
International Journal of Computer Applications (0975 - 8887)
Volume 61 - No. 7, January 2013

Distance Field based Haptic Rendering of Scattered
Oriented Points

Sreeni K. G.
Vision and Image Processing Laboratory, Department of Electrical Engineering

Indian Institute of Technology, Bombay, Powai, Mumbai 400076

ABSTRACT
This work is aimed at rendering of an object described by a scat-
tered, oriented point set data without explicitly finding the bound-
ing surface. We propose a proxy based rendering technique on a
distance field based representation of the object in a regular 3D
grid of voxels. Our method initially finds a 3D indicator function in
the grid of voxels from the available point set data through sphere
packing. The indicator function is further used to find the implicit
potential function (distance field) in the voxel grid by iteratively
moving the bounding surface of the object inward till all the voxels
are covered. Our algorithm uses a gradient descent based minimiza-
tion of the distance between HIP and proxy during the penetration
of HIP in the object. The rendering algorithm interpolates the dis-
tance at the proxy point from the neighboring voxels in order to find
the gradient for the purpose of moving the proxy. We experimented
on a large set of scattered point set data and could effectively render
them using a three degree of freedom haptic device.

Keywords:
Haptic interface point (HIP), voxel-based rendering, distance
field, haptic rendering.

1. INTRODUCTION
Visual rendering from point samples is a well studied problem
in computer graphics. But a very little work has been done in
the area of haptic rendering of a sparse point set data. Recon-
struction from sparse data is an ill-posed problem and there is
no unique solution. In surface reconstruction we are interested
in finding a polygonal (commonly, a triangulated mesh) approx-
imation of a moderately dense point cloud. In this paper we aim
at finding a volumetric description of the object from an oriented
sparse point set data suitable for haptic rendering. In order to ef-
fectively render the object geometry, a 3D regular voxel grid is
constructed and the minimum Euclidean distance of each grid
node from the boundary of the object is calculated. We present
a fast algorithm to compute the distance field specifically for a
sparse data set. Once this distance field is calculated the object
is haptically rendered using a proposed proxy based rendering
method. The accuracy of the reaction force depend upon the ac-
curacy with which the distance field is computed. Fig. 1a shows
a scattered oriented point cloud in 2D for illustration. Our algo-
rithm first compute a 3D indicator function (shown in Fig. 1a)
from the scattered points and then computes the distance func-
tion as shown in Fig. 1c. We propose a proxy based rendering of
the computed distance function using a 3-DOF haptic device.
To provide a combined hapto-visual immersion of the subject
into the virtual world, the object is rendered visually using the
zero iso-surface of the computed distance field. Sparse oriented

Fig. 1: Illustration of haptic rendering of distance field based description
of an object from sparse oriented points.

point cloud data, in practice, may be generated using haptic scan-
ning of a real non-deformable object. For haptic scanning of a
given object, a force sensor may be attached to the haptic device
to obtain the force along with the position information [10]. In
the case of deformable objects there could be certain local de-
formation of the object based on the Hooke’s law depending on
the applied force by the haptic device. In that case an appropriate
back projection is required to get the surface points.
The organization of the paper is as follows. An introduction to
the relevant literature is given in section 2. Section 3 explains the
proposed method of fast computation of distance field for sparse
points, following which the rendering scheme is presented. The
results of various experimentations are presented in section 4,
and we conclude the paper in section 5.

2. LITERATURE REVIEW
As there is not much work done in the area of sparse point based
rendering, we shall first briefly review the work done in the area
of surface reconstruction and rendering in computer graphics. In
the area of surface reconstruction there are several methods such
as Delaunay triangulation [15], alpha shapes [5] or Voronoi dia-
gram [2][1]. These methods typically create a triangular (polyg-
onal, in general) mesh that interpolates most of the points and
the associated surface normals help in the rendering process.
There are other methods to directly reconstruct an approximate
surface in an implicit form using surface fitting. Global fitting
method commonly defines the implicit surface as the zero set of
a radial basis function (RBF) fitted to the given surface data[6].
In the case of local fitting methods, a subset of nearby points are
considered at a time. A simple scheme is to define the implicit

1

International Journal of Computer Applications (0975 - 8887)
Volume 61 - No. 7, January 2013

function as the signed distance from the closest point of the es-
timated tangent plane[9]. Level set based surface reconstruction
method uses distance values accumulated in volumetric grid and
the reconstructed surface is represented as the zero-isosurface
of the scalar valued distance function[34]. There are also ap-
proaches which combines global as well as local fitting scheme
such as Poisson approximation by Hoppe et al.[12].
In the haptic rendering literature there are mainly two different
approaches: Polygon based rendering and voxel based rendering.
Some methods also use hybrid approaches[14]. A good introduc-
tion to the basic haptic rendering technique is given by Salisbury
et al. [28] and Laycock et al.[16]

