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ABSTRACT 

Stages of fingerprint image enhancement include 

segmentation, normalization, filtering, binarization and 

filtering. Each of these stages has proved to be very essential 

for achieving a well enhanced fingerprint image. The major 

prerequisites to filtering a fingerprint image are ridge 

orientation and frequency estimations. While ridge orientation 

estimation is done to obtain the orientation of the ridges, ridge 

frequency estimation is done with a view to ascertaining the 

number of ridges within a unit length. The number is useful 

for fingerprint image filtering. In this paper, a modified 

fingerprint ridge frequency estimation algorithm is 

implemented. The modified algorithm consists of stages for 

estimating ridge orientation and uniformity levels. Two types 

of images; namely synthetic and real fingerprints were used to 

evaluate the performance of the algorithm. The results of the 

evaluation reveal that the modified algorithm shows greater 

speed and effectiveness than its original version. Facts also 

emerged on the basic characteristics of the estimates. 
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1. INTRODUCTION 
Facts have continued to emerged that fingerprint is the most 

universally accepted biometric for various degrees and levels 

of human identification [1]. Its usefulness and importance are 

increasingly been recognized in crime investigation, financial 

transactions, air travels, access monitoring and control, 

electoral matters and so on. The very wide acceptance of 

fingerprint for human identity management precipitated the 

emergence of a good number of Automated Fingerprint 

Identification Systems (AFIS). Major activities performed in 

an AFIS include image enhancement, feature extraction and 

pattern matching. The main essence of image enhancement is 

to ensure that the system works with images with clean state 

of health. In other words, for effective and reliable AFIS, 

fingerprint images with good quality are very important. 

However, in most cases, majority of the raw images are 

significantly noisy thereby causing a defect in the system’s 

performance. Images obtained from the same finger but with 

different levels of noise are presented in Figure 1. A highly 

noisy image in which the ridges run together is shown in 

Figure 1(a) while a noisy image due to minimal and high faint 

ridge structures are shown in Figure 1(b) and 1(c) 

respectively.  The difference in the forms of these images may 

be due to several reasons including varying application of ink 

or pressure during manual or electronic fingerprint enrolment 

[2].  

The major effects of noise on fingerprint images include 

creating false ridge structures appearing as scars, cross-overs, 

spurs, holes, triangles and spike points [3]. The forms of these 

false structures are shown in Figure 2. From inspection, it is 

revealed that the spur structure generates false ridge endings, 

while both the hole and triangle structures generate false 

bifurcations. The spike structure on its own generates a false 

bifurcation and a false ridge ending point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These false structures result in the extraction of false minutiae 

points [3] which culminate in system with misleading results 

due to false acceptance or false rejection. To avoid false 

results, the fingerprint images are firstly enhanced for the 

removal of noises and other contaminations. The major stages 

of the fingerprint image enhancement are conceptualized in 

Figure 3 [4 - 6]. Each stage is important for obtaining an 

enhanced fingerprint image in form of a thinned or skeleton 

image where all forms of overlap in the ridge structure have 

been eliminated.  

As shown in Figure 3, there are two basic prerequisites for 

fingerprint filtering; namely ridge orientation estimation and 

ridge frequency estimation.  The orientation estimates of each 

pixel in the image plays contributing role in the estimation of 

the ridge frequency. The ridge frequency on its own is very 

useful for noise removal by filtering. Several ridge frequency 

estimation algorithms have been proposed by different authors 

Figure 1: Three different impressions of the same finger 

with  different noise levels 

(a) First impression (b) Second impression (c) Third impression 

Fig. 2: False ridge structures 

(a)Spur (b)Hole (c)Triangle (d)Spike 

   

Fig. 1: Three different impressions of the same finger 

with  different noise levels 

(a) First impression (b) Second impression (c) Third impression 



International Journal of Computer Applications (0975 – 8887)  

Volume 61– No.22, January 2013 

27 

each with attendant strengths and weaknesses. In this paper, a 

detailed discussion on the modified form of the ridge 

frequency estimation algorithm proposed in [5] is presented. 

Section 2 presents discussion on the usefulness as well as 

current trend of research in fingerprint ridge frequency 

estimation while Section 3 presents the modified fingerprint 

ridge frequency estimation algorithm. The experimental 

results and the conclusion drawn are presented in Sections 4 

and 5 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. FINGERPRINT RIDGE FREQUENCY 
Fingerprint ridge distance is defined as the distance from a 

given ridge to its adjacent ridges. It is an inter-distance 

measure from the center of one ridge to the center of the next 

ridge in both directions. Figure 4 shows enlarged ridge 

structures with their respective ridge distances.  

