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ABSTRACT 

Over a number of years, pH control of neutralization process 

is recognized as a benchmark for modeling and control of 

nonlinear processes. This paper first describes dynamic 

modeling of pH neutralization process. Thereafter fuzzy logic 

based pH control scheme for neutralization process is 

developed. Further, a two-dimensional (2-D) lookup table is 

generated based on defuzzification mechanism of fuzzy 

inference system (FIS). Finally, using this lookup table, a 

neural network control for pH neutralization process is 

developed. Performances of fuzzy logic based control and 

lookup table based neural network control for servo and 

regulatory operations are compared based on integral square 

error (ISE) and integral absolute error (IAE) criterions. 

Results indicate that lookup table based neural network 

control performs better than fuzzy logic based control. 

General Terms 

Nonlinear process control, fuzzy logic control, neural network 

control. 

Keywords 
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1. INTRODUCTION 
Control of pH plays a pivotal role in many modern industrial 

applications such as boiler feedwater treatment in thermal 

power plant, wastewater treatment in paper and pulp industry, 

biopharmaceutical manufacturing, and chemical processing. 

However, due to high nonlinearity and time-varying 

parameters, control of pH is difficult and demanding. Further, 

modern process industries require more accurate, robust and 

flexible control systems for efficient and reliable operations. 

To meet these stringent demands, intelligent control strategies 

are increasingly being employed in modern process industries.  

Development of the first-principle based dynamic modeling of 

pH neutralization process involves material balance on 

selective ions, equilibrium constants and electroneutrality 

equation [1]. The associated model has been used by 

researchers as a platform for many subsequent investigations 

and forms the basis to introduce new and improved forms of 

dynamic modeling and pH control of neutralization process 

using the concept of reaction invariant and strong acid 

equivalent [2], [3]. Many different and practical approaches 

for pH control based on feedforward and gain scheduling 

techniques have also been proposed in the literature [4], [5], 

[6], [7].  

The term "fuzzy logic" gives an impression of vague logic. In 

reality, the term "fuzzy logic" refers to the fact that that the 

logic involved can deal with lexical definition of inputs, in 

contrast to binary logic which accepts only "true" or "false". 

Therefore, the term "fuzzy" in fuzzy logic applies to the 

imprecision in the data and not in the logic [8]. Fuzzy logic 

based intelligent control can be described as a control 

approach that is evolved based on experience and intuitive 

understanding of process and is used to synthesize linguistic 

control rules of a skilled operator. Since its origination, many 

people from both academic and industrial communities have 

devoted considerable effort for development of theoretical 

research and application techniques on fuzzy logic [9], [10], 

[11]. Literature review shows that application of fuzzy logic 

to conventional control techniques such as PID control, 

sliding mode control, and adaptive control, results in 

improved performance for the hybrid controller over their 

conventional counterparts [12], [13], [14]. 

A neural network can be considered as a computer program 

that emulates the human brain and is designed to learn by 

example and past experience. In past few decades, neural 

networks based intelligent control techniques have received 

great attention and undergone substantial development. 

Because of its ability to handle nonlinearities, neural network 

based model-free control techniques have provided promising 

solutions for many nonlinear problems, especially in the field 

of nonlinear chemical processes [15]. Finally, integration of 

expert knowledge from fuzzy logic and adaptive learning 

capabilities of neural network results in neuro-fuzzy control. 

It has been recognized that the neuro-fuzzy control 

techniques, such as adaptive network fuzzy inference system 

(ANFIS), provides better control strategy [16].   

2. DYNAMIC pH PROCESS MODEL  
The pH neutralization process takes place in continuous 

stirred tank reactor (CSTR) with perfect mixing and constant 

maximum volume. As shown in Fig. 1, the CSTR has two 

influent streams: the hydrochloric acid as titration stream 

(feed A) and the sodium hydroxide as process stream (feed 

B), and one outlet stream: the effluent stream. The peristaltic 

pumps A and B regulate the flow of feed A and feed B 

respectively. The flow characteristics of peristaltic pumps A 

and B are identical.  