2.1 Polygon Based Rendering
Traditional haptic rendering method is based on a geometric sur-
face representation which consists of mainly triangular meshes.
With polygon based rendering, each time when the haptic in-
terface point (HIP) penetrates the object, the haptic rendering
algorithm calculates the closest surface point on the polygonal
mesh and the corresponding penetration depth. If x is the depth
of penetration in the model, the reaction force can be calculated
as F = −kx, where k is the stiffness constant. Generally we
assume the stiffness to be constant throughout the object. But
it can be a function of position also, as is common for an ob-
ject consisting of constituent materials with varying stiffness, ie,
k = K(x, y, z) where (x, y, z) are 3D coordinates. It is assumed
that K(x, y, z) is known.
The above method has problems while determining the appro-
priate direction of the force while rendering thin objects. Zilles
and Salisbury, and Ruspini et al. independently introduced the
concept of god-object[35] and proxy algorithm[26], respectively,
which can solve the problems associated with thin objects. In the
god-object rendering method, the authors use a second point in
addition to the HIP called “god-object”, sometimes called the
ideal haptic interface point (IHIP). While moving in free space
the god-object and the HIP are collocated. But as the HIP pene-
trates the virtual object, the god-object is constrained to lie on the
surface of the virtual object. The position of the god-object can
be determined by minimizing the energy of the spring between
the god-object and the HIP, taking into account constraints rep-
resented by the faces of the virtual object. If (x, y, z) are the
coordinates of the virtual object and (xp, yp, zp) represents the
coordinates of the HIP, the spring energy is given by

L =
(x− xp)2

2
+

(y − yp)2

2
+

(z − zp)2

2
+

l1(A1x+B1y + C1z −D1)+

l2(A2x+B2y + C2z −D2)+

l3(A3x+B3y + C3z −D3) (1)

where L is the cost function to be minimized, l1, l2, l3 are La-
grange multipliers and A, B, C, D are the homogeneous coef-
ficients for the constraint plane equations. The ‘force shading’
technique (haptic equivalent of Phong shading) introduced by
Morgenbesser and Srinivasan refined the above algorithm while
rendering smooth objects[20]. One common problem with the
mesh based representation is when the object is not fully en-
closed by the bounding planes and a small hole may remain,
where the IHIP sinks during the rendering process.

2.2 Voxel Based Rendering
The most basic representation for a volume is the classic voxel
array in which each discrete spatial location has a one-bit label

indicating the presence or absence of material. Avila et al. have
used additional physical properties like stiffness, color and
density during the voxel representation[3]. The voxmap-point
shell algorithm uses the voxel map for stationary objects and
point shell for dynamic objects[19][23]. Point shell has been
defined as a set of point samples and associated inward facing
normals. However, these normals are not available and one
needs to compute the normal at every location.

The external surface ∂O of a solid object O can be described by
the implicit equation[13] as

