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ABSTRACT 
Minimization of energy consumption in the battery operated 
system is become a  major issue. Most of the real-time 
systems consist of a battery operated microprocessor 
system with a limited battery life. So, energy consumption  
is  becoming  a critical  issue  in the  design  of embedded 
systems because of the popularity of portable  devices such 
as mobile devices  and personal  digital  assistants. 
In this paper we propose a approach to handle task 
synchronization for Real Time Systems with energy 
efficiency consideration. Our p r o p o s e d    approach is a 
variation   of the well known priority ce i l in g  protocol 
(PCP) which is to enforce mutually   exclusive a c c e s s  to 
shared resources. W e  a r e  using the concept of speed 
locking i n  p r o p o s e d  a p p r o a c h  s o  t h a t  we can 
save the enrgy consumption. 

 
Keywords:   Real t i m e  S y s t e m s , e n e r g y    
consumption,   task scheduling, critical section, DVS, 
context switching 

 
1.  INTRODUCTION 

There are a lot of real-time task scheduling algorithm with energy 

constraint have been proposed to supports dynamic voltage 

scaling. However, most of the work only considers 

independent real-time task on DVS platforms. Some work is 

also done in synchronizing of dependent real-time tasks for 

minimizing energy consumptions [2,7]. With consideration 

of energy consumption, we propose an approach for 

scheduling and synchronizing of soft real time tasks.  In this 

paper, our aim to maximize the battery life time of the 

system and these systems usually have one processor, memory 

units and several non preemptive co-processors [3]. All non 

preemptive processing elements and memory units are shared 

resource among tasks. 

Real-time  tasks  are  scheduled  based  on  priority-driven 

schemes  and  modeled  with  timing  parameters  such  as 

periods, deadlines and minimum separation. Tasks whose 

deadlines can never be violated are called hard real-time 

tasks and those still contribute value to the system after 

having violated their deadlines are soft real-time tasks. A 

set of real-time tasks is called independent task set when 

the execution of each task is independent, whereas tasks 

will access a shared resource is called dependent task set. 

Various real-time task scheduling algorithm with energy 

constraint   have   been   proposed   to   supports   dynamic 

voltage scaling [14].  However,  most  of  the  work  only 

considers  independent  real-time  task  on  DVS  platforms. 

For  independent task  sets,  optimal algorithms have  been 

proposed,  such  as  rate  monotonic  (RM)  [3]  scheduling 

and earliest deadline first (EDF) [12] scheduling for fixed 

and dynamic  priority  tasks,  respectively.  For  dependent 

task  sets,  shared  resources  are  assumed  to  be  accessed 

in a mutually exclusive manner by real-time tasks. When 

scheduling dependent real-time tasks, the main focus is on 

how to manage the priority inversion problem so that urgent 

tasks could be serviced with proper timing/quality- of-

service   guarantee.   Excellent   real-time   concurrency 

control methodologies have been proposed to synchronize 

dependent real-time tasks, such as priority inheritance protocol 

(PIP) [10], priority ceiling protocol (PCP) [18], and stack 

resource policy (SRP) [20]. 

In these system, a higher priority task may blocked by lower 

priority task due to resource sharing.  Without blocking time 

management, the task might miss its deadline. Here we 

consider the problem of reducing the number of context 

switches in real time system with priority driven preemptive 

scheduling. Context switches occur whenever a task 

relinquishes its control over the CPU to the next task in the 

system. By reducing the number of context switching we can 

save the energy. 

To minimize the energy consumption and meet their 

deadline on such systems, we propose an Energy Efficient 

Improved   Priority   Ceiling   Protocol.   In   this   proposed 

protocol we reduce the number of context switches which 

are caused by task synchronization.  In our method we 

are disallowing higher priority task on available slack to 

preempt the lower priority task those are in critical section. 

 

2. PRELIMINARY 

Here, we show the system model followed by motivational 

example for proposed approach. 
 
2.1. Task and System 

model 

This system model deals with energy minimization of random 

arrival of  aperiodic tasks and  it  also operate on different 

frequency level. 

