that tasks have deadlines for 

scheduling. Therefore, the tasks should be scheduled before 

deadlines. May number of tasks before scheduling reached 

their deadline, Therefore, these tasks lost. These conditions 

are unavoidable. Thus, parallel multi-processor system tasks 

should be scheduled in a way, minimizing lost tasks. On the 

other hand, achieving good response times is necessary. this is 

an NP-Complete problem. In this article, we introduce a 

method based on genetic algorithms for scheduling tasks on 

parallel heterogeneous multi-processor systems for tasks with 

deadlines. The results of the simulations indicate reduced 

number of lost tasks in comparison with the LPT and SPT 

algorithms. Moreover, the response time of the proposed 

method due to its number of processing tasks, is appropriate, 

in comparison with the algorithm LPT and SPT. 

General Terms 

Scheduling, Parallel systems 

Keywords 

Parallel Heterogeneous Multi-processor Systems, Genetic 

Algorithm, Deadline, Lost Tasks. 

1. INTRODUCTION 
In multiple processing, multiple processors work together to 

implement a program. The major application of these systems 

is for problem solving in modeling and engineering sciences 

(e.g. Applied Physics, Nuclear Physics, Geology and 

Seismology, Mechanical Engineering, Electrical Engineering, 

Mathematics etc.). Today, not only scientific problems 

solving requires parallel processing, but also some 

commercial applications require fast computers. Many of 

these applications require the processing of large volumes of 

complex information. Some of these  programs include huge 

databases, data mining operations, oil exploration, medical 

imaging and diagnosis etc [2,3,7]. 

In parallel heterogeneous multi-processor systems, there are 

conditions that tasks have deadlines for scheduling. Therefore, 

the tasks should be scheduled before the deadlines. May 

number of tasks before scheduling reached their deadline, 

Therefore, these tasks lost. These conditions are unavoidable. 

Therefore, there should be policies to reduce the number of  

lost tasks. In addition, obtaining an appropriate response time 

is a necessity. The allocation sequence of tasks in a 

heterogeneous multi-processor system has direct impact on 

the number of lost tasks and response times. Therefore, we 

use genetic algorithms to determine the task’s optimal 

sequence to allocate to processors. 

A Genetic Algorithm (GA) approach is proposed to handle the 

problem of parallel system task scheduling. A GA  starts with 

generation of an individual, which is encoded as strings 

known as chromosomes. A chromosome corresponds to a 

solution to the problem. A fitness function is used to evaluate 

the fitness of each individual. In general, GAs consist of 

selection, crossover and mutation operations based on some 

key parameters such as fitness function, crossover probability, 

and mutation probability [1]. 

Results of the simulations indicate reduction in the number of 

lost tasks in comparison with LPT and SPT the algorithms. In 

addition, the response time of the proposed method is 

appropriate due to the number of processing tasks in 

comparison with the LPT and SPT algorithms. 

This study is divided into the following sections: In section 2 

an overview of the problem is given along with brief 

description of the solution methodology. Section 3 presents an 

improved genetic algorithm in detailed. The proposed method 

is described in Section 4. Results of the study are analyzed in 

Section 5. Finally, Section 6 presents the conclusions. 

2. Problem Definition 
Scheduling can be deterministic and non-deterministic: 

deterministic means that all information about the tasks are 

known. This information includes execution time and deadline 

for each task. Non-deterministic means that only the 

probability information of tasks are known. Here, we focus on 

a deterministic schedule [4,8,9]. 

Parallel multi-processor systems can be homogeneous or 

heterogeneous: Heterogeneous means that the processors have 

different computing speeds and capacities. Homogeneous 

means that all processors have equal computing speeds and 

capacity [4,5,6,13]. 

Tasks can be independent or dependent. An independent task 

means that the tasks, for running, do not need to run other 

tasks and these tasks can be executed at any time without 

knowledge of the information of other tasks. On the other 

hand, a dependent task means that each task may require the 

information of other tasks for execution.  for run a task should 

be executed other tasks. In addition to dependent and 

independent tasks, each task may constitute a deadline. If the 

task is scheduled before the deadline, as a result the task will 

be executed; otherwise the task lost[12,13]. 

In this study, a study has been done regarding the task 

scheduling problem as a deterministic on the heterogeneous 

multiprocessor environment and independent tasks. 