∂O = {(x, y, z) ∈ R3 | φ(x, y, z) = 0}
where φ is the implicit function (also called the potential func-
tion) and (x, y, z) is the coordinate of a point in 3D. In other
words the set of points for which potential is zero defines the
implicit surface. This has found applications in haptic render-
ing. Points with positive potential are outside the object and if
φ(x, y, z) < 0 then the point (x, y, z) is inside the surface. A
volumetric surface can be defined as a discrete potential func-
tion stored on a regular 3D grid. The potential at each point is a
signed scalar value which indicates the proximity to the surface.
Thus, in effect the potential function is nothing but the distance
field of the point set defining an implicit surface. A distance field
is a function where each point within the field represents the dis-
tance from that point to the closest point on the bounding surface
∂O and the sign denotes whether a given point is inside or out-
side of a solid object O. The usual convention is that the sign is
negative for inside of the object[11].
The simplest way to compute the shortest distance to a set of sur-
face points belonging to an object over a 3D discrete grid V is
that, for each voxel v ∈ V the distances to all the points are com-
puted and the smallest one is stored. The 3D object geometry is
commonly represented using triangular meshes. We can generate
distance fields only from polygonal meshes which are closed. If
Nv is the number of voxels and Nt is the number of triangles
then the brute force method requires NvNt steps to compute
the distance field. For fast accessing of these triangles, hierar-
chical data structures can be used. A basic approach to calculate
distance to triangular patches has been explained by Payne and
Toga[22]. Another hierarchical approach is the mesh sweeper al-
gorithm proposed by Guéziec[8]. If the distance is needed only
near the surface of the object, we can use a bounding volume
around each triangle and can calculate the distances at grid nodes
inside the specified bounding volume[7]. Mauch converted the
features of a triangular mesh to a polyhedron[18], the feature,
vertex becomes a cone with a polygonal base, edge becomes a
wedge and the face becomes a prism. The polyhedron contain-
ing points closer to the respective feature are then scan converted
to compute the distances. Sigg et al. used a graphic hardware to
scan convert the characteristics for a faster implementation[30].
Once the distance close to the boundary is generated it may be
propagated to the remaining volume. This is the principle of dis-
tance transform. In Chamfer distance transform (CDT), the new
distance of a voxel is computed from the distance of its neigh-
bors by adding values from a distance template[25, 24]. In CDT
the accuracy reduces as the distance from the surface increases.
Similarly, a vector distance transform uses boundary conditions
of voxels containing the vector to the closest point on the sur-
face, and propagating these vectors according to a given vector
template[21]. The fast marching method (FMM) technique was
proposed first by Tsitsiklis[33] and then Sethian[29] which com-
putes the arrival time of a front expanding in the normal direc-
tion at a set of grid points by solving the Eikonal equation from
a given boundary condition.
Once the distance field is evaluated and sampled in the 3D grid,
the potential at any point inside the grid may be computed using
a trilinear interpolation of the eight nearest neighboring grid dis-

2

International Journal of Computer Applications (0975 - 8887)
Volume 61 - No. 7, January 2013

tances. Collision of the HIP with the objects and the correspond-
ing penetration depth can be easily detected by computing the
potential at the HIP and hence an appropriate force can be ren-
dered. However this rendering method also suffers from the thin
object problem. So we propose a proxy based rendering on the
computed distance field. For haptic rendering one should be able
to render the object within 1ms as any haptic interface system
must be temporally sampled at a rate better than 1kHz [28]. In
the next section we show how we can speed up the computation
in case sparse point sets. For haptic rendering from dense point
cloud data Leeper et.al. have proposed a locally computable im-
plicit function method [17]. Instead of using a point proxy, a
spherical volume proxy has been used in [31] and [27]. In the
work by [32] rendering was restricted to a point cloud defined
by Monge surface. The current work concentrate on how one
can render sparse data set.

3. PROPOSED METHOD
The input data for our rendering technique is a set of sparse sam-
ples s(P,n) each consisting of a point P and the corresponding
outward facing unit normal n. We call this type of data as aug-
mented point set. Note that the data (P,n) resembles more like
the concept of a point shell defined in [23]. The proposed algo-
rithm has two steps.

(1) distance field calculation from the augmented point set
(P,n),

(2) haptic rendering with the computed distance field.

In order to find the bounding surface of the object represented
by the sparse point set we initially find an indicator function (or
characteristic function) from the given point set. The indicator
function, in effect, divide the volume into two parts, inside and
outside of the object bounding surface. i.e., the indicator function
value is one for the region inside the object and zero outside.
Once the indicator function is obtained the distance field can be
found using technique explained in section sec. 3.2.

3.1 Computation of 3D Indicator Function
The volume reconstruction problem may be defined as: Given a
sparse set of augmented points (P,n), find the bounding surface
and hence the distance field over a uniform grid of voxels. We
note here that we need to find the distance field for points ly-
ing inside the objects only. Since there is no force field outside
the object we need to search only in the direction opposite to
the available outward surface normal n. For this, the following
simple lemma is useful. The proof is quite easy and omitted.

LEMMA 1. When a single point and the direction of nor-
mal at that point is given only one additional point is needed
to uniquely define the sphere on which they both lie.

The bounding surface is obtained as a union of the minimum
sized packing spheres for all points in the given data set s(P,n).
This is illustrated for 2D case in Fig. 2. The point P1 and n1 are
given. In order to mathematically find the embedded circle with
the minimum radius, consider three points P2,P3 and P4 as
shown. We want to find the embedded circle of minimum radius
at P1 with at least one of these points P2,P3,P4 on the circle.
Let aij be the vector connecting point i to j. If the dot product
−n1.a12 is greater than zero (or θ12 < π/2) it is possible to find
a circle with P2 on its boundary. The radius of the corresponding
circle is given by

r12 =
1

2
|a12| sec(θ12), (2)

from which we can calculate the center as c12 = P1 − r12.n1.
The pair (c12, r12) represents a unique circle with n1 as the out-
ward normal at P1 and both the points P1,P2 on its circumfer-
ence. Similarly we can find another circle between the points P1

Fig. 2: Illustration of how to calculate the circle of minimum radius at a
given sample point for a given point set.

