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ABSTRACT 

Multimedia has recently played an increasingly important role 

in various domains, including Web applications, movies, 

video game and medical visualization. The rapid growth of 

digital media data over the Internet, on the other hand, makes 

it easy for anyone to access, copy, edit and distribute digital 

contents such as electronic documents, images, sounds and 

videos. Motivated by this, much research work has been 

dedicated to develop methods for digital data copyright 

protection, tracing the ownership, and preventing illegal 

duplication or tampering. This paper introduces a 

methodology of robust digital watermarking based on a well-

known spherical wavelet transformation, applied to 3D 

compressed model based on polygonal representation using a 

neural network.  It will be demonstrated in this work that 

applying a watermarking algorithm on a compressed domain 

of a 3D object is more effective, efficient, and robust than 

when applied on a normal domain. 
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1. INTRODUCTION 
Multimedia continues to play an increasingly important role in 

various domains, including Web applications, movies, video 

games, and medical visualization. The rapid growth of digital 

media data over the Internet, on the other hand, makes it easy 

for everybody to access, copy, edit and distribute digital 

contents, such as electronic documents, images, sounds and 

videos [23]. Motivated by this, much research work has been 

dedicated to develop methods for digital data copyright 

protection, tracing the ownership and preventing illegal 

duplication or tampering. One of the most effective 

techniques for the copyright protection of digital media data is 

a process, in which a hidden specified signal (watermark) is 

embedded in digital data.  The watermarking technique should 

allow people to permanently mark their documents, and 

thereby prove claims of authenticity or ownership.  The 

existing efforts in the literature on digital watermarking have 

been concentrated on media data such as audio, images, and 

video [6][12].  

There are no effective ways for the copyright protection of 

three dimensional (3D) models against attacks, especially 

when the copyright of the models is distributed over the 

Internet.  The problem of 3D model watermarking has 

received less attention from researchers due to the fact that the 

technologies that have emerged for watermarking images, 

videos, and audio cannot be easily adapted to work for 

arbitrary surfaces or polygons.    

Watermarking schemes can be classified into private, public, 

and semi-public [9].  A private watermarking scheme needs 

the original 3D model and original watermarks to extract the 

embedded watermarks.  A public watermarking scheme can 

extract embedded watermarks in the absence of the original 

3D model and original watermarks, which is also called blind 

so that all fragile watermarking schemas are also public.  A 

semi-public watermarking scheme does not need the original 

3D model in the embedded watermark extraction stage, but 

the original watermarks are necessary for comparing with the 

extracted watermarks. 

In this research, the 3D object is used without texturing. Thus, 

the watermarking, in this paper, is based on connectivity and 

geometry watermarking. In addition, working with 

connectivity and geometry watermarking is more robust than 

texture watermarking because they protect their components, 

which are vertices and faces from mesh operation attacks like 

scaling, smoothing compression, and geometry 

transformation.  The watermarking is based on 3D object 

attributes, such as geometry and topology that make 

embedding watermarking primitives either geometrical 

embedding primitives or topological embedding primitives. 

Thus, watermarking methods are either a geometry-based 

watermarking method or a topology –based watermarking 

method. Each of these methods has its own characteristics that 

will be discussed next [3]. 

1.1 Geometry – Based Watermarking 

Methods 

This method focuses on a geometric feature of the 3D object’s 

vertices, so embedding the watermark may modify the 

position of the vertices in order to insert the watermark, 

changing the length of a line, the area of a polygon, or the 

ratio of the volumes of two polygons. One of simplest 

examples of this type is embedding a watermark directly onto 

the vertex coordinates.  It works in the following steps [32]: 

1. Modify the coordinates of the vertex by modulating 

the watermark signal with a global scaling factor 

and a masking weight. 
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2. The masking weight for each vertex is the average 

of differences between the connected vertices to that 

vertex. 

 

3. Adding the watermark coordinate values. 

 

1.2 Topology – Based Watermarking 

Methods 

This method focuses on a topological feature of the 3D object 

which is the connectivity of mesh vertices. Therefore, 

embedding the watermark changes the topology of a model.  

The side effect of this is a change in geometry. Usually, 

working with topology is more robust for the watermarking, 

where the topology is redefined to encode one or more bits. 

One of the most famous examples of this type is encoding 

binary bits in triangulating a quadrilateral way [18].  Look to 

Figure 1.   

 

Figure 1: Example of Topology Structure [18]. 

The wavelet transformation had been applied in the 

watermarking schema due to robustness measurements 

[6][17][24].  

The pioneer works of watermarking 3D models were 

performed by Ohbuchi et al. [21], who introduced several 

schemes for watermarking polygonal models. One scheme 

embeds information using groups of four adjacent triangles, 

while another scheme proposed using ratios of tetrahedral 

volumes. The tetrahedral are formed by the three vertices of 

each face and a common vertex that is computed by averaging 

a few fixed mesh vertices. Moreover, a way of visually 

embedding information into polygonal mesh data is proposed 

by modifying the vertex coordinates, the vertex topology, or 

both. Ohbuchi et al. [22] also proposed a frequency domain 

approach to watermark 3D shapes, where the mesh is 

segmented first into some patches, and then for each patch, a 

spectral analysis is conducted, and the watermark information 

is finally embedded into the frequency domain at the 

modulation step. 

The approach of Guillaume [10] is quite different; Guillaume 

presented a digital watermark embedded on 3D compressed 

meshes based on a subdivision surface, which chooses a 3D 

object segmented into surface patches as a target, and then 

hides the watermark in the compressed object. 