The multiprocessor computing environment consists of a set 

of m heterogeneous processor: 

P = {pi: i =1, 2, 3…m}                                                       (1) 



International Journal of Computer Applications (0975 – 8887)  

Volume 61– No.9, January 2013 

24 

They are fully connected with each other via identical links. 

Fig 1 shows a fully connected eight parallel system with 

identical link[4,11]. 

 
Fig 1: A fully connected parallel processor[4] 

P indicates the numbers of heterogeneous processors that can 

be to m of exist heterogeneous processors. Processors are 

heterogeneous, therefore in heterogeneous environments, 

every processor works in different speeds and processing 

capabilities. Assume processor p1 is faster than p2, p3 and so 

on. Likewise, processor p2 is faster than p3, p4 and so on. 

(i.e., the order of speed and processing capabilities can be 

expressed as p1>p2> p3 > p4 > p5 > p6 > p7>p8) [4,10]. 

According to the above description, table 1 shows an example 

of this problem. There are five tasks and two heterogeneous 

processors and each of the tasks have deadlines. Because 

processors are heterogeneous, each task has different run 

times on different processors. Task 2 takes 2 time units to 

complete execution on processor 1, and 4 time units to 

complete execution on processor 2. This run time has been 

calculated based on the size of the tasks by processing on 

different processors. Each of the tasks has a deadline, and 

must be executed before the deadline. 

Table 1: Shows a tasks execution matrix and Deadline on 

different processors 

 

According to the example, assume tasks T3, T5, T4, T2, T1 be 

scheduled, respectively. Hence, scheduling is according  to 

Fig 2. T3 first enters processor 1. According to table 1, T1 run 

time in processor 1 is equal to 3. Then, T5 enters processor 2. 

According to table 1, T5 run time in processor 2 is equal to 4, 

and on. The obtained result in this schedule is one lost task, 

and response time is 10. 

 
Fig 2 

Assume T1, T3, T5, T4, T2 tasks be scheduled, respectively. 

Therefore scheduling is according to Fig 3. At first, T1 enters 

processor 1. According to table 1, T1 run time in processor 1 

is equal to 4. Then, T3 enters processor 2, according to table 

1, T3 run time in processor 2 is equal to 5. Therefore, the 

deadlines of tasks T5, T4 and T2 have passed. The obtained 

result in this schedule is three lost tasks, and response time is 5. 

 

 
Fig 3 

 

The first scheduling is optimized, compared to the second 

scheduling the reason is that the number of lost tasks in the 

first scheduling is low and the response time due to number of 

processing tasks is appropriate. 

Some tasks are without deadlines; therefore, we divide the 

tasks into two groups: tasks with deadlines, and tasks without 

deadlines. First, we scheduled the tasks with deadlines using 

Genetic Algorithm, and then scheduled tasks without 

deadlines using Genetic Algorithm. 

How to respectively Entry (scheduling) of tasks to processors 

that minimizes the total execution time and also minimize 

number of lost tasks is NP-Complete problem. Therefore, in 

this article, we use GA for minimizing total execution time 

and the number of lost tasks in parallel multi-processor 

systems. 

3. Genetic Algorithms 
In the computer science field of artificial intelligence, a 

genetic algorithm (GA) is a search heuristic that mimics the 

process of natural evolution. This heuristic is routinely used to 

generate useful solutions to optimization and search problems. 

Genetic algorithms belong to the larger class of evolutionary 

algorithms (EA), which generate solutions to optimization 

problems using techniques inspired by natural evolution, such 

as inheritance, mutation, selection, and crossover[14]. 

In a genetic algorithm, a population of strings (called 

chromosomes or the genotype of the genome), which encode 

candidate solutions (called individuals, creatures, or 

phenotypes) to an optimization problem, evolves toward 

better solutions. Traditionally, solutions are represented in 

binary as strings of 0s and 1s, but other encodings are also 

possible. The evolution usually starts from a population of 

randomly generated individuals and happens in generations. 

In each generation, the fitness of every individual in the 

population is evaluated, multiple individuals are stochastically 

selected from the current population (based on their fitness), 

and modified (recombined and possibly randomly mutated) to 

form a new population. The new population is then used in the 

next iteration of the algorithm. Commonly, the algorithm 

terminates when either a maximum number of generations has 

been produced, or a satisfactory fitness level has been reached 

for the population. If the algorithm has terminated due to a 

maximum number of generations, a satisfactory solution may 

or may not have been reached. 

