
International Journal of Computer Applications (0975 – 8887)

Volume 61– No.19, January 2013

35

Distributed Hierarchical Group Key Management using

Elliptic Curve and Hash Function

Uday Pratap Singh
M.Tech, CSE Department

Galgotias College of Engineering & Technology
Greater Noida

Rajkumar Singh Rathore
Asst. Prof. in CSE Department,

Galgotias College of Engineering and Technology
Greater Noida

ABSTRACT

Key management is an essential cryptographic primitive upon

which other security primitives are built. However, there are

many existing key management schemes that lack on some

points and those are not much suitable for ad hoc networks. In

this paper we are going to present a distributed hierarchical

group key management approach that uses Elliptic Curve

Cryptography and Hash function for secure generation and

distribution of group key.

General Terms

Key Management in Ad-hoc Network,

Keywords

MANET, Group Key Management, Public Key, Hash

Function.

1. INTRODUCTION

 A Mobile Ad-hoc Network (MANET) consists of a number

of mobile wireless nodes, among which the communication is

carried out without having any centralized control. MANET is

a self organized, self configurable network having no

infrastructure, and in which the mobile nodes move

arbitrarily.

In MANET nodes are mobile in nature, due to the mobility,

topology changes dynamically. Due to its basic Ad-Hoc

nature, MANET is vulnerable to various kinds of security

attacks. So the secure key management scheme is prime

requirement of mobile ad-hoc network.

Key management is the management of cryptographic keys

in a cryptosystem. This includes dealing with the generation,

exchange, storage, use, and replacement of keys. It includes

cryptographic protocol design, key servers, user procedures,

and other relevant protocols.[1]

2. RELATED WORK

In hierarchical approaches, the members of group are mapped

with the leaves of a logical binary key tree. Each member

maintains all the keys along the path from his/her leaf to the

root, hereinafter called the path set. The root key is the group

key. At join/leave, all the keys in the path set need to be

changed to new ones.

DHSA[2] (Distributed Group Key Management using

Hierarchical Approach with Diffie-Hellman and Symmetric

Algorithm), uses hierarchical key tree to manage the keys

logically. In this protocol, the combination of Diffie- Hellman

key agreement and symmetric key is used. Diffie- Hellman

key agreement is introduced to the leaf nodes of the key tree

where the members are assigned, and symmetric key is

introduced to intermediate nodes.

3. PROBLEM STATEMENT

The key management scheme that was previously being used

was DHSA [2] and in this scheme Diffie-Hellman key

agreement was used to deliver the group key between nodes.

The Diffie-Hellman key agreement scheme has following

issues:

· Key size is very large

· Modulo operation takes long time in computation and it

makes the computation slow.

4. PROPOSED WORK

Mobile devices have limited battery life so the requirement of

key management algorithm is that it has to be computationally

fast in order to reduce the power consumption of key

management process to insure maximum battery life. Our

approach hierarchical key management uses Elliptic curve

cryptography for key exchange between leaf nodes. Elliptic

curve cryptography provides greater security with small key

size and scalar multiplication is computationally fast. So use

of ECDHSA protocol will provide more suitable and efficient

technique for key management in MANET.

Now I’m going to present my efficient approach, ECDHSA,

for distributed secure group communication. The inspiration

of this approach is to decrease re-keying overhead at join and

leave operation of nodes. ECDHSA focuses on member

collaboration for key calculation instead of key delivery by

centralized sponsor or co-distributor. For this reason, I’m

introducing three basic characteristics of ECDHSA.

1. The leaf key in the key tree is the public key of the

corresponding group member, and all intermediate node

keys are symmetric keys.

2. The public key of each member along with binary code

the corresponding parent node is stored in a list shared by

group members. This list will be updated on each

membership change and from time to time.

3. All group members have the same capability and are

equally trusted and equally responsible for group key

generation.

ECDHSA introduces two types of codes in its key tree:

1. Binary Code: This code will be used for member position

discovery.

2. Decimal Code: This Code will be used for intermediate

node key calculation.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.19, January 2013

36

Fig 1 illustrates a key tree with 8 members, {u1, …, u8}, and

its corresponding binary code. The binary code of first level

of each intermediate node from the bottom of the key tree, and

the corresponding two member’s public key are stored in a

list. Each member uses this list to find the public key of any

member whom he/she wishes to establish a connection. As

stated before, this list is updated whenever there is a

membership change and is broadcasted to other members by

multicast. Usually, the sibling member of affected branch is

responsible to send the updated information to other members.

Table I shows the management of binary code and its

associated members public key in the list. As shown in this

table, the public keys of u1 and u2 are gx1, gx2 respectively, and

their associated parent binary code is 000. Since there is no

sibling member for u3, the list just shows its public key, g x3,

and the associated parent binary code, 00.