Praun [27] provided a robust watermarking scheme suitable 

for proving ownership claims on triangle meshes representing 

surfaces in a 3D model by converting the original triangle 

mesh into a multiresolution format, consisting of a coarse base 

mesh and a sequence of refinement operations. Next, a scalar 

basis function is defined over its corresponding neighborhood 

in the original mesh. A watermark is then inserted as follows: 

each basis function is multiplied by a coefficient, and added to 

the 3D coordinates of the mesh vertices. Each basis function 

has a scalar effect at each vertex and a global displacement 

direction, where this process is applied as a matrix 

multiplication for each of the three spatial coordinates x, y, 

and z. 

In the 3D model represented as a cloud of vertices and a list of 

corresponding edges, Kundur [27] provided a new method 

based on finding and synchronizing particular areas used to 

embed the message by using data hiding that relies on 

modifying the topology of the edges in a chosen area. 

A wavelet-based multiresolution analysis is used for 

polygonal models proposed by Wan-Hyun Cho [33]. First, 

generate the simple mesh model and wavelet coefficient 

vectors by applying a multiresolution analysis to a given mesh 

model. Then, watermark embedding is processed by 

perturbing the vertex of chosen mesh at a low resolution 

according to the order of norms of wavelet coefficient vectors 

using a look-up table. The watermark extraction procedure is 

to take binary digits from the embedded mesh using a look-up 

table and similarity test between the embedded watermark and 

the extracted one follows. 

JIN Jian-qiu et al [15] proposed a robust watermarking for 3D 

mesh. The algorithm is based on spherical wavelet 

transformation, where the basic idea is to decompose the 

original mesh of details at different scales by using a spherical 

wavelet; the watermark is then embedded into the different 

levels of details. The embedding process includes: global 

sphere parameterization, spherical uniform sampling, 

spherical wavelet forward transformation, embedding 

watermark, spherical wavelet inverse transformation, and at 

last re-sampling the watermarked mesh to recover the 

topological connectivity of the original model. 

Adrian G.Bors [5] also proposed a public watermarking 

algorithm that is applied on various 3D models and does not 

require the original object in the detection stage using a key to 

generate a binary code. A set of vertices and their 

neighborhoods are selected and ordered according to a 

minimized distortion visibility threshold. The embedding 

consists of local geometrical changes of the selected vertices 

according to the geometry of their neighborhoods. 

The approach proposed in [2] which uses a new blind digital 

watermarking algorithm is based on discrete wavelet packet 

transformation and a Backpropagation (BP) Neural Network. 

Backpropagation is a common method of training artificial 

neural networks so as to minimize the objective function 

The contribution in this paper is to apply digital watermarking 

algorithm based on a spherical wavelet transform [13] applied 

to polygonal 3D mesh models.  These polygonal 3D mesh 

models were compressed using a Multi Layer Feed Forward 

(MLFF) neural network [25][26][29][30]. The paper will 

combine geometric methods with topological methods in the 

watermarking algorithm. 

The proposed robust watermarking algorithm should meet the 

following technical requirements: 

1. Direct Embedding: The watermark should be 

directly embedded into the compressed geometry 

data or topology data of the polygonal model.    

2. Invisible: The embedded watermark must be 

perceptually invisible within the model and 

unnoticeable for the user. 

3. Small geometric error: The geometric error of the 

polygon data caused by the embedding must be 
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small enough in order not to disturb the application 

use. 

4. Robustness: The embedded watermark must be 

unchanged or difficult to be destroyed under the 

possible 3D geometric operations done on the 3D 

polygonal model. 

5. Capacity: The amount of the watermark which can 

be embedded in the model is large enough to 

record the information needed for the application. 

6. Efficient Space: A data embedding method should 

be able to embed a non-trivial amount of 

information into model. 

 

This paper is divided as the following:  

 In section II, a brief background is given about the 

proposed compression methodology based on a 

Multi Layer Feed Forward (MLFF) neural network 

[25][26][29][30].  

 In section III, the output from compression, which is 

a compressed 3D polygonal mesh model, will be the 

input for a proposed watermarking algorithm. The 

algorithm applies the watermark, which can be a 

secret key or image, in a spherical wavelet 

transformation for the compressed data set [13].   

 In section IV, testing results will be presented on 

some 3D models [29][30] samples.  The proposed 

watermarking algorithm will be evaluated against 

various types of attacks [13]. 

 In section V, we present our conclusion. The 

experimental results show that the proposed 

watermark algorithm on compressed 3D objects: 

1. Is a  very efficient and robust. Moreover, 

it is proved to reduce the processing time. 

2. Allow the embedding of the watermark 

into the model without much increase on 
the model size. 

2. 3D OBJECT COMPRESSION 

ALGORITHM  

neural network employed in this paper is a multilayer feed-

forward neural network (MLFF) [25][26][29][30], which 

provides lossy compression.  The neural network tool used for 

this algorithm is the Mathworks tool (Neural Network 

Toolbox’s with Multi-layer Feed Forward Architecture).  

MLFF is a well known neural model, which consists of an 

input layer, one or several hidden layers and an output layer. 

All nodes are fully connected. The neurons in the feed- 

forward neural network are generally grouped into layers. 

Signals flow in one direction from the input layer to the next, 

but not within the same layer. An essential factor of  

successes  of  the  neural  networks  depends  on  the  training  

network.  Among the several learning algorithms available, 

back-propagation has been the most popular and most widely 

implemented. 