Genetic algorithms find application in bioinformatics, 

phylogenetics, computational science, engineering, 

economics, chemistry, manufacturing, mathematics, physics 

and other fields. 

The fitness function is defined over the genetic representation 

and measures the quality of the represented solution. The 



International Journal of Computer Applications (0975 – 8887)  

Volume 61– No.9, January 2013 

25 

fitness function is always problem dependent. For instance, in 

the knapsack problem one wants to maximize the total value 

of objects that can be put in a knapsack of some fixed 

capacity. A representation of a solution might be an array of 

bits, where each bit represents a different object, and the value 

of the bit (0 or 1) represents whether or not the object is in the 

knapsack. Not every such representation is valid, as the size of 

objects may exceed the capacity of the knapsack. The fitness 

of the solution is the sum of values of all objects in the 

knapsack if the representation is valid, or 0 otherwise. In some 

problems, it is hard or even impossible to define the fitness 

expression; in these cases, interactive genetic algorithms are 

used. 

Once the genetic representation and the fitness function are 

defined, a GA proceeds to initialize a population of solutions 

(usually randomly) and then to improve it through repetitive 

application of the mutation, crossover, inversion and selection 

operators. 

In genetic algorithms, crossover is a genetic operator used to 

vary the programming of a chromosome or chromosomes 

from one generation to the next. It is analogous to 

reproduction and biological crossover, upon which genetic 

algorithms are based. Cross over is a process of taking more 

than one parent solutions and producing a child solution from 

them. There are methods for selection of the chromosomes. 

In genetic algorithms, mutation is a genetic operator used to 

maintain genetic diversity from one generation of a population 

of algorithm chromosomes to the next. It is analogous to 

biological mutation. Mutation alters one or more gene values 

in a chromosome from its initial state. In mutation, the 

solution may change entirely from the previous solution. 

Hence GA can come to better solution by using mutation. 

Mutation occurs during evolution according to a user-

definable mutation probability. This probability should be set 

low. If it is set too high, the search will turn into a primitive 

random search[14]. GA using operator selection, combination 

and mutation provide the optimal solution that is not possible 

with other methods. 

4. Tasks scheduling using genetic algorithms 

in parallel multi-processor systems 

4.1 Chromosomes and Encoding 
The purpose of this study is to find a sequence of tasks so that 

the number of lost tasks is minimum, and the response time 

compared to number of processing tasks is appropriate. Thus, 

each chromosome is sequence variety of tasks. Each task is 

considered as a gene. Therefore, the best way to encode 

chromosomes is permutations encoding. To explain how 

chromosomes are encoded, consider that there are 8 tasks, Ti 

represents the tasks. Fig 4 shows two encoded chromosomes. 

 

Fig 4: two of chromosome encoded 

Therefore, size of chromosomes in the first step is equal to the 

number of tasks with deadlines, and size of chromosomes in 

the second step is equal to the number of tasks without 

deadlines. The first step means task scheduling with 

deadlines, and second step means task scheduling without 

deadlines. 

4.2 Generate the Initial Population 
To start, GA should generate an initial random population for 

entry into the first generation. For this, a random generator 

function of chromosomes must be employed[4]. In order to 

create an initial population, we need Information on the 

number of processors, number of tasks, task deadlines, and the 

size of the population. Random chromosomes generate the 

initial population. 

4.3 Fitness Function 
The important part of GA is the fitness function. The fitness 

function is defined over the genetic representation, and 

measures quality of the chromosomes. The fitness function is 

always dependent on the problem. In this article, the fitness 

function separates evaluation into two parts: lost tasks, and 

total response time. The fitness function in the first step is 

based on the number of lost tasks and total response time. the 

fitness function in the second step is only based on total 

response time. 

The fitness function is calculated according to the (2) 

equation: 

F = (α × M) + ((1 – α) × TFT)                                             (2)  

Where M is the number of lost tasks, TFT is response time 

obtained from the chromosome, and α is a value between zero 

and one (α = [0,1]). If α = 1, then the evaluation is based on 

the number of lost tasks. If α = 0, then the evaluation is based 

on total response time. α can have a value between 1 and 0, 

this value determines importance of the total response time, 

and importance of the number of lost tasks. Lesser value of 

the above equation corresponds to a better fitness value for the 

chromosome. 

