
International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

1

Robust Digital Watermarking for Compressed 3D Models
based on Polygonal Representation

Samir Abou El-Seoud
Faculty of Informatics and

Computer Scieence, British
University in Egypt (BUE)

Nadine Abu Rumman
Prince Sumaya University for
Technology (PSUT), Jordan

Islam A.T.F. Taj-Eddin
Faculty of Informatics and

Computer Scieence, British
University in Egypt (BUE)

Khalaf F. Khatatneh

Al-Balqa Appl. Univ., Jordan

Christain Gütl

IT-School, IICM-TU Graz, Austria

ABSTRACT

Multimedia has recently played an increasingly important role

in various domains, including Web applications, movies,

video game and medical visualization. The rapid growth of

digital media data over the Internet, on the other hand, makes

it easy for anyone to access, copy, edit and distribute digital

contents such as electronic documents, images, sounds and

videos. Motivated by this, much research work has been

dedicated to develop methods for digital data copyright

protection, tracing the ownership, and preventing illegal

duplication or tampering. This paper introduces a

methodology of robust digital watermarking based on a well-

known spherical wavelet transformation, applied to 3D

compressed model based on polygonal representation using a

neural network. It will be demonstrated in this work that

applying a watermarking algorithm on a compressed domain

of a 3D object is more effective, efficient, and robust than

when applied on a normal domain.

Keywords

Robust Watermarking, Spherical Wavelet Transformation,

Artificial Intelligent, Multi-layer Feed Forward Neural

Network, Attacks, Fast Fourier Transform Butterfly method,

Lossy Compression, Bit Error Rate.

1. INTRODUCTION
Multimedia continues to play an increasingly important role in

various domains, including Web applications, movies, video

games, and medical visualization. The rapid growth of digital

media data over the Internet, on the other hand, makes it easy

for everybody to access, copy, edit and distribute digital

contents, such as electronic documents, images, sounds and

videos [23]. Motivated by this, much research work has been

dedicated to develop methods for digital data copyright

protection, tracing the ownership and preventing illegal

duplication or tampering. One of the most effective

techniques for the copyright protection of digital media data is

a process, in which a hidden specified signal (watermark) is

embedded in digital data. The watermarking technique should

allow people to permanently mark their documents, and

thereby prove claims of authenticity or ownership. The

existing efforts in the literature on digital watermarking have

been concentrated on media data such as audio, images, and

video [6][12].

There are no effective ways for the copyright protection of

three dimensional (3D) models against attacks, especially

when the copyright of the models is distributed over the

Internet. The problem of 3D model watermarking has

received less attention from researchers due to the fact that the

technologies that have emerged for watermarking images,

videos, and audio cannot be easily adapted to work for

arbitrary surfaces or polygons.

Watermarking schemes can be classified into private, public,

and semi-public [9]. A private watermarking scheme needs

the original 3D model and original watermarks to extract the

embedded watermarks. A public watermarking scheme can

extract embedded watermarks in the absence of the original

3D model and original watermarks, which is also called blind

so that all fragile watermarking schemas are also public. A

semi-public watermarking scheme does not need the original

3D model in the embedded watermark extraction stage, but

the original watermarks are necessary for comparing with the

extracted watermarks.

In this research, the 3D object is used without texturing. Thus,

the watermarking, in this paper, is based on connectivity and

geometry watermarking. In addition, working with

connectivity and geometry watermarking is more robust than

texture watermarking because they protect their components,

which are vertices and faces from mesh operation attacks like

scaling, smoothing compression, and geometry

transformation. The watermarking is based on 3D object

attributes, such as geometry and topology that make

embedding watermarking primitives either geometrical

embedding primitives or topological embedding primitives.

Thus, watermarking methods are either a geometry-based

watermarking method or a topology –based watermarking

method. Each of these methods has its own characteristics that

will be discussed next [3].

1.1 Geometry – Based Watermarking

Methods

This method focuses on a geometric feature of the 3D object’s

vertices, so embedding the watermark may modify the

position of the vertices in order to insert the watermark,

changing the length of a line, the area of a polygon, or the

ratio of the volumes of two polygons. One of simplest

examples of this type is embedding a watermark directly onto

the vertex coordinates. It works in the following steps [32]:

1. Modify the coordinates of the vertex by modulating

the watermark signal with a global scaling factor

and a masking weight.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

2

2. The masking weight for each vertex is the average

of differences between the connected vertices to that

vertex.

3. Adding the watermark coordinate values.

1.2 Topology – Based Watermarking

Methods

This method focuses on a topological feature of the 3D object

which is the connectivity of mesh vertices. Therefore,

embedding the watermark changes the topology of a model.

The side effect of this is a change in geometry. Usually,

working with topology is more robust for the watermarking,

where the topology is redefined to encode one or more bits.

One of the most famous examples of this type is encoding

binary bits in triangulating a quadrilateral way [18]. Look to

Figure 1.

Figure 1: Example of Topology Structure [18].

The wavelet transformation had been applied in the

watermarking schema due to robustness measurements

[6][17][24].

The pioneer works of watermarking 3D models were

performed by Ohbuchi et al. [21], who introduced several

schemes for watermarking polygonal models. One scheme

embeds information using groups of four adjacent triangles,

while another scheme proposed using ratios of tetrahedral

volumes. The tetrahedral are formed by the three vertices of

each face and a common vertex that is computed by averaging

a few fixed mesh vertices. Moreover, a way of visually

embedding information into polygonal mesh data is proposed

by modifying the vertex coordinates, the vertex topology, or

both. Ohbuchi et al. [22] also proposed a frequency domain

approach to watermark 3D shapes, where the mesh is

segmented first into some patches, and then for each patch, a

spectral analysis is conducted, and the watermark information

is finally embedded into the frequency domain at the

modulation step.

The approach of Guillaume [10] is quite different; Guillaume

presented a digital watermark embedded on 3D compressed

meshes based on a subdivision surface, which chooses a 3D

object segmented into surface patches as a target, and then

hides the watermark in the compressed object.