The object has been created manually (modeling them using 

Autodesk Maya 2008); and before entering the data in MLFF.  

Pre-processing should be applied on the data [29][30].  

The following sub-sections will briefly explain the steps of 

the compression [25][26][29][30].  

Figure 2 shows the difference between the MLFF neural 

network algorithm employed in this paper and the Java 3D 

geometry compression package. 

 

Figure 2: Comparing between the MLFF compression 

algorithm and 3D Java geometry compression package 

[29][30]. 

2.1 The Pre-Process Data Set 

Before the inputs are presented to the MLFF, the data should 

be pre-processed. Accuracy of the outputs of the neural 

network depends on the data pre-processing step.  

The following are the steps that should be done in the data 

pre-processing stage: 

 Normalization  

 Extract main features of the dataset  

 

The supervised learning problem is divided into parametric 

and nonparametric models. The problem here lies in the 

nonparametric model because there is no prior knowledge of 

the form of the function being estimated. Therefore, it is 

required to use a neural network that could be trained using 

different models samples.  This type of neural learning is 

called learn by example [29][30]. The learning process will be 

performed by a learning algorithm. The objective of this 

algorithm is to change the synaptic weight of the network to 

attain a desired design objective, which is the compressed 

object. Once the network has been trained, it is capable of 

generalization [29][30].  

2.2 The Structure of the MLFF Neural 

Network 

The neural network structure contains an input layer, one 

hidden layer, and an output layer; all nodes are fully 

connected. The network takes x, y and z coordinates of 

vertices as input; the activation function is a sigmoid logistic 

function with a learning rate of 0.9 [29][30]. 

A sigmoid logistic function, also known as a logistic function, 

is given by the relationship [29][30]: 

     
 

      
 

 

where β is a slope parameter. The sigmoid has the property of 

being similar to the step function, but with the addition of a 

region of uncertainty. Sigmoid functions in this respect are 

very similar to the input-output relationships of biological 

neurons, although not exactly the same. Below is the graph of 

a sigmoid function. Sigmoid functions are also prized because 

their derivatives are easy to calculate, which is helpful for 

calculating the weight updates in certain training algorithms. 

The derivative is given by [29][30]: 
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The number of neurons in the input layer is 4, where the first 

three input vectors are the x, y and z vertices coordinates, and 

the fourth input is the maximum face ratio which indicates 

that the maximum face must remain as it is. The number of 

neurons in the hidden layer is between 3 and 4. The 

compression process overall depends on the hidden layer, so 

the number of neurons in the hidden layer should be 

absolutely less than the number of neurons in the input layer 

to do the compression. For higher accuracy, the number of 

neurons in the hidden layer should be increased, but this 

reduces the compression process.  A two-layer feed-forward 

network with sigmoid hidden neurons and linear output 

neurons can fit multi-dimensional mapping problems 

arbitrarily well, given consistent data and enough neurons in 

its hidden layer [29][30].  Figure 3 displays the neural 

network structure with a given 3D model object sample for 

input object and target object. 

2.3 The Training Samples 

There are three main aims for the geometry compression 

technique; efficient rendering, progressive transmission, and 

maximum compression to save disk space [8]. Geometry 

compression using the Java 3D package can achieve lossy 

compression ratios between 10:6 to one object, depending on 

the original representation format and the desired quality of 

the final level.  Decompression is the reverse of this process. 

The improvement in this package by adding optimization 

compression makes the lossy in detail of the 3D object much 

smaller.  

   

 Figure 3: One hidden layer Feed Forward Neural 

Network Structure [29][30]. 

The geometry compression algorithm steps for the Java 3D 

package are as follows [8]: 

1. Input explicit bag of triangles to be compressed, 

along with quantization thresholds for positions, 

normals, and colors. 

2. Topologically analyze connectivity, mark hard 

edges in normals and/or color. 

3. Create vertex traversal order & mesh buffer 

references. 

4. Histogram position, normal, and color deltas. 

5. Assign variable length Huffman tag codes for deltas, 

based on histograms, separately for positions, 

normals and colors. 

6. Generate binary output stream by first outputting 

Huffman table initializations, then traversing the 

vertices in order, outputting appropriate tag and 

delta for all values. 

 

Also, there are some definitions that have been added to 

identify the critical vertices, so that removing those critical 

vertices can be controlled such that the number of vertices 

remains correspondent to the edges which are never used by 

the compression algorithm. The following are the definitions 

of those vertices depending on invariant vertex identification 

that is provided by [20]: 

1. Boundary vertices of the 3D model are the vertices 

that cannot be used by the compression algorithms 

because these are critical vertices. These are defined 

as vertices which influence the shape of the 3D 

model.  

2. Neighboring vertices to split a vertex will never be 

used by the compression algorithms. 

3. Vertices of edges which do not form a simple 

triangle cannot be collapsed. That can be calculated 

from the data of 3D models by storing all the 

vertices and faces according to the label of vertices, 

and then checking every two consecutive faces. If 

any two consecutive triangles have two of its 

vertices in common, so that two vertices form a 

complex triangle. In this way, this pair of vertices 

cannot be used by the compression algorithm.  

 

The complexity of invariant vertex selection is analyzed as 

follows according to [7]: 

1. The complexity of selecting boundary vertices of the 

3D object by computing convex hull takes  O(n log 

n) using a quick hull algorithm [9]. 

2. The neighboring vertices, which are computed after 

each refinement, has to be split. These set of 

vertices vary according to the compression scheme 

used If p is the number of split vertices in a 

refinement, and d is the maximum degree for a 

vertex, then the complexity for processing these set 

of vertices is O(p*d). 