Fig 1: Parent Binary Code for Member Position Discovery

As stated before, the other code type in ECDHSA is decimal

code. This code is used just for intermediate node keys

calculation, and is assigned to each intermediate node in the

key tree. Each intermediate node key is updated by applying

one-way hash function to the bitwise XOR of that

intermediate node code and the group key by the formula

below.

 Key intermediate_node = f (Keygroup ⊕⊕⊕⊕Code intermediate_node)

Moreover, each intermediated node code is calculated by the

formula below.

Code child_node = (Code parent_node || Random digit).

Fig. 2 illustrates the node code management in the

key tree with 8 members, {u1,…, u8}. For example, when an

intermediate node code is 04 and the generated random

number is 6, the code assigned to that new node will be 046.

Finally, the number of digits in a code shows the number of

nodes in the path set. In Table 3.1 the intermediate node key

computation for members {u1,…,u8} is illustrated. For

example, K1,4 is calculated as f (KG⊕04) .

In ECDHSA, the group key at join is sent to new member

being encrypted by the shared key with his/her sibling

member. However, the current members can calculate it by

applying one-way hash function to previous one. When f is a

given one way hash function, and KG is the previous group

key, the new group key K’G is calculated as follows.

K’G= f (KG)

K1,4 = f (KG ⊕⊕⊕⊕04) K5,8 = f (KG ⊕⊕⊕⊕08)

K1,2 = f (KG ⊕⊕⊕⊕042) K5,6 = f (KG ⊕⊕⊕⊕081)

K3,4 = f (KG ⊕⊕⊕⊕046) K7,8 = f (KG ⊕⊕⊕⊕087)

Table 1. LIST OF BINARY CODE AND ASSOCIATED

MEMBERS PUBLIC KEY

Parent Binary Code Member Public key

000 gx1, gx2

00 gx3,

010 gx5, gx6

011 gx7, gx8

5. DETAILED DESIGN

To explain the detailed approach, consider our simple

example with 8 members illustrated in Figs.1 and 2 for join

operation, and Fig. 4 for leave operation. Members decide a

large prime number p and its primitive element g for each

group. Initially, this value is selected at initial mode of key

tree establishment. These values are publicly known in the

group.

When a new member wants to join a group, he/she sends a

hello message to discover the group members. Members, who

receive the signal of this member, look up the list to know

which member does not have a sibling member. A member

who does not have a sibling member in his/her branch replies

to this signal. But when each member has his/her

corresponding sibling member in his/her branch, the member

with lowest parent binary ID replies to that member. He/she

exchanges the public key generated by Elliptic Curve Diffie-

Hellman key agreement. Here, a member who replies is

responsible to authenticate new member. We assume that each

group member is equipped with some authentication

capability [3].

Once authentication operation is completed, the

public key of new member and his/her corresponding parent

binary code is stored in the list, and the updated information is

multicast to existing members. Next, the current members as

well as the new one can calculate the affected intermediate

node keys by applying a given one-way hash function to

bitwise XOR of new group key and the intermediate node

code.

Fig 2: INTERMEDIATE NODE CODE AND

CORRESPONDING NODE KEY CALCULATION

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.19, January 2013

37

5.1 JOIN OPERATION OF NODE

Fig. 1 illustrates a multicast group of 7 members, {u1, u2, u3,

u5, u6, u7, u8} as current members when a new member u4

joins the group (Fig.2). Re-keying procedure at join for this

example in ECDHSA is as below.

i. u4 broadcasts a hello message for member discovery.

ii. u3 who does not have a sibling node, replies this

member.

iii. u3 shares a key with u4 by ECDH key agreement.

This key is g
x3

g
x4 P.

iv. u3 downgrades his/her position from 00 to 001, updates

the member discovery key by replacing the new parent

binary code and new member’s public key (Table 3.2).

v. u3 calculates the new intermediate node code for his

parent.

Code_K3,4 = (04 || 6)= 046.

vi. u3 generates new group key as below.

K’G= f (KG)

vii. u3 sends K’G, and the new node code to u4 being

encrypted by the shared key between them.

 u3 unicast (K’g,046) g
x3

g
x4

viii. Existing members, {u1, u2, u3, u5, u6, u7, u8}, renew

the group key as describe in step(vi)

ix. Then, the members in the affected path set calculate the

affected intermediate node keys by applying one-way

hash function to bitwise XOR of intermediate node codes

and the new group key.

u3, u4: K3,4= f (K’G ⊕046)

u1, …..,u4: K1,4= f (K’G ⊕04)

Table 2: LIST OF PARENT BINARY CODE AND

ASSOCIATED MEMBERS PUBLIC KEY

Parent Binary Code Member Public key

000 gx1, gx2

001 gx3, gx4

010 gx5, gx6

011 gx7, gx8

As you notice just one key is delivered to new member. This

is an important feature for distributed group communication in

wireless network. Since members are mobile, in addition to

dynamic join/leave, simultaneous join may occur in such

networks. In order to solve such problem, the overload of join

operation must be minimized. The features of ECDHSA

provide this task with just one key delivery. The flow of data

for Join operation of node can be seen from the figure 3.