Fig. 3: Illustration in 2D of (a) a sampled point set (P,n) for an arbitrary
object, and (b) a packed circle (sphere in 3D) after mapping these points
on a regular grid.

and P3 of radius r13 =
1

2
|a13| sec(θ13), where θ13 is the angle

between the vectors a13 and −n1. If θij > π/2 as with point
P4, it is not possible to have a circle with P4 on the boundary.
If θij = π/2, it represents a circle with infinite radius. So we
search only among the points with θ1j < π/2. At point P1, we
find the minimum of all the radii rij for all the sampled points
j = 2, 3, 4... This may be mathematically represented as

ri = min
j 6=i

rij ∀ j (3)

where ri is the packing radius at the sample point i. The min-
imum of the calculated radius and its corresponding center ci
represents the embedded circle at P1. Hence we observe that the
computation time for the embedding circle at every sample point
is proportional to the number of sample points available. How-
ever, one may further reduce the computation if only a smaller
subset of points which are in the neighborhood of P1 is chosen
to reduce the search space. As mentioned earlier, the proposed
method of computing the distance field is based on the concept
of sphere embedding inside an object [4]. We start with forming
a regular 3D grid of an appropriate resolution. The resolution
could be dependent on how finely the object has been sampled
and at what resolution it is required to be rendered in a given
haptic platform. The algorithm is explained geometrically in 2D
for better understanding.
Consider the augmented point set s(P,n) as shown in Fig. 3(a).
At each point, the position as well as the unit outward surface
normal are known. One of the embedded circle with the given
point set is shown in Fig. 3(b). We note that the 3D (2D in the
figure) volume enclosed by the union of all the packing spheres
represents the approximated 3D shape of the sampled object. All
the grid nodes inside the union of all these circle are expected to
be inside the object so the value of the indicator function is 1 for

3

International Journal of Computer Applications (0975 - 8887)
Volume 61 - No. 7, January 2013

Fig. 4: Illustration of how an improper sampling could introduce a large
error in rendering the surface. The embedded circle ABC leaks out of the
object as there is no sampled point near the corner P.

φ = d1

φ = d2

φ = 0

d2 < 0 < d1

(xp, yp)

5φ(xp, yp)

(xh, yh)

Fig. 5: Part of the distance function corresponding to an arbitrary object
in 2D

such nodes and 0 for the remain nodes. If the sampled points are
not dense enough, the embedded circle (sphere in the case of 3D)
may leak out of the actual boundary of the object from which
samples are taken. In Fig. 4 the rectangle is sampled sparsely
and the sample points with normals are shown with arrows. In
the figure we can see that near the densely sampled region most
of the points inside the circles are inside the object. However, the
circle ABC leaks out of the object by a large value as there are
no points near the corner P.

3.2 Distance Field from Indicator Function
Distance field is computed only for the points inside the object.
Using the method described in section 3.1 the 3D indicator func-
tion is directly computed from the packed spheres. To find the
distance field all the grid nodes with indicator function 0 are set
as outside nodes. As we do not want to find the distance func-
tion outside the object the outside nodes can be set with distance
value 1. Now the grid nodes with at least one outside grid node
in the nearest neighborhood is termed as boundary grid node.
An iterative procedure is used to move the boundary node in-
ward during the distance calculation. At each level of iteration
the distance values are stored in the current boundary nodes are
relabeled as outside node. In the initial level (level 0) we store the
value zero as distance in the boundary nodes, next level (level 1)
of boundary nodes with -1 level 2 with -2 and so on. This process
is repeated until the total number of boundary nodes reduces to
zero.
Let S be the set of all the inside nodes, δ denotes the boundary
nodes. We use a structuring elementB of unit radius to erode the
set S. Mathematically the distance field is computed as

φ(X) = 0 ∀ X /∈ S
= −n ∀ X ∈ δ(S 	 nB). (4)