3. Computing the vertices of edges which are not 

simple triangles. First, sort all the faces according to 

the label of vertices which takes  O(n log n). Then, 

checking between two consecutive faces takes O(n) 

time.   

 

Therefore, the overall worst time complexity of the invariant 

vertex selection algorithm is : 

T(n)= n log n + n log n + n log n+ n=O(n log n)             (2.1) 
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Where T (n) is time complexity and n is the number of 

vertices. 

The overall complexity of remesh algorithm using Java 3D 

geometry compression in addition to invariant vertex selection 

algorithm is as follows[29][30]: 

1. The invariant vertex selection algorithm complexity 

(see equation 2.1) is: 

  T(n) = 3nlog n + n = O(n log n), 

2. The remesh algorithm complexity is: 

  T (n) =15n+4 = O(n).              (2.2) 

3. from equations (2.1) and (2.2): 

T (n) = (3n log n +n) * (15n + 4),  

T (n) = 45n2 log n +15 n2 +12 n log n +4n  

           = O(n2 log n)                           (2.3) 

Where T (n) is time complexity and n is the number of 

vertices. Therefore, O (n2 log n) is the overall worst time 

complexity of the remesh algorithm in addition to invariant 

vertex selection. 

Theorem 1 [30]: The overall worst time complexity of the 

compression algorithm using the proposed MLFF neural 

network is O(n3). 

Proof:   

Equation (2.1) is the worst time complexity for invariant 

vertex selection algorithm.  Equation (2.2) is the worst time 

complexity for remesh algorithm.  Equation (2.3) is the worst 

time complexity for remesh algorithm in addition to 

identifying for invariant vertex. 

The Worst time complexity for pre- process data set (i.e. 

section 2.1) is [29][30]   

T (n) =10n                 (2.4) 

The worst time complexity for MLFF neural network given in 

this paper is [25][26][29] 

T (n) =n3                  (2.5) 

From all of the above, equation (2.1), equation (2.2), equation 

(2.3), equation (2.4) and equation (2.5) :  

T (n) = O (n3). 

Where T(n) is overall time complexity and n is the number of 

vertices. 

2.4 The Results 

The network trains 1000 times with the training set until the 

Mean Square Error (MSE) is small; say less than a given 

   , this MSE is the difference between the output objects 

and desired objects, and is given by:  

                
   

   
 
                                                 (2.6) 

Where X are the coordination vertices (3D point) in original 

mesh, X' are the coordination vertices (3D point) in 

compressed mesh, N denotes the number of rows and M the 

number of columns in the array of vertices coordinated, 

respectively. Training automatically stops when 

generalization stops improving, as indicated by an increase in 

the Mean Square Error (MSE) of the validation samples [30].  

The network will be trained with a gradient-descent back 

propagation algorithm with adaptive learning rate. Training 

time for each model takes approximately 2 hours and 30 

minutes; for all the ten models takes 25 hours and 12 minutes 

[30].  In another set of experiments, training time for each 

model takes approximately 5 hours and 4 minutes. For all the 

ten models, it takes 55 hours and 40 minutes [29]. 

Table 2.1 shows the results achieved by the proposed 

algorithm for some models.  Angel Model[29], Happy 

Model[29], Horse Model[29][30], Dragon Model[29], Bunny 

Model[29][30], and Cow Model[29][30].  

They entered to MLFF neural, where: 

Compression Ratio = 
                          

                             
                                                                                                                                                                                             

Signal to Noise Ratio =  




N

iN 1

1
[(X'– X)2 + (Y'– Y)2+(Z'– Z)2] 

where N denotes the number of vertices, X', Y' and Z' are 

coordinates in compressed 3D object and X, Y and Z are the 

coordinates in the original object.   

Obviously, the number of neurons in the input layer is 4, 

hence, the total size of the object on Disk = nf *ns *4*3, where 

nf denotes the number of faces, ns denotes the number of 

vertices. Denote that each face has three vertices and the 

number of neurons in the input layer is 4. Size will be in byte.   

See figure 4 for an example of a model before and after 

compression. 

By using MLFF neural network algorithm, the performance of 

the compression increases. The compression ratio is between 

5.3 and 3.3 of the original object. The noise ratio depends on 

the MSE (error function), given equation (2.6), which 

provides minimum noise for the visual eye [29][30].   

3. WATERMARKING ALGORITHM 

FOR COMPRESSED 3D OBJECT  
The output result from the compression algorithm mentioned 

in the previous section, which is the compressed 3D model, 

will be the input for the watermarking algorithm proposed in 

this section. The proposed watermarking algorithm is based 

on a spherical wavelet transformation which is considered 

among the most robust watermarking methods [6][17][24]. 

The watermarking algorithm in this paper is based on the 

method in [13], which performs the efficient spherical wavelet 

function, depending on the spherical wavelet presented in 

[31].  The following sections will explain how the proposed 

algorithm should embed and extract the Watermark in the 

compressed 3D mesh model.                                                                                                                                                                                                                                             

3.1 Generate the Sphere Coordinate for 

Each Vertex in 3D Mesh using spherical 

parameterization 

3.1.1 Construct a harmonics function on the 

Sphere and perform spherical harmonic 

transformation  

It is popular to represent a 3D shape with functions 

       defined on the unit sphere, sampled on a regular 
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grid of size n x n of angles of elevation    (0≤   ≤π), and 

azimuth   (0≤  ≤2π).  