Praun [27] provided a robust watermarking scheme suitable

for proving ownership claims on triangle meshes representing

surfaces in a 3D model by converting the original triangle

mesh into a multiresolution format, consisting of a coarse base

mesh and a sequence of refinement operations. Next, a scalar

basis function is defined over its corresponding neighborhood

in the original mesh. A watermark is then inserted as follows:

each basis function is multiplied by a coefficient, and added to

the 3D coordinates of the mesh vertices. Each basis function

has a scalar effect at each vertex and a global displacement

direction, where this process is applied as a matrix

multiplication for each of the three spatial coordinates x, y,

and z.

In the 3D model represented as a cloud of vertices and a list of

corresponding edges, Kundur [27] provided a new method

based on finding and synchronizing particular areas used to

embed the message by using data hiding that relies on

modifying the topology of the edges in a chosen area.

A wavelet-based multiresolution analysis is used for

polygonal models proposed by Wan-Hyun Cho [33]. First,

generate the simple mesh model and wavelet coefficient

vectors by applying a multiresolution analysis to a given mesh

model. Then, watermark embedding is processed by

perturbing the vertex of chosen mesh at a low resolution

according to the order of norms of wavelet coefficient vectors

using a look-up table. The watermark extraction procedure is

to take binary digits from the embedded mesh using a look-up

table and similarity test between the embedded watermark and

the extracted one follows.

JIN Jian-qiu et al [15] proposed a robust watermarking for 3D

mesh. The algorithm is based on spherical wavelet

transformation, where the basic idea is to decompose the

original mesh of details at different scales by using a spherical

wavelet; the watermark is then embedded into the different

levels of details. The embedding process includes: global

sphere parameterization, spherical uniform sampling,

spherical wavelet forward transformation, embedding

watermark, spherical wavelet inverse transformation, and at

last re-sampling the watermarked mesh to recover the

topological connectivity of the original model.

Adrian G.Bors [5] also proposed a public watermarking

algorithm that is applied on various 3D models and does not

require the original object in the detection stage using a key to

generate a binary code. A set of vertices and their

neighborhoods are selected and ordered according to a

minimized distortion visibility threshold. The embedding

consists of local geometrical changes of the selected vertices

according to the geometry of their neighborhoods.

The approach proposed in [2] which uses a new blind digital

watermarking algorithm is based on discrete wavelet packet

transformation and a Backpropagation (BP) Neural Network.

Backpropagation is a common method of training artificial

neural networks so as to minimize the objective function

The contribution in this paper is to apply digital watermarking

algorithm based on a spherical wavelet transform [13] applied

to polygonal 3D mesh models. These polygonal 3D mesh

models were compressed using a Multi Layer Feed Forward

(MLFF) neural network [25][26][29][30]. The paper will

combine geometric methods with topological methods in the

watermarking algorithm.

The proposed robust watermarking algorithm should meet the

following technical requirements:

1. Direct Embedding: The watermark should be

directly embedded into the compressed geometry

data or topology data of the polygonal model.

2. Invisible: The embedded watermark must be

perceptually invisible within the model and

unnoticeable for the user.

3. Small geometric error: The geometric error of the

polygon data caused by the embedding must be

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

3

small enough in order not to disturb the application

use.

4. Robustness: The embedded watermark must be

unchanged or difficult to be destroyed under the

possible 3D geometric operations done on the 3D

polygonal model.

5. Capacity: The amount of the watermark which can

be embedded in the model is large enough to

record the information needed for the application.

6. Efficient Space: A data embedding method should

be able to embed a non-trivial amount of

information into model.

This paper is divided as the following:

 In section II, a brief background is given about the

proposed compression methodology based on a

Multi Layer Feed Forward (MLFF) neural network

[25][26][29][30].

 In section III, the output from compression, which is

a compressed 3D polygonal mesh model, will be the

input for a proposed watermarking algorithm. The

algorithm applies the watermark, which can be a

secret key or image, in a spherical wavelet

transformation for the compressed data set [13].

 In section IV, testing results will be presented on

some 3D models [29][30] samples. The proposed

watermarking algorithm will be evaluated against

various types of attacks [13].

 In section V, we present our conclusion. The

experimental results show that the proposed

watermark algorithm on compressed 3D objects:

1. Is a very efficient and robust. Moreover,

it is proved to reduce the processing time.

2. Allow the embedding of the watermark

into the model without much increase on
the model size.

2. 3D OBJECT COMPRESSION

ALGORITHM

neural network employed in this paper is a multilayer feed-

forward neural network (MLFF) [25][26][29][30], which

provides lossy compression. The neural network tool used for

this algorithm is the Mathworks tool (Neural Network

Toolbox’s with Multi-layer Feed Forward Architecture).

MLFF is a well known neural model, which consists of an

input layer, one or several hidden layers and an output layer.

All nodes are fully connected. The neurons in the feed-

forward neural network are generally grouped into layers.

Signals flow in one direction from the input layer to the next,

but not within the same layer. An essential factor of

successes of the neural networks depends on the training

network. Among the several learning algorithms available,

back-propagation has been the most popular and most widely

implemented.

The object has been created manually (modeling them using

Autodesk Maya 2008); and before entering the data in MLFF.

Pre-processing should be applied on the data [29][30].

The following sub-sections will briefly explain the steps of

the compression [25][26][29][30].

Figure 2 shows the difference between the MLFF neural

network algorithm employed in this paper and the Java 3D

geometry compression package.

Figure 2: Comparing between the MLFF compression

algorithm and 3D Java geometry compression package

[29][30].

2.1 The Pre-Process Data Set

Before the inputs are presented to the MLFF, the data should

be pre-processed. Accuracy of the outputs of the neural

network depends on the data pre-processing step.

The following are the steps that should be done in the data

pre-processing stage:

 Normalization

 Extract main features of the dataset

The supervised learning problem is divided into parametric

and nonparametric models. The problem here lies in the

nonparametric model because there is no prior knowledge of

the form of the function being estimated. Therefore, it is

required to use a neural network that could be trained using

different models samples. This type of neural learning is

called learn by example [29][30]. The learning process will be

performed by a learning algorithm. The objective of this

algorithm is to change the synaptic weight of the network to

attain a desired design objective, which is the compressed

object. Once the network has been trained, it is capable of

generalization [29][30].