4.4 Selection Operator 
The design of the fitness function is the basic of selection 

operation, so how to design the fitness function will directly 

affect the performance of genetic algorithm. GAs uses 

selection operator to select the superior and eliminate the 

inferior. The individual are selected according to their fitness 

value. Once fitness values have been evaluated for all 

chromosomes, we can select good chromosomes through 

rotating roulette wheel strategy. This operator generate next 

generationby selecting best chromosomes from parents and 

offspring[4]. 

4.5 Crossover Operator 
Crossover operator randomly selects two parent chromosomes 

(chromosomes with higher values have more chance to be 

selected) and randomly chooses their crossover points, and 

mates them to produce two child (offspring) chromosomes[4]. 

We consider one point crossover in here, In one point 

crossover, the segments to the right of the crossover points are 

exchanged to form two offspring as shown in Fig. 5. 

 

Fig 5: One point crossover 



International Journal of Computer Applications (0975 – 8887)  

Volume 61– No.9, January 2013 

26 

4.6 Mutation Operator 
A mutation operation works by randomly selecting two tasks 

and swapping them. Firstly, it randomly selects a processor, 

and then randomly selects a task on that processor[4]. This 

task is the first task of the pair to be swapped. Secondly, it 

randomly selects a second processor (it may be the same as 

the first), and randomly selects a task. If the two selected tasks 

are the same task the search continues on. If the two tasks are 

different then they are swapped over (provided that the 

precedence relations must satisfy). Fig 6. 

 
Fig 6: Mutation operator 

5. Evaluation of Simulation Results 
In this section, we present and discuss the experimental results 

of the proposed scheme. All simulations were performed 

using MATLAB software. We evaluated the performance of 

our proposed scheme in comparison with LPT (Largest 

Processing Time) and SPT (Shortest Processing Time) 

algorithms in a Parallel multi-processor system. The 

simulation results showed two instances: when the numbers of 

tasks are more, and when the numbers of tasks are less. 

The parameters of the considered GA are as follows: 

Number of generations = 40 

Crossover probability= 50%  

Mutation probability = 20% 

Chromosomes that enter the next generation unchanged = 30% 

Number of GA iterations= 200 

α = 0 

When the number of tasks is 100 (60 tasks have deadlines and 

40 tasks are without deadline). Fig 7 shows the number of lost 

tasks by applying LPT, SPT and genetic algorithms for task 

scheduling on parallel multi-processor systems in these 

conditions(tasks=100). The vertical axis represents the 

number of lost tasks, and the horizontal axis represents the 

number of processors. Fig 8 shows the number of lost tasks 

when the number of tasks is 1000 (600 tasks have deadlines 

and 400 tasks are without deadline). Fig 9 and 10 show the 

total response time when the number of tasks is 100 and 1000, 

respectively. 

Our approach in addition to reducing the number of lost tasks 

provides good total response time compared to the number of 

processed tasks. Since the number of lost tasks is fewer in 

GA, therefore, the number of tasks to be processed is more, 

and the total response time increases. However, the increase 

in total response time is not significant. 

Obtained results in large and small scales indicate that our 

proposed method can provide similar results in different 

scales, and proves the robustness of the proposed method in 

different scales. 

Fig 7: lost tasks when the number of tasks is 100. 

Fig 8: lost tasks when the number of tasks is 1000. 

 
Fig 9: total response time, when the number of tasks is 100 

 

1 2 3 4 5 6 7 8
20

25

30

35

40

45

50

55

60

65

Processor

L
o
s
t 

T
a
s
k
s

 

 

GA

LPT

SPT

1 2 3 4 5 6 7 8
300

350

400

450

500

550

600

Processor

L
o
s
t 

T
a
s
k
s

 

 

GA

LPT

SPT

1 2 3 4 5 6 7 8

100

200

300

400

500

600

700

800

900

1000

Processor

T
im

e

 

 

GA

LPT

SPT



International Journal of Computer Applications (0975 – 8887)  

Volume 61– No.9, January 2013 

27 

 Fig 10: total response time when the number of tasks is 1000. 