Fig 3: DFD FOR NODE JOIN OPERATION ON ECDHSA

5.2 LEAVE OPERATION OF A NODE

When a member leaves a multicast group, his/her node is

deleted from the key tree. The sibling member on that branch

moves to his/her parent node position. And the sibling node is

also responsible to delete the leaving node public key from the

list, and to transmit updated information of the list to other

members. After each leave, the group key and some

intermediate node keys need to be updated. At leave

operation, the key tree has divided into some parts. The

number of these parts is equal to (log n -1) where n is the

number of group members. The sibling of leaving member

generates the new group key and sends it to one of the

member in each part. To do this the sibling node checks

his/her list and finds one of the available members in each

part, shares a key with that member using his/her public key

and send the group key for his/her via unicast. The member

who receives the group key is responsible to multicast it to

his/her branch members being encrypted with upper

intermediate node which is not affected. Now the users are

able to renew the affected intermediate node key. We use a

simple example to explain leave operation. Fig.4 illustrates a

multicast group of 8 members, {u1, u2, u3, u3, u5, u6, u7, u8}

when u8 leaves the group.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.19, January 2013

38

Fig 4 LEAVE OPERATION ON ECDHSA

i. u7 is promoted to his/her parent position.

ii. u7 updates the member discovery list by

deleting the leaving node’s public key,

and changes his/her parent binary code.

u7 also informs the other nodes about the

updated information.

iii. u7 generates new group key K”G , by

using symmetric algorithm.

iv. u7 checks his/her list and use Elliptic

Curve Diffie-Hellman key agreement to share a key

with one of the member in each branch. Then it will

unicast new group key to each of them.

 u7
 unicast u1:(K”G) g

x1
g
x7

 u7
 unicast u5:(K”G) g

x5
g
x7

v. Now u1 and u5 multicast the received new

group key K”G ,to members of their

branch as follow:

 u1
 multicast u2, …, u4:(K’G) K1K4

 u5
 multicast u6:(K’G) K5K6

vi. Finally the members in affected path

calculate the code of the affected

intermediate node by the formula below.

u5, u6, u7 : K5,7= f (K’G ⊕ 08)

Fig 5: DFD FOR NODE LEAVE OPERATION ON

ECDHSA

Fig 5 shows the flow diagram of the node leave operation. In

this a node is being deleted and its sibling node becomes

parent node and now this node is responsible secure

generation and delivery of group key using ECDH.

Table 3: UPDATING MEMBER DISCOVERY LIST WHEN

A MEMBER

LEAVES THE GROUP

Parent Binary

Code

Member Public key

000 g
x1

, g
x2

001 g
x3

, g
x4

010 g
x5

, g
x6

011 g
x7

Table 3 shows the updating of member discovery list after a

member leave a group. This is necessary to insure the

backward secrecy. I t can be seen from above table after

deletion of node u8 its corresponding public key gx8 was

deleted.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.19, January 2013

39

6. IMPLEMENTATION

The simulations are performed using Network simulator (Ns-

2),[4] particularly popular in ad hoc networks. The MAC

layer protocol IEEE 802.11 is used in all simulations. The

Destination Sequence Distance Vector (DSDV) routing

protocol is chosen for the simulations. The simulation

parameters used are summarized in Table 4:

Table 4: SIMULATION PARAMETERS

Parameter Value

Simulation time 299 sec

Topology size 1000m X 1000m

No. of nodes 100

Routing protocol DSDV

Mobility Model Random Waypoint

MAC IEEE 802.11

Node Mobility 0 to 20 m/sec

Node Energy 100 joules

6.1 SIMULATION RESULT

The simulation of the proposed scheme gives the following

result.