3.3 Minimization of the Distance Between Proxy and
HIP

Let φ(x, y, z) denotes the 3D potential function, then φ = 0
represents the zero iso-surface of the object which is actually the
bounding surface of the object. In order to render the bounding
surface of the object haptically we define a proxy which must
not penetrate the bounding surface of the object but can move

freely over the surface. Our proxy based haptic rendering tech-
nique minimizes the distance between proxy and HIP so that the
proxy is constrained to move over the zero iso-surface of the
object. To understand the minimization procedure consider an
arbitrary 2D distance function shown in Fig. 5. There are three
different contours shown in the figure corresponding to three dif-
ferent iso values. The curve shown with thick blue line is the zero
iso-contour of the object. The region above the zero iso-contour
is outside the object boundary with distances greater than zero
while the region below the zero iso-contour represents the inside
region of the object with negative distances. The dotted line on
either side of the zero iso-contour represents the iso-contour cor-
responding to distances d1 and d2 where d1 < 0 < d2. In the
figure proxy is shown with a blue circle and HIP with a red cir-
cle.5φ(xp, yp) shows the normal to the iso-contour at the proxy
point. In free space the proxy position (xp, yp) should follow the
HIP position (xh, yh). But when HIP is penetrated inside the ob-
ject proxy moves over the object so as to minimize the distance
between them. So we can write the objective function to be min-
imized as ψ(x, y, z) subject to φ(x, y, z) = 0 where

ψ =
(x− xh)2

2
+

(y − yh)2

2
+

(z − zh)2

2
. (5)

We convert the constrained optimization problem as an uncon-
strained one using the following objective function

Ψ =
1

2
|Xp −Xh|2 +

λ

2
|φ(Xp)|2 (6)

where λ is a regularization parameter. A gradient descent method
can be used to minimize the cost function Ψ. Assuming the HIP
to be fixed at Xh, (ie, proxy updation is much faster than the
haptic interaction which we show to be true in our experimental
studies later) Ψ can be written as a function of current proxy
position Xp only. So we can iteratively solve the problem by
taking a small positive step size γ > 0 such that

X(k+1)
p = X(k)

p − γ 5Ψ(X(k)
p) (7)

where X(k)
p and5Ψ(X

(k)
p) are the proxy location and the gradi-

ent of the objective function, respectively, in the current iteration
and X

(k+1)
p is the proxy location for the next iteration. The gra-

dient of the objective function can be computed as

5Ψ(X(k)
p) = (Xp −Xh)(k) + λφ(X(k)

p)5 φ(X(k)
p). (8)

Substituting equation (8) in equation (7), the resulting solution
becomes

X(k+1)
p = X(k)

p −γ(Xp−Xh)(k)−βφ(X(k)
p)5φ(X(k)

p) (9)

where the constant β = γλ, (Xp−Xh) is the vector from HIP to
the proxy and5φ(X

(k)
p) is the gradient of the distance function

at the current proxy location. In the solution given in equation
(9), the term (Xp −Xh) tries to minimize the distance between
HIP and proxy while the term φ(Xp)5 φ(Xp) keeps the proxy
near the bounding surface of the object during collision. When
φ(Xp) < 0, proxy is outside the object and the resulting solution
becomes Xp = Xh.

3.4 Haptic Rendering
As the distance samples are stored on a regular grid, distance at
any point inside the grid can be interpolated from the 8 nearest
neighboring grid nodes. The gradient can also be computed at
all the nodes directly from the distance field. Haptic rendering
process includes two steps.

(1) Detection of collision of the HIP with the object.
(2) Force computation if a collision is detected.

4

International Journal of Computer Applications (0975 - 8887)
Volume 61 - No. 7, January 2013

3.4.1 Collision between the HIP and the object:. As we move
the haptic device inside the 3D grid the distance is computed at
the proxy location, Xp by trilinear interpolation of the distance
stored at the grid location. If the interpolated distance is greater
than zero, the proxy lies outside the object, proxy moves with the
HIP, no collision is detected and therefore no force is fed back.

3.4.2 Force Computation for Rendering:. If the interpolated
distance at the proxy location is less than zero a collision is de-
tected and an appropriate force has to be fed back. Once colli-
sion is detected proxy moves tangentially over the iso-surface so
as to minimize the distance between proxy and HIP as discussed
in sec. 3.3, while the reaction force is as given in equation (10)
where k is the Hooke‘s constant and Xh−Xp is the penetration
depth of HIP in the object.

f = − k (Xh −Xp). (10)