The dynamic model of pH neutralization process involves 

material balances on selective ions, equilibrium relationship, 

and electroneutrality equation. Based on principle of material 

balances the process mixing dynamics may be described as 

follows: 

           
   

  
                    (1)                     

           
   

  
                    (2) 

where   is the maximum volume of the CSTR (1.9 L);       

are the concentration (0.05 mol/L) and flow rate (0 to 6.23 
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mL/s) of titration stream A;       are the concentration (0.05 

mol/L) and flow rate (0 to 6.23 mL/s) of process stream B; 

      is the flow rate of effluent stream;    is the 

concentration of acid component (chloride ion,    ) in the 

effluent stream;    is the concentration of base component 

(sodium ion,    ) in the effluent stream. 

The equilibrium relationship for water is given as  

                           (3)  

where    is the dissociation constant of water (10-14).  

From the electroneutrality condition, we have 

                                     (4) 

All of the     comes from the     and all of the     comes 

from the     . Using (3) and (4), we have 

                            
         (5) 

From the definition of             
  , the pH titration 

curve for a strong acid-strong base is given by 

                      
 

 
   

  

 
       (6) 

where                (7) 

 

Fig. 1.  pH Neutralization process 

3. DESIGN OF FUZZY CONTROLLER 
The fuzzy logic based controller for pH neutralization process 

is based on Mamdani FIS, most commonly used fuzzy 

methodology [17], [18]. It consists of an input stage known as 

fuzzifier, a processing stage known as fuzzy rule evaluator, 

and an output stage known as defuzzifier. The fuzzifier stage 

first determines the degree (a number between 0 and 1) to 

which each input belong to the appropriate fuzzy sets via 

membership functions. If the antecedent or premise (the IF-

part of the rule) of a given rule has more than one part, the 

fuzzy operator is applied to obtain one number that represents 

the result of the antecedent for that rule. The processing stage 

first applies each rule's weight (a number between 0 and 1) to 

the number given by corresponding antecedent. The 

implication method is then applied on consequent or 

conclusion (the THEN-part of the rule), a fuzzy set 

represented by a membership function, of each rule. During 

implication process, each individual consequent is reshaped 

using the single number associated with the corresponding 

antecedent. Finally, using aggregation process, the truncated 

output functions are combined into a single fuzzy set. The 

defuzzifier stage takes the aggregate output fuzzy set as input 

and gives a single number as defuzzified output. The 

Mamdani FIS used here assumes AND method for fuzzy 

operator, unity weight for every rule, minimum method for 

implication process, maximum method for aggregation 

process, and centroid method for defuzzification process.  

The input variables used for the fuzzy logic based controllers 

are error (e) i.e. the difference between the desired (pHSP) and 

measured (pH) values of control variable pH, and change in 

error (ce) i.e. the difference between the error at the present 

and previous instants. The output variable used for the fuzzy 

logic based controller is the change in output (co) i.e. the 

change in flow rate of feed A. The membership functions for 

the input and output variables e, ce, and co are shown in Fig. 

2, Fig. 3, and Fig. 4 respectively. The rule base for the input 

and output variables are shown in Table I. 

 

Fig. 2.  Membership functions for error (e) 

 

Fig. 3.  Membership functions for change in error (ce) 

 

Fig. 4.  Membership functions for change in output (co) 
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Table I. Rule base for fuzzy logic control 

                                   ce 

NL NM NS ZE PS PM PL 

 

 

 

e 

NL NL NL NL NL NM NS ZE 

MN NL NL NL NM NS ZE PS 

NS NL NL NM NS ZE PS PM 

ZE NL NM NS ZE PS PM PL 

PS NM NS ZE PS PM PL PL 

PM NS ZE PS PM PL PL PL 

PL ZE PS PM PL PL PL PL 

NL = Negative Large, NM = Negative Medium, NS = 

Negative Small, ZE = Zero, PS = Positive Small, PM = 

Positive Medium, PL = Positive Large. 

4. DESIGN OF LOOKUP TABLE BASED 

NEURAL CONTROLLER 
The design of neural network controller for pH neutralization 

process is carried out using a 2-D lookup table based on 

previously defined FIS [18], [19]. The 9×9 lookup table is 

generated by varying the input variables 'e', from -4 to 4 in 

step of 1, and 'ce', from -0.5 to 0.5 in step of 0.125, and 

computing the fuzzy logic output variable 'co' using centroid 

method, as shown in Table II. The neural network utilizes 

feedforward topology for its two layer architecture and back-

propagation learning algorithm for its training. The number of 

neurons in input, hidden, and output layers are 2, 3, and 1 

respectively.  The activation function for both hidden as well 

as output neurons is "purelin". For the neural network, the 

training function is "traingdx", and the learning function is 

"learngdm". Finally, mean square error (MSE) is chosen as 

the performance function for the neural network. The 2-D 

lookup table provides a set of 81 input and target data. Using 

this data set, the neural network is being trained. The neural 

network training parameters are: 5000 as the maximum 

number of epochs, 10-12 as the performance goal, 10-10 as the 

minimum performance gradient, 0.5 as the learning rate, and 

0.9 as the momentum constant. For the neural network, the 

training performance of 9.82×10-13 is obtained in 236 epochs, 

and the regression value is 0.91, as shown in Fig. 5 and Fig. 6 

respectively. 