2.2 The Structure of the MLFF Neural

Network

The neural network structure contains an input layer, one

hidden layer, and an output layer; all nodes are fully

connected. The network takes x, y and z coordinates of

vertices as input; the activation function is a sigmoid logistic

function with a learning rate of 0.9 [29][30].

A sigmoid logistic function, also known as a logistic function,

is given by the relationship [29][30]:

where β is a slope parameter. The sigmoid has the property of

being similar to the step function, but with the addition of a

region of uncertainty. Sigmoid functions in this respect are

very similar to the input-output relationships of biological

neurons, although not exactly the same. Below is the graph of

a sigmoid function. Sigmoid functions are also prized because

their derivatives are easy to calculate, which is helpful for

calculating the weight updates in certain training algorithms.

The derivative is given by [29][30]:

3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Compression Ratio

N
oi

se
 R

at
io

Multi layer feed forward Neural Network

3D java Geomtery Compression Package

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

4

The number of neurons in the input layer is 4, where the first

three input vectors are the x, y and z vertices coordinates, and

the fourth input is the maximum face ratio which indicates

that the maximum face must remain as it is. The number of

neurons in the hidden layer is between 3 and 4. The

compression process overall depends on the hidden layer, so

the number of neurons in the hidden layer should be

absolutely less than the number of neurons in the input layer

to do the compression. For higher accuracy, the number of

neurons in the hidden layer should be increased, but this

reduces the compression process. A two-layer feed-forward

network with sigmoid hidden neurons and linear output

neurons can fit multi-dimensional mapping problems

arbitrarily well, given consistent data and enough neurons in

its hidden layer [29][30]. Figure 3 displays the neural

network structure with a given 3D model object sample for

input object and target object.

2.3 The Training Samples

There are three main aims for the geometry compression

technique; efficient rendering, progressive transmission, and

maximum compression to save disk space [8]. Geometry

compression using the Java 3D package can achieve lossy

compression ratios between 10:6 to one object, depending on

the original representation format and the desired quality of

the final level. Decompression is the reverse of this process.

The improvement in this package by adding optimization

compression makes the lossy in detail of the 3D object much

smaller.

 Figure 3: One hidden layer Feed Forward Neural

Network Structure [29][30].

The geometry compression algorithm steps for the Java 3D

package are as follows [8]:

1. Input explicit bag of triangles to be compressed,

along with quantization thresholds for positions,

normals, and colors.

2. Topologically analyze connectivity, mark hard

edges in normals and/or color.

3. Create vertex traversal order & mesh buffer

references.

4. Histogram position, normal, and color deltas.

5. Assign variable length Huffman tag codes for deltas,

based on histograms, separately for positions,

normals and colors.

6. Generate binary output stream by first outputting

Huffman table initializations, then traversing the

vertices in order, outputting appropriate tag and

delta for all values.

Also, there are some definitions that have been added to

identify the critical vertices, so that removing those critical

vertices can be controlled such that the number of vertices

remains correspondent to the edges which are never used by

the compression algorithm. The following are the definitions

of those vertices depending on invariant vertex identification

that is provided by [20]:

1. Boundary vertices of the 3D model are the vertices

that cannot be used by the compression algorithms

because these are critical vertices. These are defined

as vertices which influence the shape of the 3D

model.

2. Neighboring vertices to split a vertex will never be

used by the compression algorithms.

3. Vertices of edges which do not form a simple

triangle cannot be collapsed. That can be calculated

from the data of 3D models by storing all the

vertices and faces according to the label of vertices,

and then checking every two consecutive faces. If

any two consecutive triangles have two of its

vertices in common, so that two vertices form a

complex triangle. In this way, this pair of vertices

cannot be used by the compression algorithm.

The complexity of invariant vertex selection is analyzed as

follows according to [7]:

1. The complexity of selecting boundary vertices of the

3D object by computing convex hull takes O(n log

n) using a quick hull algorithm [9].

2. The neighboring vertices, which are computed after

each refinement, has to be split. These set of

vertices vary according to the compression scheme

used If p is the number of split vertices in a

refinement, and d is the maximum degree for a

vertex, then the complexity for processing these set

of vertices is O(p*d).

3. Computing the vertices of edges which are not

simple triangles. First, sort all the faces according to

the label of vertices which takes O(n log n). Then,

checking between two consecutive faces takes O(n)

time.

Therefore, the overall worst time complexity of the invariant

vertex selection algorithm is :

T(n)= n log n + n log n + n log n+ n=O(n log n) (2.1)

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

5

Where T (n) is time complexity and n is the number of

vertices.

The overall complexity of remesh algorithm using Java 3D

geometry compression in addition to invariant vertex selection

algorithm is as follows[29][30]:

1. The invariant vertex selection algorithm complexity

(see equation 2.1) is:

 T(n) = 3nlog n + n = O(n log n),

2. The remesh algorithm complexity is:

 T (n) =15n+4 = O(n). (2.2)

3. from equations (2.1) and (2.2):

T (n) = (3n log n +n) * (15n + 4),

T (n) = 45n2 log n +15 n2 +12 n log n +4n

 = O(n2 log n) (2.3)

Where T (n) is time complexity and n is the number of

vertices. Therefore, O (n2 log n) is the overall worst time

complexity of the remesh algorithm in addition to invariant

vertex selection.

Theorem 1 [30]: The overall worst time complexity of the

compression algorithm using the proposed MLFF neural

network is O(n3).

Proof:

Equation (2.1) is the worst time complexity for invariant

vertex selection algorithm. Equation (2.2) is the worst time

complexity for remesh algorithm. Equation (2.3) is the worst

time complexity for remesh algorithm in addition to

identifying for invariant vertex.