 

 

 

 

 

 

 

 

 

 

 

 

A ridge distance of x exists between ridges labeled 1 and 2 

while a ridge distance of y exists for ridges 2 and 3. Similarly, 

z represents the ridge distance between ridges 3 and 4. 

Although fingerprint ridge distance is very important in AFIS, 

it is difficult to estimate due to the following factors [7]. 

a. Fingerprint images acquired from the same finger but 

with equipment with different image resolutions may 

have different ridge distance(s); 

b. Even with the same image resolution, noises in form of 

low contrast, ridge breaks, ridge conglutination and so 

on, may distort estimations; 

c. Occurrence of minutiae may disturb the estimation of the 

ridge distance; 

d. The existence of high curvature in regions containing 

singularities makes it difficult to estimate ridge distance 

in these regions with common methods; 

e. Different fingers may have different ridge distances; 

f. Within the same fingerprint image, different regions may 

have different ridge distances. 

It has been noted that the issues under (c), (d), and (e) are 

basic and natural properties of fingerprints while the issues 

under (a), (b), and (f) are controllable and adjustable for 

improvement. Ridge frequency is the reciprocal of ridge 

distance indicating the number of ridges within a unit length 

of an image. It is the local frequency of the ridges that 

collectively form the ridge frequency image.  

The estimation of ridge frequency is one basic prerequisite in 

the enhancement of fingerprint images.  The authors in [8, 9] 

proposed fast enhancement algorithms which can adaptively 

and effectively improve the clarity of ridge and valley 

structures of fingerprint images. The algorithms are based on 

the estimated local ridge orientations and frequencies. The 

grey levels along fingerprint ridges and valleys were modeled 

in [9] as sinusoidal shaped wave along the direction normal to 

the local ridge orientation. The wave is majorly utilized for 

the estimation of the ridge frequency based on the 

assumptions that valid ridge frequencies lie between 1/31 and 

1/25 for 500dpi images [8]. The authors in [10] present some 

improvements to the method in [8] by using a unique 

anisotropic filter adapted to fingerprint images. In [11], the 

ridge frequency is obtained by employing the directional 

projection with the acquired ridge direction. Since the 

direction of the ridge is previously known, the ridge image is 

projected onto the perpendicular axis of the given ridge 

direction. The projection data provide the frequency of the 

ridge lines in the current block. The authors in [12] present a 

multi-step algorithm for obtaining the frequency of fingerprint 

ridges. At each step, an estimated value of the ridge frequency 

is obtained thereby allowing for any discrepancy with the 

actual ridge frequency estimate generated due to measurement 

error as well as the presence of minutiae. A resolution based 

approach to fingerprint ridge frequency estimation devoid of 

the specificity of enrolment tools (scanners) is proposed in 

[13]. The method allows very precise calculation of 

fingerprint ridge frequency and reference point. In [14] a 

method of fingerprint pre-classification based on the ridge 

frequency replacement by the density of edge points of the 

ridge boundary is proposed. The prerequisites to applying this 

method are fingerprint image filtering, binarization and 

marking of good or bad image areas. The method does not 

require preliminary fingerprint sub-division into sub-blocks 

but gives room for direct evaluation of the ridge frequency in 

the areas containing minutiae, singular points or curved 

capillary lines. A platform comprising of traditional spectral 

analysis and statistical methods were used for the estimation 

of fingerprint ridge frequencies in [7]. The spectral analysis 

method transforms the representation of fingerprint images 

from the spatial field to the frequency field and completes the 

ridge distance estimation in the frequency field. On the other 

hand, in the statistical method, the ridge directions at block 

level are firstly calculated. Secondly, a locally adaptive 

method [15] is used to binarize a fingerprint image at block 

level so that a value of 1 is assigned to pixels on ridges and 0 

is assigned to pixels on furrows. Thirdly, the statistical 

window and baseline are defined. Next is the determination of 

the ridge distance distribution in each block image using 

statistical means before the detection of positions and 

intervals of all peaks. Finally, the ridge distance and 

confidence level are estimated. It was reported that for good-

quality fingerprint images, there is no dramatic difference in 

performance between the spectral analysis method and the 

statistical method. However, when fair or poor quality 

fingerprint images are used, the performance of the statistical 

method is superior to that of the spectral analysis method with 

better average performance on the used images. The reported 

disadvantage of the statistical method is that it performs 

poorly in regions where there is acute variation of ridge 

directions. 
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Fig.4: Fingerprint ridges structures and distances 
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Fig. 3: Stages of fingerprint image enhancement 
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3. THE PROPOSED ALGORITHM 
The proposed ridge frequency estimation algorithm is an 

extension of the algorithm proposed in [5]. The major 

activities of the algorithm are the computation of the local 

orientations and the consistency level of the orientation field. 