 

Fig. 5. Best training performance plot for the neural 

network 

 

Fig. 6. Linear regression plot for the neural network 

5. RESULTS AND DISCUSSION 
The block diagram schematic of "intelligent" pH control of 

neutralization process is shown in Fig. 7. The "intelligent" 

controller block in the schematic diagram denotes either fuzzy 

logic based controller or lookup table based neural controller. 

Table II. Two-dimensional lookup table 

                                                                                                  ce 

-0.5 -0.375 -0.25 -0.125 0 0.125 0.25 0.375 0.5 

 

 

 

 

e 

-4 -2.38×10-6 -2.38×10-6 -2.38×10-6 -2.38×10-6 -2.38×10-6 -1.68×10-6 -8.4×10-7 4.2×10-23 4.2×10-23 

-3 -2.38×10-6 -2.38×10-6 -2.38×10-6 -2.38×10-6 -2.38×10-6 -1.68×10-6 -8.4×10-7 4.2×10-23 4.2×10-23 

-2 -2.38×10-6 -2.38×10-6 -2.38×10-6 -2.38×10-6 -1.68×10-6 -8.4×10-7 4.2×10-23 8.4×10-7 8.4×10-7 

-1 -2.38×10-6 -2.38×10-6 -2.38×10-6 -1.68×10-6 -8.4×10-7 4.2×10-23 8.4×10-7 1.68×10-6 1.68×10-6 

0 -2.38×10-6 -2.38×10-6 -1.68×10-6 -8.4×10-7 4.2×10-23 8.4×10-7 1.68×10-6 2.38×10-6 2.38×10-6 

1 -1.68×10-6 -1.68×10-6 -8.4×10-7 4.2×10-23 8.4×10-7 1.68×10-6 2.38×10-6 2.38×10-6 2.38×10-6 

2 -8.4×10-7 -8.4×10-7 4.2×10-23 8.4×10-7 1.68×10-6 2.38×10-6 2.38×10-6 2.38×10-6 2.38×10-6 

3 4.2×10-23 4.2×10-23 8.4×10-7 1.68×10-6 2.38×10-6 2.38×10-6 2.38×10-6 2.38×10-6 2.38×10-6 

4 4.2×10-23 4.2×10-23 8.4×10-7 1.68×10-6 2.38×10-6 2.38×10-6 2.38×10-6 2.38×10-6 2.38×10-6 
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Fig. 7. "Intelligent" pH controller 

The comparison of servo and regulatory response 

characteristic terms, such as rise and fall time, settling time 

(for ±1% error band), maximum overshoot and undershoot, 

and decay ratio, for fuzzy logic based controller and lookup 

table based neural network controller are carried out using 

MATLAB simulation. To calculate overall performance 

parameters ISE and IAE, all the errors with magnitude greater 

than or equal to 0.01 are considered since further smaller 

errors will have negligible contribution. 

5.1 Servo operation 
For servo operation, as shown in Fig. 8, the pH set point 

(pHSP) is varied from 7 to 10 in unit positive step at sampling 

instants 500, 1000, and 2500 respectively; then from 10 to 4 

in unit negative step at sampling instants 6000, 7500, 8000, 

8500, 9000, and 10500 respectively; and finally from 4 to 7 in 

unit positive step at sampling instants 14000, 15500, and 

16000 respectively. The flow rate of process stream (Fb) is 

kept constant at its nominal value of 1.75 mL/s. The resulting 

variation of the controlled variable (pH) and manipulated 

variable (Fa) for fuzzy logic based control and lookup table 

based neural network control techniques are shown in Fig. 8 

and Fig. 9 respectively.  