Spherical harmonic function represents a data set on the 

sphere. The function used for this representation is spherical 

harmonics that helps in making the multi-resolution 

representation of the 3D mesh. Any point on the unit sphere 

can be denoted as follows:  

P  =  (cos   sin  ,  sin   sin  ,  cos   ),  where     (0≤   ≤π) 

and   (0≤  ≤2π) denote the angles of longitude and latitude 

respectively. The spherical shape function        is defined 

on the unit sphere and the expansion of        in spherical 

harmonics is defined to be [19]: 

              
      

        
                                (3.1) 

Where the normalized spherical harmonics 

  
                                                     are 

defined respectively by: 

  
                  

                                       (3.2) 

And 

          
                  

 
         

 

 
   

  
                                                                            (3.3) 

where  

    = 
            

        
, and 

  
      is the associated Legendre polynomial of          

and          

  
                    

  

   
         

By Rodrigues’ formula : 

      
 

     
 
  

   
            where 

    , m ={-l, -l+1, …,l-1,l} 

3.1.2 Perform a Spherical Parameterization for 

the 3D Mesh 

Parameterization is crucial to many applications such as 

texture mapping, morphing and geometric signal 

processing. 

Spherical parameterization is mapping a mesh into a sphere 

such that the 3D model can be defined as spherical signals. 

This step requires that the mesh is homeomorphic to 

sphere [14]. Several methods were developed for 

parameterization over the unit sphere [1][14][28][34].  We 

use the algorithm developed in [13][34].  

 

The parameterization of a triangle mesh onto the sphere 

means assigning a 3D position on the unit to each of the mesh 

vertices. The topological sphere for the 3D object is a close 

manifold genus mesh that means embedding its connectivity 

graph on the sphere to get a spherical parameterization of the 

original mesh.  

Figure 4: Shaded and point cloud Dragon 3D object model 

before and after compression [29]. 
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Table 2.1: Compression result of the proposed MLFF 

neural network [29][30]. (*CPU Time returns the total 

CPU time (in seconds) used by MATLAB® application 

from the   time it was started.  This number can overflow 

the internal representation and wrap around.) 

 

According to [19], the basis mesh is transformed into a 

spherical mesh using centric.  Therefore, a sequence of 

successive vertex split operations and the corresponding local 

parameterization of the deleted vertices on the spherical mesh 

have been applied. As illustrated in figure 5, the method 

described in [13] involves the following steps that explain 

how spherical parameterization information is generated for 

the 3D mesh: 

1. Generating a progressive mesh representation with 

local parameterization information based on 

equations (3.1), (3.2) and (3.3). Edge collapse 

operation is iteratively performed until the mesh is 

simplified into a convex polyhedron. For each edge 

collapse, the two decimated vertices are 

parameterized over the resultant simplified mesh.  

2. Start with the initial spherical mesh yielded by 

projecting the base mesh recorded in the previous 

step onto the unit sphere. The sequence of vertex 

split operations is performed progressively. For 

each vertex split, the two split vertices are 

positioned on the unit sphere using the recorded 

connectivity and local parameterization 

information. The procedure of edge collapse with 

local parameterization is in Figure 6 [13].  

3. Computing the subdivision of each triangle into 4 

smaller triangles in 3D mesh, and then project on the 

sphere whose radius is one unit. 

 

Generally speaking, the steps commonly used to compare 3D 

shapes are [16]: Normalization, Parameterization, Spherical 

Harmonic Transform (SHT), and Shape descriptors. 

Figure 7 shows the samples for applying section 3.1 on 3D 

mesh model.  The output of section 3.1 will be the input of next 

section 3.2. 

3.2 Generate the Spherical Wavelet 

Transformation 

Wavelets have been proved to be powerful bases for use in 

signal processing based on the fact that they only require a 

small number of coefficients to represent general functions and 

large data sets. Due to local support in both the spatial domain 

and the frequency domain, which are suited for spare 

approximation of function, the spherical wavelet transform is 

chosen in this work.  In fact, wavelets are basis functions 

which represent a given function at multiple levels of detail. 

Due to their local support in both spatial domain and frequency 

domain, they are suited for sparse approximations of functions. 

We adopt the spherical wavelet proposed in [31]. In 

particular, the butterfly wavelet transformation is selected. The 

following is a brief description about the wavelet 

transformation in general, and later the butterfly wavelet 

transformation in particular. 

The general wavelet transformation of a function   is 

constructed as follows [31]: 

Analysis: (forward transform) 

                                                      (3.4) 

This represents the scaling function coefficient, fine to coarse. 

                                                   (3.5) 

This represents wavelet coefficient, fine to coarse On the other 

hand, the inverse wavelet transformation [31]:  

Synthesis: (backward transform) 

                                                       (3.6) 

This represents the scaling function coefficient, coarse to fine. 