The Worst time complexity for pre- process data set (i.e.

section 2.1) is [29][30]

T (n) =10n (2.4)

The worst time complexity for MLFF neural network given in

this paper is [25][26][29]

T (n) =n3 (2.5)

From all of the above, equation (2.1), equation (2.2), equation

(2.3), equation (2.4) and equation (2.5) :

T (n) = O (n3).

Where T(n) is overall time complexity and n is the number of

vertices.

2.4 The Results

The network trains 1000 times with the training set until the

Mean Square Error (MSE) is small; say less than a given

 , this MSE is the difference between the output objects

and desired objects, and is given by:

 (2.6)

Where X are the coordination vertices (3D point) in original

mesh, X' are the coordination vertices (3D point) in

compressed mesh, N denotes the number of rows and M the

number of columns in the array of vertices coordinated,

respectively. Training automatically stops when

generalization stops improving, as indicated by an increase in

the Mean Square Error (MSE) of the validation samples [30].

The network will be trained with a gradient-descent back

propagation algorithm with adaptive learning rate. Training

time for each model takes approximately 2 hours and 30

minutes; for all the ten models takes 25 hours and 12 minutes

[30]. In another set of experiments, training time for each

model takes approximately 5 hours and 4 minutes. For all the

ten models, it takes 55 hours and 40 minutes [29].

Table 2.1 shows the results achieved by the proposed

algorithm for some models. Angel Model[29], Happy

Model[29], Horse Model[29][30], Dragon Model[29], Bunny

Model[29][30], and Cow Model[29][30].

They entered to MLFF neural, where:

Compression Ratio =

Signal to Noise Ratio =

N

iN 1

1
[(X'– X)2 + (Y'– Y)2+(Z'– Z)2]

where N denotes the number of vertices, X', Y' and Z' are

coordinates in compressed 3D object and X, Y and Z are the

coordinates in the original object.

Obviously, the number of neurons in the input layer is 4,

hence, the total size of the object on Disk = nf *ns *4*3, where

nf denotes the number of faces, ns denotes the number of

vertices. Denote that each face has three vertices and the

number of neurons in the input layer is 4. Size will be in byte.

See figure 4 for an example of a model before and after

compression.

By using MLFF neural network algorithm, the performance of

the compression increases. The compression ratio is between

5.3 and 3.3 of the original object. The noise ratio depends on

the MSE (error function), given equation (2.6), which

provides minimum noise for the visual eye [29][30].

3. WATERMARKING ALGORITHM

FOR COMPRESSED 3D OBJECT
The output result from the compression algorithm mentioned

in the previous section, which is the compressed 3D model,

will be the input for the watermarking algorithm proposed in

this section. The proposed watermarking algorithm is based

on a spherical wavelet transformation which is considered

among the most robust watermarking methods [6][17][24].

The watermarking algorithm in this paper is based on the

method in [13], which performs the efficient spherical wavelet

function, depending on the spherical wavelet presented in

[31]. The following sections will explain how the proposed

algorithm should embed and extract the Watermark in the

compressed 3D mesh model.

3.1 Generate the Sphere Coordinate for

Each Vertex in 3D Mesh using spherical

parameterization

3.1.1 Construct a harmonics function on the

Sphere and perform spherical harmonic

transformation

It is popular to represent a 3D shape with functions

 defined on the unit sphere, sampled on a regular

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

6

grid of size n x n of angles of elevation (0≤ ≤π), and

azimuth (0≤ ≤2π).

Spherical harmonic function represents a data set on the

sphere. The function used for this representation is spherical

harmonics that helps in making the multi-resolution

representation of the 3D mesh. Any point on the unit sphere

can be denoted as follows:

P = (cos sin , sin sin , cos), where (0≤ ≤π)

and (0≤ ≤2π) denote the angles of longitude and latitude

respectively. The spherical shape function is defined

on the unit sphere and the expansion of in spherical

harmonics is defined to be [19]:

 (3.1)

Where the normalized spherical harmonics

 are

defined respectively by:

 (3.2)

And

 (3.3)

where

 =

, and

 is the associated Legendre polynomial of

and

By Rodrigues’ formula :

 where

 , m ={-l, -l+1, …,l-1,l}

3.1.2 Perform a Spherical Parameterization for

the 3D Mesh

Parameterization is crucial to many applications such as

texture mapping, morphing and geometric signal

processing.

Spherical parameterization is mapping a mesh into a sphere

such that the 3D model can be defined as spherical signals.

This step requires that the mesh is homeomorphic to

sphere [14]. Several methods were developed for

parameterization over the unit sphere [1][14][28][34]. We

use the algorithm developed in [13][34].

The parameterization of a triangle mesh onto the sphere

means assigning a 3D position on the unit to each of the mesh

vertices. The topological sphere for the 3D object is a close

manifold genus mesh that means embedding its connectivity

graph on the sphere to get a spherical parameterization of the

original mesh.

Figure 4: Shaded and point cloud Dragon 3D object model

before and after compression [29].

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

7

Table 2.1: Compression result of the proposed MLFF

neural network [29][30]. (*CPU Time returns the total

CPU time (in seconds) used by MATLAB® application

from the time it was started. This number can overflow

the internal representation and wrap around.)

According to [19], the basis mesh is transformed into a

spherical mesh using centric. Therefore, a sequence of

successive vertex split operations and the corresponding local

parameterization of the deleted vertices on the spherical mesh

have been applied. As illustrated in figure 5, the method

described in [13] involves the following steps that explain

how spherical parameterization information is generated for

the 3D mesh:

1. Generating a progressive mesh representation with

local parameterization information based on

equations (3.1), (3.2) and (3.3). Edge collapse

operation is iteratively performed until the mesh is

simplified into a convex polyhedron. For each edge

collapse, the two decimated vertices are

parameterized over the resultant simplified mesh.

2. Start with the initial spherical mesh yielded by

projecting the base mesh recorded in the previous

step onto the unit sphere. The sequence of vertex

split operations is performed progressively. For

each vertex split, the two split vertices are

positioned on the unit sphere using the recorded

connectivity and local parameterization

information. The procedure of edge collapse with

local parameterization is in Figure 6 [13].