The estimation of local orientation involves the following:  

a. Partition the image into blocks of uniform size Q x Q. 

b. Compute   (p,q) and   (p,q) for each block centered at 

pixel (p,q) as the gradient magnitudes in the x and y 

directions, respectively.   (p,q) was computed using the 

horizontal Sobel operator while   (p,q) was computed 

using the vertical Sobel operator [4]. 

c. Estimate the local orientation of the center pixel (r,s) for 

each block by using the formula: 
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     and  (r,s) is the least square estimate of the local 

orientation of the block centered at pixel (r,s). 

The uniformity level of the orientation field in the local 

neighborhood of a pixel (c,d) is then computed by using the 

following formula: 
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N represents the local neighborhood around (p,q), which is an 

m x m local window,  (r,s) and  (c,d) are local ridge 

orientations at pixels (r,s) and (c,d) respectively. 

If the uniformity level falls below a certain threshold Fc, the 

local orientations for this region are re-computed by using 

lower image resolution level. This is repeated until the 

uniformity  is above Fc. The image is then subjected to the 

following adaptive filters: 
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The two filters are used to stress under different conditions, 

the local maximum grey level values along the normal 

direction of the local ridge orientation. The normalized image 

is convolved with these two masks. If both the grey level 

values at pixel (c,d) of the convolved images are larger than a 

certain threshold Fridge, then pixel  (c,d) is labeled as a ridge. 

4. EXPERIMENTAL RESULTS 
The implementation of the proposed algorithm was carried out 

in an environment characterized by Windows Vista Home 

Basic Operating System on a Pentium IV 2.10 GHZ of RAM 

with MATLAB as frontend engine. Towards a succinct 

performance analysis, both synthetic and real fingerprint 

images of various qualities were used for the experiments. 

The synthetic images were obtained using the circsine 

function [16]. Different levels of artificial noise were 

introduced into the synthetic images using the MATLAB 

imnoise function.  Standard fingerprint images contained in 

FVC2004 fingerprint database with four different datasets 

obtained from different sources were used. Variation in the 

datasets sources is useful for monitoring the performance of 

the algorithm with images from different sources. 

 

 

 

 

 

 

 

 

 

 

Synthetic images of uniform size 210 by 210 but with 

wavelengths of 8, 10 and 12 are shown in Figure 5(a), 5(b) 

and 5(c) respectively. The results of ridge frequency 

estimation experiments on each of these images are shown in 

Figures 5(d), 5(e) and 5(f) respectively. The patterns of the 

ridge frequency estimates for the 32 x 32 size blocks are 

observed to show variations. This signifies multiple intensity 

levels across these regions or blocks. The higher the estimate 

for each of the blocks, the higher is the grey level intensity. 

Peak value estimates are represented with significantly dark 

blocks while zero value estimates are represented by white 

blocks. 

Significant variations in the number of blocks with peak, 

medium and zero value estimates in Figure 5(d), 5(e) and 5(f) 

revealed that pixels wavelength plays important role in the 

final estimate. The basic law of increasing wavelength tends 

(a) Size: 210, 
λ=8 

(b) Size: 210, 
λ=10 

(c)Size: 210, 
λ=12 

(c) Ridge 
Frequency 
Estimate for (a) 

(e) Ridge 
Frequency 
Estimate for (b) 

(f) Ridge 
Frequency 
Estimate for (c) 

Figure 5: Synthetic images and their ridge 

frequency estimates 
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to reducing frequency is obeyed. In this case, the frequency 

estimates assumed reducing trend with increase in wavelength 

as the estimates for most blocks evaluate to zero for 

increasing wavelength. This is revealed by larger number of 

white blocks for Figure 5(f). 