4. EXPERIMENTAL RESULTS
The proposed method was implemented in visual C++ in a win-
dows XP platform with a CORE 2QUAD CPU @ 2.66GHZ with
2GB RAM. In order to generate the data set for our algorithm,
we created virtual objects using polygonal meshes and they are
rendered haptically with the standard god-object rendering tech-
nique. These virtual objects are scanned manually using a 3-DOF
haptic device and the position and force values are sampled at
different points. The distance field is calculated in a fixed regu-
lar grid of size 300X300X300. The size and spatial resolution of
the grid depend on two factors: the interaction space of the haptic
device used to render the object and the resolution at which the
object should be rendered. We use a 3-DOF haptic device from
NOVINT with a 4 inch cube haptic interaction space. Moreover,
the object is visually rendered as points on the zero-iso-surface of
the computed distance field. This allows the user a joint hapto-
visual experience while touching the object. We have selected
the above grid size with an appropriate resolution so as to fit the
active space of the haptic device suitable with our experimental
setup. During the haptic rendering phase, the calculation of force
at a point takes only 0.02ms with the above grid size, which is
much lower than the required limit of 1ms for a smooth haptic
rendering.
Depending on the size and shape of the object the distance field
computation may use only a small portion of the grid size. For
example, the point cloud data shown in Fig. 6 with 3,725 points
uses a grid of size 186X173X87 and it took approximately 38.09
seconds to calculate the precomputable distance field. The algo-
rithm computes the distance values at 8,24,463 inside grid nodes.
The zero iso-surface are shown in Fig. 6(b) for the visual render-
ing purpose. The green sphere in the figure shows the proxy point
and the red sphere shows the HIP point during the rendering pro-
cess. The red line indicate the penetration depth at the shown HIP
point. The user experience on handling the object in the haptic
space was also found to be very satisfactory.
Another sparse oriented point cloud data shown in Fig. 8a has
5153 points. The distance field is computed in a grid of size
126X187X72. The computation time is 26.25s for 3,04,072 in-
ternal nodes. The proxy and HIP positions are also shown in the
figure. Point set data with 3751 points are shown in Fig. 8b. It
took 110.82 seconds to calculate the distance field at 11,29,209
inside points. Another point set data corresponding to a water hy-
drant is shown in Fig. 8c with 3756 points. Distance field is com-
puted at 5,86,222 points in 30.86 seconds. Augmented point set
data s(P,n) is generated by haptic scanning of a given polygo-
nal mesh using a 3-DOF haptic device. To perform haptic sam-
pling the polygonal mesh is haptically rendered using the god
object rendering technique. The position of the haptic device and
the corresponding reaction force are sampled during the interac-
tion with the object. The device positions corresponding to the
non zero force sample are then projected back to the surface to

(a)

(b)

(c)

Fig. 6: (a) Scattered oriented points and (b) zero iso-surface of the dis-
tance field visually rendered using a known light source direction (c)
distance field for a particular cross section of the object (data courtesy:
‘www.top3dmodels.com’).

get the point set, the direction of reaction force gives the orien-
tation of each point.
In practice it is not required to find the distance field at all the
inside grid nodes, since the proxy rarely sinks more than 3-4
voxel length in the object during the minimization of equation
(6). Distance calculation only up to 5 or 6 nodes inside the actual
bounding surface nodes is enough for a stable haptic feedback.
Table. 1 compares the computational time requirement for differ-
ent data sets. Note that this is required to be pre-computed only
once following while the haptic interaction could be very fast as
the proxy updation requires 0.02ms only.
In order to validate the results obtained using the proposed ren-
dering technique we used a point cloud data corresponding to a

5

International Journal of Computer Applications (0975 - 8887)
Volume 61 - No. 7, January 2013

(a)

(b)

(c)

Fig. 7: (a) Scattered oriented points and (b) zero iso-surface of the dis-
tance field visually rendered using a known light source direction (c)
distance field for a particular cross section of the object (data courtesy:
‘www.turbosquid.com’).

Table 1. : Summary of computational requirement for various point cloud
data used.

Object Number of Number of Distance field
name oriented inside computation

points nodes time (s)
Hydrant 3,756 5,86,222 30.86
Owl 3,725 8,24,436 38.09
Boy 5,153 3,04,072 26.26
Bomberman 3,751 11,29,209 110.82
Jaguar 4,433 1,34,987 11.673

(a)

(b)

(c)

Fig. 8: Scattered oriented points, visually rendered zero iso-surface of the
distance field for a known light source direction and a cross section of the
computed distance field for 3 different objects. (a) boy (b) bomberman
(c) water hydrant (data courtesy: ‘www.turbosquid.com’).

known spherical object such that the bounding surface φ(X) is
precisely known. The rendered reaction force for a particular in-
teraction with the object is compared with the force computed
using the known, implicit equation of the sphere. The reason for
selecting a sphere for the comparison purpose is that the sphere
equation can readily give the penetration depth of the HIP in the
object. The surface of the sphere is interacted with a 3-DOF hap-
tic device. The haptic position and the corresponding rendered
reaction force are sampled from the device during the interaction.
The ideal reaction force is computed using the implicit sphere
equation. The magnitude of force is plotted as a function of time
for both the cases and is shown in Fig. 9. The red line in the
figure shows the force computed using the implicit sphere equa-
tion. The blue line shows the rendered force using the proposed
technique. The rendered force can be seen to be very close to the
actual force substantiating our claim that the proposed method
does provide a good haptic experience to the user.