3. Computing the subdivision of each triangle into 4

smaller triangles in 3D mesh, and then project on the

sphere whose radius is one unit.

Generally speaking, the steps commonly used to compare 3D

shapes are [16]: Normalization, Parameterization, Spherical

Harmonic Transform (SHT), and Shape descriptors.

Figure 7 shows the samples for applying section 3.1 on 3D

mesh model. The output of section 3.1 will be the input of next

section 3.2.

3.2 Generate the Spherical Wavelet

Transformation

Wavelets have been proved to be powerful bases for use in

signal processing based on the fact that they only require a

small number of coefficients to represent general functions and

large data sets. Due to local support in both the spatial domain

and the frequency domain, which are suited for spare

approximation of function, the spherical wavelet transform is

chosen in this work. In fact, wavelets are basis functions

which represent a given function at multiple levels of detail.

Due to their local support in both spatial domain and frequency

domain, they are suited for sparse approximations of functions.

We adopt the spherical wavelet proposed in [31]. In

particular, the butterfly wavelet transformation is selected. The

following is a brief description about the wavelet

transformation in general, and later the butterfly wavelet

transformation in particular.

The general wavelet transformation of a function is

constructed as follows [31]:

Analysis: (forward transform)

 (3.4)

This represents the scaling function coefficient, fine to coarse.

 (3.5)

This represents wavelet coefficient, fine to coarse On the other

hand, the inverse wavelet transformation [31]:

Synthesis: (backward transform)

 (3.6)

This represents the scaling function coefficient, coarse to fine.

In equations (3.5) and (3.6), n,• and ,• are the

approximation and wavelet coefficients of the function at

resolution j, respectively. The decomposition filters ĥ, ĝ, and

the synthesis filters h, g corresponds to the spherical wavelet

basis functions. The forward transform is performed

recursively starting from the shape function = n,• at the

finest resolution n to get n,• and ,• at level j, j=n-1,…,0. The

coarsest approximation n-i,• is obtained after i iterations (0 < i

≤ n). In other words, when n,• (n is finest resolution level) is

given, we can recursively perform the above analysis

process (forward transform) to get ,• the wavelet

coefficients at the current level, and the coarsest

approximation part n-i,• after performing the decomposition i

3D Models

Samples

/Performance

Metrics

Angel

Model

Happy

Model

Horse

Model

Dragon

Model

Bunny

Model

Cow

Model

Max face ratio 0.30000 0.20000 0.30000 0.10000 0.20000 0.30000

Edges collected 711072 1630179 145449 1308351 104288 8706

Edge processed 166044 439719 33948 366488 28545 2111

Edge collapsed 165917 435087 33939 353500 27811 2032

No. of edges removed 497751 1305261 101817 1060500 83433 6096

No of final edges 213321 326313 43632 248756 20855 2610

Compression ratio 3.33304 5.05457 3.33343 5.31049 5.05457 3.33384

Mean Square Error 0.69465 0.82077 0.79666 0.81663 0.79376 0.76822

Vertex signal to noise

ratio
0.24736 0.20456 0.00527 0.01556 0.01269 0.18737

*Execution Time as

CPU Time
76.74 191.65 15.35 172.97 12.23 1.10

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

8

times [13]. Similarly, if we have n-i,• and ,• (j=n−i, n−i+1, ...,

n−1), we can perform the synthesis process (inverse transform)

recursively to get the n,• Different h, ĥ, g, ĝ denote different

wavelet basis function. In Euclidean space we have hj, k, l =hi-2k

(the same with g, ĝ), but in general manifold they are

dependent on scale and position. The abstract sets M(j) and

K(j) are index sets on the sphere such that

 , and K(n) = K is the index set at the finest resolution.

The mesh including dashed edges in the figure 8 is assumed as

resolution j+1 level. Here K(j) denotes the point set of the

intersection points of the solid lines and M(j) denotes the set of

the intersection points of the dash lines. We will compute the j

and approximation part and detailed part, by single

decomposition in the neighborhood of m [13].

The work done in [13] was based on linear and linear-lifting

transformation methods, where in linear transformation, the

scaling coefficients (approximation part) are sub-sampled and

kept unchanged. This basic inter-polatory form uses the stencil

k K = {v1,v2} for analysis and synthesis:

 (3.7)

 (3.8)

respectively.

Note that this stencil does properly account for the geometry

provided that the m sites at level j+1 have equal geodetic

distance from the {v1,v2} sites on their parent edge. Linear

lifting update the scaling coefficients by using the wavelet

coefficients of linear wavelet transform to assure that the

wavelet has at least one vanishing moment sj,v1,m = sj,v2,m =

1/2. In this work the Butterfly transformation [31] is used to

decompose the geometric signal of the approximation and

detailed parts, and uses all immediate neighbors (all the sites

km = {v1,v2, f1,f2,e1,e2,e3,e4}. Where sv1=sv2=

, sf1=sf2=

 and

se1=se2=se3=se4= -

) in construction of the smooth mesh.

Analysis: (Butterfly Transformation)

 (3.9)

 (3.10)

Synthesis: (Butterfly Transformation)

 (3.11)

 (3.12)

Figure 5: Global spherical parameterization [13]

Figure 6: Edge collapse with local parameterization [13]

Figure 7: Samples before and after applying section

3.1[29][30].

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

9

The butterfly transformation is considered to take more time

than a linear transformation, but because the work is on a

compressed domain this makes the butterfly and linear close in

time consumption. However, the butterfly is supposed to be

more robust as regards the watermarking algorithm; in this

work the level wavelet decomposition will be to 3 levels (see

figure 9).

Figure 8: Neighbors used in spherical wavelet

transformation [13].

The following sections will explain how the proposed

algorithm should embed and extract the Watermark in the

compressed 3D mesh model.

3.3 Embedding Watermark [11]

3.3.1 Generation Watermark and its Capacity

A watermark can be a secret key or image. This algorithm is

adopted to embed a watermark as a secret key or image.