Figure 6 presents a graphical representation of the average 

non-zero ridge frequency estimates (ANZ) for noise-free 

synthetic images of size 210, 310 and 410 and wavelengths 

ranging from 6 to 15. ANZ is the mean ridge frequency 

estimate for all blocks with non-zero estimates. It is revealed 

from the plots that ANZ assumed close values for the three 

images under low wavelengths (6-8) with a range of less than 

0.01. In the wavelength range of 9-11, the differences in ANZ 

become more noticeable with the range increasing to about 

0.02. For wavelengths above 11, the differences in the ANZ 

assumed very wide difference. These results indicate that the 

ridge estimates tend to same values irrespective of image size 

for low wavelengths. With higher wavelengths, significant 

differences emerge for images of different sizes. The results 

also show that the ANZ values assume no definite pattern 

with varying wavelengths and image sizes as demonstrated by 

plots of Figure 6 with numerous turning points.    

 

 

 

 

 

 

 

 

 

 

 

The ANZ plots for synthetic images with different conditions 

of noise are presented in Figure 7. These plots were obtained 

with a view to demonstrate the performance of the algorithm 

with increasing salt and pepper noise level. The plots revealed 

significant changes in pattern compared to what obtained in 

Figure 6 for noise free synthetic image of size 210. This 

difference indicates that the performance of the algorithm is 

affected by noise.   

At most wavelengths, the ANZ value is highest for noise level 

of 0.75 and lowest for 0.25. This indicates increasing, ANZ 

with increase in noise. It is also noticed that the peak values of 

ANZ are obtained at lowest wavelengths while the values at 

the higher wavelengths show no potential to rise above the 

peak. These values indicate that though there is shift in the 

actual ridge frequency estimates due to noise, the obtained 

values decrease with increase wavelength. The shape of the 

plots reveals that the ANZ values are confined to a specific 

range for the three noise levels.  

 

 

 

 

 

 

 

 

 

Figures 8 and 9 present the plots for different noise levels 

synthetic images of size 310 and 410 respectively. It is 

observed that at noise level 0.25 and 0.50, just like in Figure 

7, there is a near-collapse of the ANZ values at all 

wavelengths for the two images. 

 

 

 

 

 

 

 

 

 

 

 

This closeness indicates that for these noise levels and image 

sizes, ANZ values are not principally affected. For noise level 

of 0.75, it is observed that as in the case in Figure 7, the ANZ 

values are far apart to the values obtained for the lower noise 

levels for nearly all the wavelengths. This suggests that there 

is substantial increase in the ANZ values at this noise level. 

The closeness in the pattern of the plots in Figures 8 and 9 

indicates that size plays minimal role in ridge frequency 

estimation.   

 

The efficiency of the ridge frequency estimation algorithm 

was quantitatively measured by estimating the Mean Square 

Error (MSE) which is the difference between the estimated 

and actual ridge frequency values in radians. The MSE results 

Fig. 7: ANZ plots for synthetic image of size 210 at 
different  noise levels 

 

Noise level=0.50 

Noise level=0.25 

Noise level=0.75 

Fig. 6: Graphical representation of the ANZ for synthetic 

images of different sizes 

 

Size=310 

Size=210 

Size=410 

Fig. 8: ANZ plots for synthetic image of size 310 at different 

noise levels 

 

Noise=0.75 

Noise=0.5 

Noise=0.25 
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for the synthetic image of size 210, 310 and 410 under 

different conditions of noise are shown in Table 1, 2 and 3 

respectively. 

 

 

 

 

 

 

 

 

 

 

Table 1: MSE for synthetic image of size 210 

S/No. Noise Level MSE 

1 0.1 0.0000156 

2 0.2 0.0000180 

3 0.3 0.0000825 

4 0.4 0.0004774 

5 0.5 0.0006978 

6 0.6 0.0014942 

7 0.7 0.0044675 

8 0.8 0.0071508 

9 0.9 0.0078461 

10 1.0 0.0084378 

 

The increasing mean square errors in all cases reveal that the 

accuracy of the algorithm decreases with increase in the noise 

level irrespective of size. The MSE values recorded in Tables 

1, 2 and 3 produces standard deviation of 0.00354, 0.00404 

and 0.00400 respectively. These present the degree of spread 

of the MSE values over the noise range.  

 

Table 2: MSE for synthetic image of size 310 

S/No. Noise Level MSE 

1 0.1 0.0000174 

2 0.2 0.0000194 

3 0.3 0.0000315 

4 0.4 0.0000940 

5 0.5 0.0006248 

6 0.6 0.0017104 

7 0.7 0.0045584 

8 0.8 0.0073650 

9 0.9 0.0083729 

10 1.0 0.0104828 

 

The closeness of the standard deviation figures for the three 

images also established the claim that size plays insignificant 

role in ridge frequency estimation. The plots of the MSE 

values presented in Table 1, 2 and 3 are shown in Figure 10. 