In equations (3.5) and (3.6), n,• and   ,• are the 

approximation and wavelet coefficients of the function at 

resolution j, respectively. The decomposition filters ĥ, ĝ, and 

the synthesis filters h, g corresponds to the spherical wavelet 

basis functions. The forward transform is performed 

recursively starting from the shape function  = n,• at the 

finest resolution n to get n,• and   ,• at level j, j=n-1,…,0. The 

coarsest approximation n-i,• is obtained after i iterations (0 < i 

≤ n). In other words, when n,• (n is finest resolution level) is 

given, we can recursively perform the above analysis 

process (forward transform) to get   ,•  the wavelet 

coefficients  at  the  current  level,  and  the  coarsest 

approximation part n-i,• after performing the decomposition i 

3D Models 

Samples 

/Performance 

Metrics 

Angel 

Model 

Happy 

Model 

Horse 

Model 

Dragon 

Model 

Bunny 

Model 

Cow 

Model 

Max face ratio 0.30000 0.20000 0.30000 0.10000 0.20000 0.30000 

Edges  collected 711072 1630179 145449 1308351 104288 8706 

Edge  processed 166044 439719 33948 366488 28545 2111 

Edge collapsed 165917 435087 33939 353500 27811 2032 

No. of edges  removed 497751 1305261 101817 1060500 83433 6096 

No  of final  edges 213321 326313 43632 248756 20855 2610 

Compression ratio 3.33304 5.05457 3.33343 5.31049 5.05457 3.33384 

Mean Square  Error 0.69465 0.82077 0.79666 0.81663 0.79376 0.76822 

Vertex signal to noise 

ratio 
0.24736 0.20456 0.00527 0.01556 0.01269 0.18737 

*Execution Time as  

CPU Time 
76.74 191.65 15.35 172.97 12.23 1.10 
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times [13]. Similarly, if we have n-i,• and   ,• (j=n−i, n−i+1, ..., 

n−1), we can perform the synthesis process (inverse transform) 

recursively to get the n,• Different h, ĥ, g, ĝ denote different 

wavelet basis function.  In Euclidean space we have hj, k, l =hi-2k 

(the same with g, ĝ), but in general manifold they are 

dependent on scale and position.  The abstract sets M(j) and 

K(j) are index sets on the sphere such that              

       , and K(n) = K is the index set at the finest resolution. 

The mesh including dashed edges in the figure 8 is assumed as 

resolution j+1 level. Here K(j) denotes the point set of the 

intersection points of the solid lines and M(j) denotes the set of 

the intersection points of the dash lines. We will compute the j 

and    approximation part and detailed part, by single 

decomposition in the neighborhood of m [13]. 

The work done in [13] was based on linear and linear-lifting 

transformation methods, where in linear transformation, the 

scaling coefficients (approximation part) are sub-sampled and 

kept unchanged. This basic inter-polatory form uses the stencil 

k   K = {v1,v2} for analysis and synthesis: 

            
 

 
                                     (3.7) 

            
 

 
                                                    (3.8) 

respectively. 

Note that this stencil does properly account for the geometry 

provided that the m sites at level j+1 have equal geodetic 

distance from the {v1,v2} sites on their parent edge. Linear 

lifting update the scaling coefficients by using the wavelet 

coefficients of linear wavelet transform to assure that the 

wavelet has at least one vanishing moment    sj,v1,m = sj,v2,m = 

1/2. In this work the Butterfly transformation [31] is used to 

decompose the geometric signal of the approximation and 

detailed parts, and uses all immediate neighbors (all the sites  

km = {v1,v2, f1,f2,e1,e2,e3,e4}. Where sv1=sv2= 
 

 
, sf1=sf2= 

 

 
 and 

se1=se2=se3=se4= - 
 

  
) in construction of the smooth mesh. 

Analysis: (Butterfly Transformation) 

                                                                                 (3.9)               

             
 

 
                     

 
 

 
                    

 

  
                                                         (3.10) 

Synthesis: (Butterfly Transformation) 

                                                                                 (3.11)  

            
 

 
                     

 

 
                    

 
 

  
                                                         (3.12) 

Figure 5: Global spherical parameterization [13] 

Figure 6: Edge collapse with local parameterization [13] 

 

Figure 7: Samples before and after applying section 

3.1[29][30]. 
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The butterfly transformation is considered to take more time 

than a linear transformation, but because the work is on a 

compressed domain this makes the butterfly and linear close in 

time consumption. However, the butterfly is supposed to be 

more robust as regards the watermarking algorithm; in this 

work the level wavelet decomposition will be to 3 levels (see 

figure 9). 

 

Figure 8: Neighbors used in spherical wavelet 

transformation [13]. 

The following sections will explain how the proposed 

algorithm should embed and extract the Watermark in the 

compressed 3D mesh model. 

3.3 Embedding Watermark [11] 

3.3.1 Generation Watermark and its Capacity 

A watermark can be a secret key or image. This algorithm is 

adopted to embed a watermark as a secret key or image. 

Embedding a watermark by these two ways should be 

sequences of binary bits, which means that by the secret key 

case (all characters and numbers) should be converted to a 

sequence of binary bits; and in the case of image, the image 

should be converted to a gray scale level in order to be as a 

sequence of binary bits. However, in all experimental results 

that have been displayed in this paper, just the image method 

was used because it is more complex than the secret key, and 

this assures coverage for the entire model. 

Capacity of Watermark means the amount of information 

embedded in a 3D object; this amount should be closely related 

to the complexity of the object (number of vertices, number of 

faces). It is assumed that the data capacity of a watermark 

should be not more than the complexity of the 3D object, 

depending on the number of vertices. Dependent on choosing 

the watermark as an image, the logo image shouldn’t be more 

125*125 pixels (which was observed from experiments) and 

then converted to binary (gray scale), which produced 16384 

bits ready to embed into the 3D object. 