From Fig. 8 and Fig. 9, it is evident that the pH neutralization 

system response for lookup table based neural network 

controller has little more rise and fall time; but much reduced 

settling time, (maximum) overshoot and undershoot, and 

decay ratio. The reason behind this is the loosely fitted neural 

network with regression value of 0.91 only. In particular, 

when the pH set point changes from 10 to 9 and from 4 to 5, 

the servo response characteristic terms is compared for both 

controllers, as shown in Table III and Table IV respectively.  

For servo operation, the values of ISE and IAE for fuzzy logic 

based control technique are 1580.54 and 1548.10 respectively, 

whereas the corresponding values for lookup table based 

neural network control technique are 831.62 and 1277.14 

respectively. Finally, both fuzzy logic based control technique 

as well as lookup table based neural network control 

technique is able to track the set point variation with 

negligible steady state error.  

 

Fig. 8. pH variation due to servo operation 
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Fig. 9. Acid flow rate variation due to servo operation 

For servo operation, the values of ISE and IAE for fuzzy logic 

based control technique are 1580.54 and 1548.10 respectively, 

whereas the corresponding values for lookup table based 

neural network control technique are 831.62 and 1277.14 

respectively. Finally, both fuzzy logic based control technique 

as well as lookup table based neural network control 

technique is able to track the set point variation with 

negligible steady state error. 

TABLE III. Characteristic Comparison for Set Point 

Change from 10 to 9 

 Fuzzy control Neural control 

Fall time 106 samples 126 samples 

Settling time 706 samples 476 samples 

Maximum undershoot 3.94 3.24 

Decay ratio 0.34 0.046 

 

TABLE IV. Characteristic Comparison for Set Point 

Change from 4 to 5 

 Fuzzy control Neural control 

Rise time 106 samples 130 samples 

Settling time 837 samples 637 samples 

Maximum overshoot 3.99 3.27 

Decay ratio 0.42 0.040 

5.2 Regulatory operation 
For regulatory operation, as shown in Fig. 11, the flow rate of 

process stream (Fb) is subjected to pulse disturbance of 

amplitude 1% of the nominal value and duration 200 

samples at sampling instants 200 and 600 respectively; then of 

amplitude 3% of the nominal value and duration 500 

samples at sampling instants 1000 and 2000 respectively; and 

finally of amplitude 5% of the nominal value and duration 

1000 samples at sampling instants 3000 and 5000 

respectively. The nominal flow rate of the process stream (Fb) 

is taken as 1.75 mL/s. The pH set point is kept constant at 7. 

The resulting variation of the controlled variable (pH) and 

manipulated variable (Fa) for fuzzy logic based control and 

lookup table based neural network control techniques are 

shown in Fig. 10 and Fig. 11 respectively.  

From Fig. 10 and Fig. 11, it is clear that, as compared to the 

fuzzy logic based controller, the disturbance rejection is better 

for lookup table based neural network controller. For step 

disturbances of magnitude 5% of the nominal value at the 

sampling instants 3000 and 5000 respectively, the comparison 

of regulatory response characteristics for both controllers are 

shown in Table V and Table VI respectively.  

TABLE V. Characteristic Comparison for +5% 

Magnitude Step Disturbance 

 Fuzzy control Neural control 

Rejection time 337 samples 278 samples 

Maximum undershoot 2.69 2.79 

Decay ratio 0.86 0.57 

 

TABLE VI. Characteristic Comparison for -5% 

Magnitude Step Disturbance 

 Fuzzy control Neural control 

Rejection time 348 samples 283 samples 

Maximum overshoot 2.69 2.78 

Decay ratio 0.87 0.58 
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For regulatory operation, the values of ISE and IAE for fuzzy 

logic based control technique are 7975.78 and 3958.21 

respectively, whereas the corresponding values for lookup 

table based neural network control technique are 7086.64 and 

3433.00 respectively. Finally, both control techniques has 

negligible steady state error for regulatory operation. 

6. CONCLUSION 
Using a 2-D lookup table based on defuzzified FIS, a two 

layered neural network based controller is designed and is 

loosely trained to substitute the fuzzy logic based controller. 

Based on ISE and IAE values, it can be concluded that the 

proposed lookup table based neural network controller 

performs better than fuzzy logic based controller for both 

servo and regulatory operations. Also the steady state error 

present in lookup table based neural network controller is not 

appreciable and it can be neglected. To further improve the 

controller performance, optimization techniques may be 

applied.

 

Fig. 10. pH variation due to regulatory operation 

 

Fig. 11. Acid flow rate variation due to regulatory operation 
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