6. Conclusion 
In this study, we proposed the Genetic Algorithm (GA) for 

tasks scheduling in heterogeneous parallel multiprocessor 

systems that number of tasks have deadlines, and number of 

tasks are without deadlines. In our approach, at first we 

scheduled tasks with deadlines, and then tasks scheduling 

without deadlines. The proposed method found a better 

solution for assigning tasks to the heterogeneous parallel 

multiprocessor system. This method reduces the number of 

lost tasks and provides appropriate total response time 

compared to the number of processed tasks. The method 

proposed in this article was compared with SPT and LPT 

algorithms. The results of simulations indicate that our 

method is better compared with the LPT and SPT algorithms. 

In addition, the obtained results are based on a limited number 

of reproduction and genetic simple operators.  Certainly, gain 

the better results using of efficiently operators. 

7. REFERENCES 
[1] Mitchell, Melanie, "An Introduction to Genetic 

Algorithm", Published Bu MIT Press 1996.  

[2] Ananth Grama, Georage Karypis, Anshul Gupta, Vipin 

Kumar, "Introduction to parallel computing", Published 

by Pearson Education, 2009.  

[3] Tran, Van Hoai, "Task Scheduling for Parallel Systems ", 

Faculty of Computer Science and Engineering HCMC 

University of Technology, 2009-2010. 

[4] Jasbir, Gurvinder, "Improved Task Scheduling on 

Parallel System using Genetic Algorithm", International 

Journal of Computer Applications (0975 – 8887) Volume 

39– No.17, February 2012. 

[5] Albert Y. Zomaya, Senior, Chris Ward and Ben Macey, 

"Genetic Scheduling for Parallel Processor Systems: 

Comparative Studies and Performance Issues", IEEE 

TRANSACTIONS ON PARALLEL AND 

DISTRIBUTED SYSTEMS, VOL. 10, NO. 8, AUGUST 

1999. 

[6] Kamaljit Kaur, Amit Chhabra and Gurvinder Singh, " 

Modified Genetic Algorithm for Task Scheduling in 

Homogeneous Parallel System Using Heuristics", 

International Journal of Soft Computing 5 (2):42-51, 

2010. 

[7] Hadi Shahamfar and Sohrab Khanmohamadi, " A new 

Genetic Algorithm base on Neighborhood Search and 

Tabu List (GTNS) for Task Scheduling in 

Multiprocessing", International Journal of Soft 

Computing 3 (3):254-259, 2008. 

[8] Probir Roy, Md. Mejbah Ul Alam and Nishita Das, " 

HEURISTIC BASED TASK SCHEDULING IN 

MULTIPROCESSOR SYSTEMS WITH GENETIC 

ALGORITHM BY CHOOSING THE ELIGIBLE 

PROCESSOR", International Journal of Distributed and 

Parallel Systems (IJDPS) Vol.3, No.4, July 2012. 

[9] Amit Bansal and Ravreet Kaur, "Task Graph Scheduling 

on Multiprocessor System using Genetic Algorithm", 

International Journal of Engineering Research & 

Technology (IJERT), ISSN: 2278-0181, Vol. 1 Issue 5, 

July – 2012. 

[10] Edwin S.H. Hou, Nirwan Ansari and Hong Ren, " A 

Genetic Algorithm for Multiprocessor Scheduling", IEEE 

TRANSZCTIONS ON PARALLEL AND 

DISTRIBUTED SYSTEM, VOL, 5, NO, 2 , 

FEBRUARY 1994. 

[11] Rakesh, Rajiv, Sanjeev,  Ashwani, Genetic Algorithm 

approach to Operating system process scheduling 

problem,  International Journal of Engineering Science 

and Technology Vol. 2(9), 2010, 4247-4252. 

[12] Preeti, Vaishali, Genetic algorithm Approach for Optimal 

CPU Scheduling, IJCST Vol. 2, Iss ue 2, June 2011. 

[13] Yi-Wen Zhong; Jian-Gang Yang, "A genetic algorithm 

for tasks scheduling in parallel multiprocessor systems", 

IEEE Machine Learning and Cybernetics, 2003 

International Conference on, 2-5 Nov. 2003, 1785 - 1790 

Vol.3. 

[14] http://en.wikipedia.org/wiki/Genetic_algorithm/ 

 

 

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Processor

T
im

e

 

 

GA

LPT

SPT