3.3.2 Watermark Embedding 

The watermark embedding is done by the following equation: 

  
  
    

 
       

 
                     (3.13) 

where   
  

 is the ith vertex of M′ after the watermark is 

embedded and belongs to band j. On the other hand,    
 
  is  the  

set of all  vertices of  M  and  belong  to  band  j.  w is the  

watermark (logo image for example), and F(•) is a function to 

compute the weight of the embedding intensity, which is 

related with the band j. Here    is used to control the global 

intensity of the watermark and is only related with band j.  In 

our implementation, the function F is defined by [13]: 

    
 
   

 

 
    

 
                                    

     
 
                                     

          

               (3.14) 

3.4 Extracting the Watermark 

In order to extract the watermark from a 3D model the 

following steps have been applied: 

Figure 9: The samples before and after applying the 

spherical wavelet transformation. The colored vertices are 

induction for wavelet coefficients [29][30]. 
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3.4.1 Mesh Registration  

The mesh registration used here is based on the ICP (Iterative 

Closest Point) algorithm [4].  It was applied on the 

watermarked mesh as follows: 

Input:  The point set P with Np points from the data shape and 

the model shape M (section 3.2). The data set is 

initialized. The registration vectors are defined 

relative to the initial data set. 

Output: The final registration vectors output represents the 

complete transformation. 

Process: The following four steps are applied until 

convergence within a tolerance   

1. Compute the closest points of the Squared Euclidian 

distances                   , 

2. Compute the registration (rotation and translation), 

3. Apply the registration, 

4. Terminate the iteration when the change in Mean 

Square Error (MSE) equation (2.6) falls below a 

preset threshold    . 

 

3.4.2 Spherical Wavelet Forward Transformation 

After producing the mesh registration, the spherical wavelet 

forward transformation is applied on two meshes  

1. The registration mesh  

2. The compressed mesh (i.e. the original mesh     

before applying the watermarking algorithm) 

 

Compare the results of the meshes in order to extract the 

watermark image as a sequence of binary digits (see sub-

section 3.3.1). 

4. EXPERIMENTAL RESULTS AND 

EVALUATIONS AGAINST ATTACKS 

4.1 Performance evaluation 

This section presents the evaluation of the proposed 

watermarking algorithm. There are two performance metrics, 

which will be discussed below. 

4.1.1 Sampling and precision control 

The visual impact of the watermarking on the protected 3D 

object should be as limited as possible to measure the effect of 

the embedded watermark on 3D objects.  

In this paper, Hausdorff distance d is used to quantify the 

maximum geometric error. Generally speaking, the Hausdorff 

distance d is a measure defined between two point sets. 

In section 3.1, the geometrical signal on the unit sphere has been 

obtained. In order to perform spherical wavelet transform over 

the geometrical signal, the signals should be sampled regularly 

over the sphere. As illustrated in figure 10, we first perform 

recursive 1-split-to-4 subdivision of the tetrahedral base shape as 

used by [31], and then we sample the signals at the vertices of 

the subdivision spherical mesh.  In practice, we wish that the 

generated regular mesh approximates the original mesh with a 

given tolerance  . 

Let M be the original mesh and SM is the sampled mesh. We 

perform inverse sampling on SM to get mesh M′. The inverse 

sampling will be executed until the following equation is 

satisfied [13]: 

            
    

   
                                                   

                                                                                                           

where    is a user-specified error threshold,    and   
  are vertices 

on M and M′ respectively.  

4.1.2 Processing Time  

For this watermarking algorithm, most of the time consumed 

was spent on calculating coefficients by spherical wavelet 

transformation; the embedded watermark and extracted 

watermark don’t take a lot of time compared with wavelet 

transformation. There is no mathematical way to calculate the 

time processing here but by experimental results shown in table 

2.1, it can be noticed that time processing increases according 

to an increasing number of vertices.  Table 4.1 shows the 

results that have been achieved by applying the watermarking 

algorithm in this paper on the six models [29][30]. 

4.2 Testing  

For testing the watermarking algorithm implemented in this 

paper, the following attacks were chosen to attack 3D models 

samples [29][30]: 

1. Translation (x+20,y-5,z-13). 

2. Translation (x-2, y+13, z+5). 

3. Rotation (y- coordination 30˚). 

4. Rotation (x-coordination 30˚ and z-coordination 60˚). 

5. Scale (x-scale 0.6,y-scale 2, z-scale 3). 

6. Scale (x-scale 3, y-scale 0.5, z-scale 0.2). 

7. Smoothing mesh as noise filtering with regular 

subdivisions 1:4. 

8. Lossy compression provided by [10], (look to figure 11). 

 

To measure the robustness of the watermarking algorithm, the 

following measurements were used:  

1- The Bit Error Rate (BER) is used, see Equation (4.2). The 

BER is a rate that measures the errors that appear after the 3D 

model is attacked (the ratio of number of destroyed bits to the 

total bit length in the extracted watermark). 

    
                              

                      
                                      (4.2) 

where        is the sequence of binary bits embedded into the 

3D model before being distributed over the Internet and 

attacked;         is the sequence of binary bits that are 

extracted from the 3D model after being attacked; ⊕is an 

(Exclusive Or) operation that leads to a sequence of ones in the 

positions that had errors; Counterrors is a counter that holds how 

many errors appear after attacks; and Total Number of Bits is 

the number of bits in        or the original watermark that is 

embedded into the 3D model before being attacked. 
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2- The Survival Rate (SR) is the rate of survival of a watermark 

under attack formations.   