Embedding a watermark by these two ways should be

sequences of binary bits, which means that by the secret key

case (all characters and numbers) should be converted to a

sequence of binary bits; and in the case of image, the image

should be converted to a gray scale level in order to be as a

sequence of binary bits. However, in all experimental results

that have been displayed in this paper, just the image method

was used because it is more complex than the secret key, and

this assures coverage for the entire model.

Capacity of Watermark means the amount of information

embedded in a 3D object; this amount should be closely related

to the complexity of the object (number of vertices, number of

faces). It is assumed that the data capacity of a watermark

should be not more than the complexity of the 3D object,

depending on the number of vertices. Dependent on choosing

the watermark as an image, the logo image shouldn’t be more

125*125 pixels (which was observed from experiments) and

then converted to binary (gray scale), which produced 16384

bits ready to embed into the 3D object.

3.3.2 Watermark Embedding

The watermark embedding is done by the following equation:

 (3.13)

where

 is the ith vertex of M′ after the watermark is

embedded and belongs to band j. On the other hand,

 is the

set of all vertices of M and belong to band j. w is the

watermark (logo image for example), and F(•) is a function to

compute the weight of the embedding intensity, which is

related with the band j. Here is used to control the global

intensity of the watermark and is only related with band j. In

our implementation, the function F is defined by [13]:

 (3.14)

3.4 Extracting the Watermark

In order to extract the watermark from a 3D model the

following steps have been applied:

Figure 9: The samples before and after applying the

spherical wavelet transformation. The colored vertices are

induction for wavelet coefficients [29][30].

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

10

3.4.1 Mesh Registration

The mesh registration used here is based on the ICP (Iterative

Closest Point) algorithm [4]. It was applied on the

watermarked mesh as follows:

Input: The point set P with Np points from the data shape and

the model shape M (section 3.2). The data set is

initialized. The registration vectors are defined

relative to the initial data set.

Output: The final registration vectors output represents the

complete transformation.

Process: The following four steps are applied until

convergence within a tolerance

1. Compute the closest points of the Squared Euclidian

distances ,

2. Compute the registration (rotation and translation),

3. Apply the registration,

4. Terminate the iteration when the change in Mean

Square Error (MSE) equation (2.6) falls below a

preset threshold .

3.4.2 Spherical Wavelet Forward Transformation

After producing the mesh registration, the spherical wavelet

forward transformation is applied on two meshes

1. The registration mesh

2. The compressed mesh (i.e. the original mesh

before applying the watermarking algorithm)

Compare the results of the meshes in order to extract the

watermark image as a sequence of binary digits (see sub-

section 3.3.1).

4. EXPERIMENTAL RESULTS AND

EVALUATIONS AGAINST ATTACKS

4.1 Performance evaluation

This section presents the evaluation of the proposed

watermarking algorithm. There are two performance metrics,

which will be discussed below.

4.1.1 Sampling and precision control

The visual impact of the watermarking on the protected 3D

object should be as limited as possible to measure the effect of

the embedded watermark on 3D objects.

In this paper, Hausdorff distance d is used to quantify the

maximum geometric error. Generally speaking, the Hausdorff

distance d is a measure defined between two point sets.

In section 3.1, the geometrical signal on the unit sphere has been

obtained. In order to perform spherical wavelet transform over

the geometrical signal, the signals should be sampled regularly

over the sphere. As illustrated in figure 10, we first perform

recursive 1-split-to-4 subdivision of the tetrahedral base shape as

used by [31], and then we sample the signals at the vertices of

the subdivision spherical mesh. In practice, we wish that the

generated regular mesh approximates the original mesh with a

given tolerance .

Let M be the original mesh and SM is the sampled mesh. We

perform inverse sampling on SM to get mesh M′. The inverse

sampling will be executed until the following equation is

satisfied [13]:

where is a user-specified error threshold, and
 are vertices

on M and M′ respectively.

4.1.2 Processing Time

For this watermarking algorithm, most of the time consumed

was spent on calculating coefficients by spherical wavelet

transformation; the embedded watermark and extracted

watermark don’t take a lot of time compared with wavelet

transformation. There is no mathematical way to calculate the

time processing here but by experimental results shown in table

2.1, it can be noticed that time processing increases according

to an increasing number of vertices. Table 4.1 shows the

results that have been achieved by applying the watermarking

algorithm in this paper on the six models [29][30].

4.2 Testing

For testing the watermarking algorithm implemented in this

paper, the following attacks were chosen to attack 3D models

samples [29][30]:

1. Translation (x+20,y-5,z-13).

2. Translation (x-2, y+13, z+5).

3. Rotation (y- coordination 30˚).

4. Rotation (x-coordination 30˚ and z-coordination 60˚).

5. Scale (x-scale 0.6,y-scale 2, z-scale 3).

6. Scale (x-scale 3, y-scale 0.5, z-scale 0.2).

7. Smoothing mesh as noise filtering with regular

subdivisions 1:4.

8. Lossy compression provided by [10], (look to figure 11).

To measure the robustness of the watermarking algorithm, the

following measurements were used:

1- The Bit Error Rate (BER) is used, see Equation (4.2). The

BER is a rate that measures the errors that appear after the 3D

model is attacked (the ratio of number of destroyed bits to the

total bit length in the extracted watermark).

 (4.2)

where is the sequence of binary bits embedded into the

3D model before being distributed over the Internet and

attacked; is the sequence of binary bits that are

extracted from the 3D model after being attacked; ⊕is an

(Exclusive Or) operation that leads to a sequence of ones in the

positions that had errors; Counterrors is a counter that holds how

many errors appear after attacks; and Total Number of Bits is

the number of bits in or the original watermark that is

embedded into the 3D model before being attacked.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

11

2- The Survival Rate (SR) is the rate of survival of a watermark

under attack formations.