5. CONCLUSIONS
In this work we haptically rendered a sparse oriented point cloud
data without explicitly finding the bounding surface. We pro-
pose a novel distance field based rendering of an oriented point

6

International Journal of Computer Applications (0975 - 8887)
Volume 61 - No. 7, January 2013

Fig. 9: Comparison of the rendered force with the ideal one for a partic-
ular interaction with a known spherical object.

cloud in a regular 3D grid of voxels. Once the points are mapped
to the nearest nodes, all the remaining processing is done only
in the 3D grid. Distance field is sampled in each grid node by
the method of embedded spheres inside the object. The zero-
isosurface of the distance field which is the boundary surface of
the object is visually shown for a combined hapto-visual experi-
ence. In effect we use a distance field based haptic rendering and
a simultaneous point based graphic rendering. We validated our
results using scattered oriented data corresponding to a spherical
object and found that the proposed rendering method works very
well with scattered data.

6. REFERENCES

[1] Nina Amenta, Marshall Bern, and Manolis Kamvysselis.
A new Voronoi-based surface reconstruction algorithm. In
SIGGRAPH, pages 415–421, 1998.

[2] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri.
The power crust, unions of balls, and the medial axis trans-
form. Computational Geometry: Theory and Applications,
19:127–153, 2000.

[3] Ricardo S. Avila and Lisa M. Sobierajski. A haptic inter-
action method for volume visualization. Visualization Con-
ference, IEEE, 0:197, 1996.

[4] Ilya Baran and Jovan Popovic. Automatic rigging and an-
imation of 3d characters. ACM Trans. Graph., 26(3):72,
2007.

[5] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier,
Claudio Silva, Gabriel Taubin, and Senior Member. The
ball-pivoting algorithm for surface reconstruction. IEEE
Transactions on Visualization and Computer Graphics,
5:349–359, 1999.

[6] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.
Fright, B. C. McCallum, and T. R. Evans. Reconstruction
and representation of 3D objects with radial basis func-
tions. In Computer Graphics (SIGGRAPH 01 Conf. Proc.),
pages 6776. ACM SIGGRAPH, pages 67–76. Springer,
2001.

[7] Frank Dachille and Arie Kaufman. Incremental triangle
voxelization. In Graphics Interface, pages 205–212, 2000.

[8] André Guéziec. ’Meshsweeper’: Dynamic Point-to-
Polygonal-Mesh Distance and Applications. IEEE
Transactions on Visualization and Computer Graphics,
7:47–61, January 2001.

[9] Hugues Hoppe, Tony DeRose, Tom Duchamp, John Mc-
Donald, and Werner Stuetzle. Surface reconstruction from
unorganized points. In COMPUTER GRAPHICS (SIG-
GRAPH 92 PROCEEDINGS), pages 71–78, 1992.

[10] R. Hover, M. Harders, and G. Szekely. Data-driven hap-
tic rendering of visco-elastic effects. In Proceedings of the

2008 Symposium on Haptic Interfaces for Virtual Environ-
ment and Teleoperator Systems, pages 201–208, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[11] Mark W. Jones, J. Andreas Brentzen, and Milos Sramek.
3D Distance Fields: A Survey of Techniques and Appli-
cations. IEEE Transactions on visualization and Computer
Graphics, 12(4):581–599, 2006.

[12] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the
fourth Eurographics symposium on Geometry processing,
SGP ’06, pages 61–70, Aire-la-Ville, Switzerland, Switzer-
land, 2006. Eurographics Association.

[13] Laehyun Kim, Anna Kyrikou, Mathieu Desbrun, and Gau-
rav Sukhatme. An implicit-based haptic rendering tech-
nique. In Proceeedings of the IEEE/RSJ International Con-
ference on Intelligent Robots, volume 3, pages 2942–2948,
2002.

[14] Laehyun Kim, Gaurav S. Sukhatme, and Mathieu Desbrun.
A haptic rendering technique based on hybrid surface rep-
resentation. IEEE Computer Graphics and Applications,
Special Issue on Haptic Rendering - Beyond Visual Com-
puting, 24(2):66–75, March 2004.

[15] Ravikrishna Kolluri, Jonathan Richard Shewchuk, and
James F. O’Brien. Spectral surface reconstruction from
noisy point clouds. In Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing,
SGP ’04, pages 11–21, New York, NY, USA, 2004. ACM.