SR =  1-BER                                                                        (4.3) 

Table 4.2 shows the measurements of robustness that are 

achieved by applying the watermarking algorithm in this paper 

on the models of [29][30] using BER. Table 4.3 shows the 

measurements of robustness achieved by applying the 

watermarking algorithm in [13] also using BER. From the 

results that appear in Tables 4.2 and 4.3 it had been confirmed 

that applying a watermarking algorithm on a compressed 

domain is more robust than applying a watermarking algorithm 

on a normal domain. Figure 12 and Figure 13 show a 

comparison between the performed work in this paper and the 

work in [13] from the  robustness of two watermarking 

algorithms against the attacks on the models of [29][30]. This 

clearly shows that the performance from the BER of proposed 

watermarking algorithm is better in most types of attacks than 

the algorithm in paper [13]. 

Figure 10: Spherical meshes subdivision. The subdivided 

meshes are used for sampling [31] 

Figure 11: The Happy Model Before and After 

Compression attack [29]. 

 

Table 4.1: Performance measurement of the watermarking 

algorithm in this work (*CPU Time returns the total CPU 

time (in seconds) used by MATLAB® application from the 

time it was started. This number can overflow the internal 

representation and wrap around.)  

 

Figure 12: Experimental result for the work proposed in 

[13] 

Figure 13: Experimental result for the work in this paper  

3D Models 

Samples / 

Performance  

Metrics 

Angel 

Model 

Happy 

Model 

Horse 

Model 

Cow 

Model 

Dragon 

Model 

Bunny 

Model 

Geometric 

Error 
0.0550 0.0991 0.1912 0.2990 0.02100 0.0791 

*Time 

Processing 
468.56 703.26 370.83 94.59 226.35 532.92 
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Table 4.2: Robustness measurement results of BER for a watermarking algorithm in this paper. 

Table 4.3: Robustness measurement results of BER for the algorithm in paper [13]. 

 

5. CONCLUSIONS  

A compression algorithm using an MLFF neural network that 

produces a compressed 3D model (with a compression ratio 

that reaches 5.5) reduces the size of the 3D model with 

minimum loss of details and vertex signal to noise ratio. This 

is noticed experimentally by applying the proposed algorithm 

on different 3D models samples [29][30]. The MLFF neural 

network as an AI tool played an important role in the 

 

 

performance of the compression algorithm making the 

algorithm’s performance better than the 3D compression 

geometry proposed in [31]. 

 

The methodology of applying a watermark on a 3D model 

after compression, on a compressed domain, is proved to 

reduce the processing time of the watermarking algorithm, in 

addition to allowing the embedding of the watermark into the 

model without much increase on model size, compared to the 

3D Models Samples 

/ Robustness 

Metrics against Attacks 

Angel 

Model 

Happy 

Model 

Horse 

Model 

Cow 

Model 

 

Dragon 

Model 

 

Bunny 

Model 

Lossy Compression 0.0291 0.0535 0.0945 0.1764 0.0665 0.1160 

Translation (x+20,y-5, z-13) 0.0018 4.2725e-004 0.0015 2.4414e-004 9.4604e-004 5.4932e-004 

Translation (x-2, y+13, z+5) 0.0011 4.2705e-004 0.0035 2.4454e-004 9.4613e-004 5.4902e-004 

Rotation (y-coordination 30˚) 0.0020 9.7656e-004 0.0013 3.0518e-004 6.7139e-004 0.0068 

Rotation (x- coordination 30˚ And z- coordination 60˚) 0.0026 9.7436e-004 0.0025 3.0508e-004 6.7139e-004 0.0040 

Scale (x-scale 0.6 ,y-scale 2, z-scale 3) 8.2393e-004 4.5746e-004 1.5279e-004 7.0180e-004 5.1890e-004 0.0042 

Scale (x-scale 3, y-scale 0.5 , z-scale 0.2) 8.2397e-004 4.5776e-004 1.5259e-004 7.0190e-004 5.1880e-004 0.0012 

Smoothing mesh with regular subdivisions 1:4 0.0183 0.0237 0.0243 0.0304 0.0245 0.0400 

3D Models Samples 

/ Robustness 

Metrics against Attacks 

Angel 

Model 

Happy 

Model 

Horse 

Model 

Cow 

Model 

 

Dragon 

Model 

 

Bunny 

Model 

Lossy Compression 0.4888 0.3052 0.4272 0.3709 0.2374 0.5432 

Translation (x+20,y-5, z-13) 0.0012 0.0014 9.7656e-004 6.1035e-004 0.0024 0.0015 

Translation (x-2, y+13, z+5) 0.0011 0.0017 9.7666e-004 6.1075e-004 0.0022 0.0019 

Rotation (y-coordination 30˚) 0.0025 5.4932e-004 0.0031 0.0018 0.0043 8.5449e-004 

Rotation (x- coordination 30˚ And z- coordination 60˚) 0.0037 5.4911e-004 0.0039 0.0012 0.0053 8.5489e-004 

Scale (x-scale 0.6 ,y-scale 2, z-scale 3) 0.0018 0.0061 0.0055 0.0049 0.0221 0.0171 

Scale (x-scale 3, y-scale 0.5 , z-scale 0.2) 0.0023 0.0049 0.0061 0.0051 0.0220 0.0165 

Smoothing mesh with regular subdivisions 1:4 0.1366 0.1831 0.3520 0.2191 0.3484 0.4211 
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original model before compression. Implementing the 

watermarking algorithm is based on a spherical wavelet as a 

butterfly transformation method for vertex bases wavelet 

coefficients.  The experimental results and evaluation against 

attacks shows that watermarking algorithm proposed in this 

paper met the technical requirements of robustness that 

mentioned earlier in this paper. 
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