SR = 1-BER (4.3)

Table 4.2 shows the measurements of robustness that are

achieved by applying the watermarking algorithm in this paper

on the models of [29][30] using BER. Table 4.3 shows the

measurements of robustness achieved by applying the

watermarking algorithm in [13] also using BER. From the

results that appear in Tables 4.2 and 4.3 it had been confirmed

that applying a watermarking algorithm on a compressed

domain is more robust than applying a watermarking algorithm

on a normal domain. Figure 12 and Figure 13 show a

comparison between the performed work in this paper and the

work in [13] from the robustness of two watermarking

algorithms against the attacks on the models of [29][30]. This

clearly shows that the performance from the BER of proposed

watermarking algorithm is better in most types of attacks than

the algorithm in paper [13].

Figure 10: Spherical meshes subdivision. The subdivided

meshes are used for sampling [31]

Figure 11: The Happy Model Before and After

Compression attack [29].

Table 4.1: Performance measurement of the watermarking

algorithm in this work (*CPU Time returns the total CPU

time (in seconds) used by MATLAB® application from the

time it was started. This number can overflow the internal

representation and wrap around.)

Figure 12: Experimental result for the work proposed in

[13]

Figure 13: Experimental result for the work in this paper

3D Models

Samples /

Performance

Metrics

Angel

Model

Happy

Model

Horse

Model

Cow

Model

Dragon

Model

Bunny

Model

Geometric

Error
0.0550 0.0991 0.1912 0.2990 0.02100 0.0791

*Time

Processing
468.56 703.26 370.83 94.59 226.35 532.92

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

12

Table 4.2: Robustness measurement results of BER for a watermarking algorithm in this paper.

Table 4.3: Robustness measurement results of BER for the algorithm in paper [13].

5. CONCLUSIONS

A compression algorithm using an MLFF neural network that

produces a compressed 3D model (with a compression ratio

that reaches 5.5) reduces the size of the 3D model with

minimum loss of details and vertex signal to noise ratio. This

is noticed experimentally by applying the proposed algorithm

on different 3D models samples [29][30]. The MLFF neural

network as an AI tool played an important role in the

performance of the compression algorithm making the

algorithm’s performance better than the 3D compression

geometry proposed in [31].

The methodology of applying a watermark on a 3D model

after compression, on a compressed domain, is proved to

reduce the processing time of the watermarking algorithm, in

addition to allowing the embedding of the watermark into the

model without much increase on model size, compared to the

3D Models Samples

/ Robustness

Metrics against Attacks

Angel

Model

Happy

Model

Horse

Model

Cow

Model

Dragon

Model

Bunny

Model

Lossy Compression 0.0291 0.0535 0.0945 0.1764 0.0665 0.1160

Translation (x+20,y-5, z-13) 0.0018 4.2725e-004 0.0015 2.4414e-004 9.4604e-004 5.4932e-004

Translation (x-2, y+13, z+5) 0.0011 4.2705e-004 0.0035 2.4454e-004 9.4613e-004 5.4902e-004

Rotation (y-coordination 30˚) 0.0020 9.7656e-004 0.0013 3.0518e-004 6.7139e-004 0.0068

Rotation (x- coordination 30˚ And z- coordination 60˚) 0.0026 9.7436e-004 0.0025 3.0508e-004 6.7139e-004 0.0040

Scale (x-scale 0.6 ,y-scale 2, z-scale 3) 8.2393e-004 4.5746e-004 1.5279e-004 7.0180e-004 5.1890e-004 0.0042

Scale (x-scale 3, y-scale 0.5 , z-scale 0.2) 8.2397e-004 4.5776e-004 1.5259e-004 7.0190e-004 5.1880e-004 0.0012

Smoothing mesh with regular subdivisions 1:4 0.0183 0.0237 0.0243 0.0304 0.0245 0.0400

3D Models Samples

/ Robustness

Metrics against Attacks

Angel

Model

Happy

Model

Horse

Model

Cow

Model

Dragon

Model

Bunny

Model

Lossy Compression 0.4888 0.3052 0.4272 0.3709 0.2374 0.5432

Translation (x+20,y-5, z-13) 0.0012 0.0014 9.7656e-004 6.1035e-004 0.0024 0.0015

Translation (x-2, y+13, z+5) 0.0011 0.0017 9.7666e-004 6.1075e-004 0.0022 0.0019

Rotation (y-coordination 30˚) 0.0025 5.4932e-004 0.0031 0.0018 0.0043 8.5449e-004

Rotation (x- coordination 30˚ And z- coordination 60˚) 0.0037 5.4911e-004 0.0039 0.0012 0.0053 8.5489e-004

Scale (x-scale 0.6 ,y-scale 2, z-scale 3) 0.0018 0.0061 0.0055 0.0049 0.0221 0.0171

Scale (x-scale 3, y-scale 0.5 , z-scale 0.2) 0.0023 0.0049 0.0061 0.0051 0.0220 0.0165

Smoothing mesh with regular subdivisions 1:4 0.1366 0.1831 0.3520 0.2191 0.3484 0.4211

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

13

original model before compression. Implementing the

watermarking algorithm is based on a spherical wavelet as a

butterfly transformation method for vertex bases wavelet

coefficients. The experimental results and evaluation against

attacks shows that watermarking algorithm proposed in this

paper met the technical requirements of robustness that

mentioned earlier in this paper.

6. REFERENCES

[1] Alexa, M., "Recent ad v an c es in mesh mo r p h in g " ,

Computer Graphics Forum, 21(2):173-196 (2002).

[2] Baoming Q., Pulin Z., and Qiao K., "A Digital

Watermarking Algorithm Based on Wavelet Packet

Transform and BP Neural Network", Seventh

International Conference on Computational Intelligence

and Security (2011). DOI 10.1109/CIS.2011.117

[3] Benedens O., "Geometry-Based Watermarking of 3D

Models", IEEE Computer Graphics and Applications

19(1), 46–55 (1999).

[4] Besl P. and McKay N., "A Method for Registration of 3-

D Shapes", IEEE Trans. on Pat. Anal. and Mach. Int.,

Vol. 14, N. 2, pp. 239-256 (1992).

[5] Bors A., "Watermarking mesh-based representations of

3-D objects using local moments" , IEEE Transactions

on Image Processing 15(3), 687–701 (2006).