The collapsing trend of the three plots established the 

closeness of the standard deviation and a boost to the claim 

that size plays insignificant role in ridge frequency estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiments were also based on the tests from a standard 

Fingerprint Verification Competition (FVC). The experiments 

measured ANZ values for FVC2004 datasets DB1, DB2, DB3 

and DB4. The four datasets were of different qualities with 

each containing 80 fingerprints. The 80 fingerprints are made 

up of 16 fingerprints from 5 different persons. Dataset DB1 

and DB2 were acquired using an optical fingerprint reader, 

dataset DB3 was acquired using a capacitive fingerprint 

reader, and dataset DB4 was obtained with computer 

assistance, using the software SFinGE.  

 

 

 

 

 

    

 

 

 

 

 

   

 

  

 

 

 

 

 

 

 

Table 3: MSE for synthetic image of size 410 

S/No. Noise Level MSE 

1 0.1 0.0000147 

2 0.2 0.0000302 

3 0.3 0.0000511 

4 0.4 0.0002909 

5 0.5 0.0007166 

6 0.6 0.0014711 

7 0.7 0.0030360 

8 0.8 0.0076624 

9 0.9 0.0088897 

10 1.0 0.0098269 

Fig. 10: Plots of MSE values for images of different size and noise 

levels 

Fig. 9: ANZ plots for synthetic image of size 410 at different 

noise levels 

Noise=0.75 

 

Noise=0.5 

 Noise=0.25 

 

 

(a) (b) (c) (d) 

(e)Ridge 

frequency 

estimate of (a) 

(f)Ridge 

frequency 

estimate of (b) 

(g)Ridge 

frequency 

estimate of (c) 

(h)Ridge 

frequency 

estimate of (d) 

Fig.  11: Selected images and their ridge frequency estimates 
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Figure 11 (a-d) presents some selected images in the four 

datasets. The images of ridge frequency estimates for Figure 

11(a), 11(b), 11(c) and 11(d) are shown in Figure 11(e), 11(f), 

11(g) and 11(h) respectively. These images show significant 

differences due to unequal fingerprints contrasts and 

wavelengths. In view of this, synthetic images which possess 

controllable or adjustable contrast and wavelengths are more 

suitable for evaluating the performance of the algorithm.  

 

The results of the ANZ experiments on the four datasets  

presented in Table 4 show that the ANZ values for the 

datasets fall within same range. This indicates closeness in the 

non-zero estimates for the four datasets even though they 

were obtained from different sources.  

  

 

The results of an experiment conducted for measuring the 

completion time in seconds for the original version proposed 

in [5] and the modified version on the four datasets contained 

in FVC2004 fingerprint database is presented in Table 5. It is 

revealed from the Table that for all datasets, the modified 

algorithm completes at shorter times. The highly significant 

difference in the completion time is attributed to the block 

processing approach in which the orientation of the center 

pixel is only computed. The other pixels in every block then 

assume the orientation estimate for its center pixel. This leads 

to fewer computations and subsequently lesser completion 

time when compared to the original algorithm in which the 

orientation estimate is computed for all the pixels.   

 

5. CONCLUSION 
Fingerprint ridge frequency estimation, which is a 

fundamental component of fingerprint enhancement, has been 

discussed in this paper. The implementation of a modified 

version of a ridge frequency estimation algorithm proposed in 

[5] was carried out. The modified algorithm has stages for 

ridge orientation estimation and its uniformity level. The new 

approach used block processing approach in place of the pixel 

processing approach of the original algorithm. Indicators 

emerged that the new algorithm does well when compared 

with its original version. Obtained results showed the 

dependence of the algorithm on the quality of the image. 

Results also show that the ridge frequency and the average 

non-zero ridge frequency estimates (ANZ) diminish with 

increase image wavelengths. Analysis of the obtained results 

equally showed that size of image plays no significant role in 

ridge frequency estimation. 

The results of measurement of completion time for the 

original and modified algorithms on the four datasets of 

standard FVC2004 fingerprint database show that the 

modified algorithm has well over 50% better completion time 

for all the datasets. The reduced completion time is attributed 

to the considerable reduction in the number of calculation in 

the modified algorithm. 
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