[16] S. D. Laycock and A. M. Day. A survey of haptic render-
ing techniques. Computer Graphics Forum, 26(1):50–65,
March 2007.

[17] Adam Leeper, Sonny Chan, and Kenneth Salisbury. Con-
straint based 3-DOF haptic rendering of arbitrary point
cloud data. In RSS Workshop on RGB-D Cameras, Univer-
sity of Southern California, June 2011.

[18] Sean Mauch. A fast algorithm for computing the closest
point and distance transform. Technical report, California
Institute of Technology, 2000.

[19] William A. Mcneely, Kevin D. Puterbaugh, and James J.
Troy. Six degree-of-freedom haptic rendering using voxel
sampling. In Proc. of ACM SIGGRAPH, pages 401–408,
1999.

[20] Srinivasan M. A. Morgenbesser, H.B. Force shading for
haptic shade perception. In Proceedings of the ASME Dy-
namic Systems and Control Division, volume 58, pages
407–412, 1996.

[21] James C. Mullikin. The vector distance transform in two
and three dimensions. CVGIP: Graph. Models and Image
Process., 54:526–535, November 1992.

[22] Bradley A. Payne and Arthur W. Toga. Distance field ma-
nipulation of surface models. IEEE Comput. Graph. Appl.,
12:65–71, January 1992.

[23] Matthias Renz, Carsten Preusche, Marco Ptke, Hans peter
Kriegel, and Gerd Hirzinger. Stable haptic interaction with
virtual environments using an adapted voxmap-pointshell
algorithm. In Proc. Eurohaptics, pages 149–154, 2001.

[24] Frank Rhodes. Discrete Euclidean metrics. Pattern Recogn.
Lett., 13:623–628, September 1992.

[25] Azriel Rosenfeld and John L. Pfaltz. Sequential operations
in digital picture processing. J. ACM, 13:471–494, October
1966.

[26] Diego C. Ruspini, Krasimir Kolarov, and Oussama Khatib.
The haptic display of complex graphical environments. In
Proc. of ACM SIGGRAPH, pages 345–352, 1997.

[27] Fredrik Ryden, Sina Nia Kosari, and Howard Jay Chizeck.
Proxy method for fast haptic rendering from time varying
point clouds. In IROS, pages 2614–2619. IEEE, 2011.

7

International Journal of Computer Applications (0975 - 8887)
Volume 61 - No. 7, January 2013

[28] Kenneth Salisbury, Francois Conti, and Federico Barbagli.
Haptic rendering: Introductory concepts. IEEE Computer
Graphics and Applications, 24(2):24–32, 2004.

[29] J A Sethian. A fast marching level set method for mono-
tonically advancing fronts. Proceedings of the National
Academy of Sciences of the United States of America,
93(4):1591–1595, 1996.

[30] Christian Sigg, Ronald Peikert, and Markus Gross. Signed
distance transform using graphics hardware. In Proceed-
ings of the 14th IEEE Visualization 2003 (VIS’03), VIS ’03,
pages 83–90, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[31] K. G. Sreeni and Subhasis Chaudhuri. Haptic Rendering of
Dense 3D Point Cloud Data. In IEEE Haptic Symposium,
pages 333–339, Vancouver, BC, Canada, March 4-7 2012.

[32] K. G. Sreeni, K. Priyadarshini, A. K. Praseedha, and Sub-
hasis Chaudhuri. Haptic Rendering of Cultural Heritage

Objects at Different Scales. In Eurohaptics, Tampere, Fin-
land, June 12-15 2012.

[33] John N. Tsitsiklis. Efficient algorithms for globally opti-
mal trajectories. IEEE Transactions on Automatic Control,
40(9):1528–1538, 1995.

[34] Hong-Kai Zhao, Stanley Osher, and Ronald Fedkiw. Fast
surface reconstruction using the level set method. In Pro-
ceedings of the IEEE Workshop on Variational and Level
Set Methods (VLSM’01), VLSM ’01, pages 194–, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[35] C.B. Zilles and J.K. Salisbury. A constraint-based god-
object method for haptic display. Intelligent Robots and
Systems, IEEE/RSJ International Conference on, 3:3146,
1995.

8

	Introduction
	Literature Review
	Polygon Based Rendering
	Voxel Based Rendering

	Proposed Method
	Computation of 3D Indicator Function
	Distance Field from Indicator Function
	Minimization of the Distance Between Proxy and HIP
	Haptic Rendering
	Collision between the HIP and the object:
	Force Computation for Rendering:

	Experimental Results
	Conclusions
	References