Table 5: SIMULATION RESULT

PDR 0.974112

Control Overhead 496

Normalized Routing

Overhead

0.0258468

Delay 0.243332 4669.54

Throughput 783265

Jitter 0.0102397

6.2 ADVANTAGES OF ECDH OVER RSA AND DH

ECDH have many advantages over RSA and DH. Some of the

advantages that come with ECDH systems can be briefly

explained in terms of its resistance from attacks, strong

encryption with less number of bits in key etc. These

differences are given in brief below:[5]

6.2.1. More Complex for Attacks

In spite of multiplication or exponentiation in finite field,

ECC uses scalar multiplication. Solving Q=k.P (utilized by

ECC) is more difficult than solving factorization (used by

RSA) and discrete logarithm (used by Diffie-Hellman (DH),

EIGamal, Digital Signature Algorithm (DSA)). So ECC is

much stronger than other public key agreement and signature

authentication methods.

6.2.2. Involvement of Less Number of Bits

ECDH requires much lesser numbers (and thus less number of

bits) for its operation thanks to ECDLP. The security level of

a 160-bit ECC, 1024-bit RSA, and (160/1024)-bit DSA are

similar. Table 6 [6] gives detail about this:

Table 6: COMPARABLE KEY SIZES IN TERMS OF

COMPUTATIONAL EFFORT FOR CRYPTANALYSIS [6]

Symmetric

Scheme

(Key size in bits)

ECC- Based

Scheme

(Size of n in

bits)

RSA/DSA

(Modulus size in

bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

92 384 7680

256 512 15360

6.2.3. Power Consumption

ECC requires less power for its functioning so it is more

suitable for low power applications such as handheld and

mobile devices.

6.2.4. Computational Efficiency

Implementing scalar multiplication in software and hardware

is much more feasible than performing multiplications or

exponentiations in them. As ECDH makes use of scalar

multiplications so it is much more computationally efficient

than RSA and Diffie-Hellman (DH) public schemes. So we

can say without any doubt that ECC is the stronger and the

faster (efficient) amongst the present techniques.

7. CONCLUSION AND FUTURE WORK

7.1 CONCLUSION

In this work I have proposed a new group key management

approach in distributed network. This protocol is based on

logical key hierarchy. I have proposed usage of symmetric

cryptosystem along with asymmetric cryptosystem. For

asymmetric key, Elliptic Curve Diffie-Hellman key agreement

is introduced.

We conclude our proposal with following of its contributions.

We have used Elliptic Curve Cryptography and it provides

much stronger security with smaller key size, as shown in

Table 6. [6]

ECDH[7] uses scalar multiplication and performing scalar

multiplication takes less time in comparison with the modulus

and exponent operation performed in previous existing DHSA

method. This is the main advantage of our approach because

mobile devices have limited battery life and using ECDH for

key agreement work faster than using Diffie Hellman Key

Agreement. In ECDHSA, intermediate node keys are

calculated by group members rather than distributed by a

sponsor member.

The features of this protocol are that, at join no keys are

needed to be exchanged between existing members, at leave

only one key, the group key, is delivered to remaining

members.

7.2 FUTURE WORK:

Since we have seen using Elliptic Curve Cryptography have

enhanced the security level with small size of key because it

provide same level of security that RSA and DH provide with

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.19, January 2013

40

large size of keys. We have also seen that scalar

multiplication of ECDH makes it very suitable to be used for

MANET because mobile devices have limited battery life and

scalar multiplication takes less time in computation. As a

future work authentication capability can be added to nodes

that reply to the new node. For this purpose we can use

ECDSA or any other suitable protocol for Authentication

purpose of new nodes. We can use variance of ECDH

protocol that will provide more advance security mechanism.

8. ACKNOWLEDGMENTS

I would like to thanks to my dad for financial and moral

support for this work.

9. REFERENCES

[1] Key Management Definition. Available at:

[2] http://en.wikipedia.org/wiki/Key_management

[3] S. Anahita Mortazavi, Alireza Nemaney Pour, An

Efficient Distributed Group Key Management using

Hierarchical Approach with Diffie-Hellman and

Symmetric Algorithm: DHSA 2011 International

Symposium on Computer Networks and Distributed

Systems (CNDS), February 23-24, 2011.

[4] Y. Kim, A. Perrig and G. Tsudik, Tree-based Group Key

Agreement, ACM Transactions on Information and

System Security (TISSEC), Vol. 7/1, Feb. 2004, pp. 60-

94, doi: 10.1145/984334.984337.

[5] The Network Simulator - ns-2. Available at

[6] www.isi.edu/nsnam/ns.

[7] Muhammad Yasir Malik Efficient Implementation of

Elliptic Curve Cryptography Using Low-power Digital

Signal Processor, ICACT 2010, ISBN 978-89-5519-

146-2 Feb. 7-10, 2010.

[8] Lauter Kristin, The Advantages of Elliptic Curve

Cryptography For Wireless Security, IEEE Wireless

Communications, February 2004.

[9] William Stallings, Cryptography and Network Security

Principle and Practice, Fourth Edition.