[6] Chen S-T, Huang H-N, Hsu C-Y, Tseng K-K, Wu C.,

and Pan J-S, "Wavelet-Based Entropy for Digital Audio

Watermarking", Seventh International Conference on

Intelligent Information Hiding and Multimedia Signal

Processing (2011).DOI 10.1109/IIHMSP.2011.39

[7] Cox I, Miller M., Bloom J., "Digital Watermarking:

Principle & Practice", (The Morgan Series in

Multimedia and Information Systems), ISBN-

1558607145 (2001).

[8] Deering M. "Geometry compression", ACM

SIGGRAPH, pp. 13–20 (1995).

[9] Fornaro C. and Sanna A., "Public Key Watermarking for

authentction of CSG models", Computer Aided Design,

32(12), 727-735 (2000).

[10] Guillaume L., Denis F., Dupont F., "Subdivision surface

watermarking. Computers & Graphics", 31(3): 480-492

(2007).

[11] Isenburg M. and Snoeyink J., "Face fixer compressing

polygon meshes with properties", ACM Siggraph

Conference Proc, pp. 263-270 (2001).

[12] Jianhong S, Junsheng L., and Zhiyong L., "An Improved

Algorithm of Digital Watermarking Based on Wavelet

Transform", World Congress on Computer Science and

Information Engineering (2009). DOI

10.1109/CSIE.2009.150

[13] JQ J., MY D., HJ B. and QS P., "Watermarking on 3D

mesh based on spherical wavelet transform", Journal of

Zhejiang University SCIENCE pp. 251–258 (2004).

[14] Kent, J.R., Carlson, W.E., and Parent, R.E., "Shape

Transformation for Polyhedral Objects", SIGGRAPH,

Computer Graphics Proceedings, Annual Conference

Series, ACM, p.47-54 (1992).

[15] Kundur D. and Hatzinakos D., "Robust digital image

watermarking method using wavelet-based fusion", Proc.

of IEEE Int. Conf. on Image Processing, Vol.1, pp.544-

547 (1997).

[16] Laga H; Nakajima M; and Chihara, K. H.,

"Discriminative spherical wavelet features for content-

based 3D model retrieval", International Journal of

shape modeling (2007).

[17] Li Y., Gou W. and Li B., "A new digital watermark

algorithm based on the DWT and SVD", 10th

International Symposium on Distributed Computing and

Applications to Business, Engineering and Science

(2011). DOI 10.1109/DCABES.2011.7

[18] Li L, Pan ZG, Sun SS and Wu XL "A private and

lossless digital image watermarking system. In:

Proceedings of second international conference on image

and graphics, Hefei, China, SPIE, p. 365–70 (2002).

[19] Li, L., Zhang, D., Pan, Z., Shi, J., Zhou, K. and Ye, K.,

"Watermarking 3D Mesh by Spherical Parameterization.

Computers and Graphics", 28(6), 981–989 (2004).

[20] Maheshwari P., Agarwal P., and Prabhakaran B.,

"Progressive compression invariant semi-fragile

Watermarks for 3D meshes", in Proceedings of ACM

Multimedia and Security Workshop (2007) (MM&Sec

2007), Dallas, TX , USA , pp. 245-25, (2007).

[21] Ohbuchi R., Masuda H. and Aono M., "Watermarking

multiple object types in three-dimensional models",

Multimedia and Security Workshop at ACM Multimedia,

Bristol, UK (1998).

[22] Ohbuchi R., Mukaiyama A. and Takahashi J.,

"Watermarking a 3D shape model defined as a point set",

International Conference on Cyberworlds (2004).

[23] Ohbuchi R. , Nakazawa M. and Takei T., "Retrieving 3D

shapes based on their appearance", ACM SIGMM

Workshop on Multimedia Information Retrieval,

Berkeley, California, pp. 39–46 (2003).

[24] Okagaki K., and Takahashi K., "Robustness Evaluation

of Digital Watermarking Based on Discrete Wavelet

Transform", Sixth International Conference on Intelligent

Information Hiding and Multimedia Signal Processing

(2010). DOI 10.1109/IIHMSP.2010.36

[25] Piperakis E., "Transformations on 3D Objects

Represented with Neural Networks", IEEE, Proceedings

of the Third International Conference on 3-D Imaging

and Modeling, (2001).

[26] Piperakis E., and Kumazawa I, "3D Polygon Mesh

Compression with Multi Layer Feed Forward Neural

Networks", Systemics, Cybernetics, and Informatics ,

Volume 1, Number 3, (2002).

[27] Praun E., Hoppe H. and Finkelstein A., "Robust mesh

watermarking", ACM SIGGRAPH, Los Angeles,

California, pp. 49–56 (1999).

[28] Quicken, M., Brechbühler, C., Hug, J., Blattmann, H.,

and Székely, G., "Parameterization of Closed Surfaces

for Parametric Surface Description", CVPR, p.354-360

(2000).

[29] Rumman N. A., "Robust Digital Watermarking for

Compressed three Dimensional Models Based on

Polygonal Representation", Master of Science Degree

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.4, January 2013

14

Thesis in Computer Science, Faculty of Graduate Studies

Al-Balqa' Applied University, Jordan, August, (2009).

[30] Rumman N. A., El-Seoud S. A., Khatatneh K. F., and

Gutl C, "Geometry Compression for 3D Polygonal

Models using a Neural Network", International Journal

of Computer Applications (0975-8887)-Volume 1-No.

20, (2010).

[31] Schröder P. and Sweldens W., "Spherical wavelets:

Efficiently representing functions on the sphere", ACM

SIGGRAPH 95, 161-172 (1995).

[32] Shusen S., Li Li P. Z and Jiaoying S., "Robust 3D model

watermarking against geometric transformation",

CAD/CG’2003, October 29–31, Macao. China ,p. 87–92

(2003).

[33] Yeo B., Yeung M., "Watermarking 3-D Objects for

Variations", IEEE Computer Graphics and Application,

Vol. 19,36–45 (1999).

[34] Zhou, K., Bao, H., and Shi, J., "uniform digital

geometry processing", journal of computer, 25(9):904-9

(2002).