We  assume  a  task  set  of  n  aperiodic  real  time  tasks τ = 

τ1 , τ2 , .....τn , and a set of resources R = r1 , r2 ........rm 

those are non-preempt-able in the system. The tasks are 

independent and fully preemptive in nature. We are considered 

the task to be released at critical instance time with worst case 

execution time. 

Let Pi denote the priority, Ti   denote the time period, Ei 

denote the worst case execution time and Di  denote the 

relative deadline.  A task may  access  one  or  more  non 

preemptable shared resources. Before a task τi accesses a 
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non-preempt-able shared resource rj  it must first lock the 

resource rj  and unlock the resource when access is com- 

pleted. Here we assume in this system the processor (DVS) 

will support different operating speeds those are define as a 

set of S = sslp , s1 , s2 .....sn  where s1  ≤ s2  ≤ s3 .... ≤ 

sn . Let lowest speed is denoted by smin = s1  and highest 

speed is denoted by smax = sn , A processor can be in one 

of the three possible states namely active, idle, and sleep. In 

the active state the processor can run any of the speed 

levels between s1 to sn , while in idle state s1  and sleep 

state sslp 
 

2.2.Motivations 

Energy-efficient task scheduling for real-time system has 

become a active research topic in the recent few years. For 

the minimization of energy consumption many excellent 

algorithms for scheduling has been proposed. However, little 

work has been proposed for synchronizing real-time task 

on DVS based processor. Now we shall use the following 

example to illustrate the motivation of our proposed work. 

 

Example   1:  Suppose  that  an  aperiodic  task  P  arrives 

at time 1 with execution time 4 units and need a resource 
r1  during its execution of 2-4 time units, the deadline of 

task P is 38; task Q arrives at time 3 and need a resource 

r1  during its execution of 3rd   time units, the deadline 

of task Q is 36; task R arrives at time 6 and need a 
resource r2  during its execution of 2-3 time units, the 

deadline of task R is 32; task S arrives at time 7 and need 

a resource r1  during its execution of 3rd   time units, the 

deadline of task P is 24. Each task has same execution time of 

4 units. We also suppose that T has highest assign priority, 

R has next highest priority, Q has 3rd  highest and P has 

lowest priority among all task. 

The priority ceiling of the resources r1 and r2 are 1 and 2, 

respectively. 

Schedule the given aperiodic task set along with the Priority 

Ceiling Protocol 

(PCP)[12], 

 

1. Figure 1 shows at a time 1 task P arrives and start 

execution, the ceiling priority of the system at time 1 is 

Ω  and  a  time  2  task  P  locks  the  resource  r1 ,  after  r1 

is allocated, the ceiling of the system is raised to 1, the 

priority ceiling of r1 and at a time 3 a higher priority task 

Q arrives and preempts the task P and at a time 5 task Q 

attempts to access resource r1 , but already locked by P.Q 

becomes block and P resumes its execution and inherits the 

priority of Q. 

2. At a time 6 higher priority task R arrives and preempts P 

again and at a time 7 a higher priority task S arrives and 

preempt R; Higher priority S need a resource r1 at a time 9 

but resource is already locked by task P so that S becomes 

block and task P inherits the priority of task S and resume 

 
 
 
 
 
 
 
 
 

Non Crictical Section 
 
Crictical Section       r1                        r2           
 
                                 
 
S                                                                                         t 
    1 2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 
 
 
R                                                                                        t 
    1 2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 
 
 
Q                                                                                         
t 
    1 2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 
 
 
P                                                                                         t 
    1 2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 
 

Figure 1.    Schedule with Priority 

Ceiling Protocol 

 
its execution. During all these time, the ceiling of the 

system remains at 1. 

3. At a time 11 task S release r1 , the ceiling of the system 

drops to Ω and at a time 12 when task R request r2  , its 

priority 2 is higher than the ceiling of the system. Hence, its 

request is granted according to the allocation rule of PCP 
[12]. 

 

The above example shows that a lower priority task that 

lock the resource r1  at  starting of  its  execution for that 

reason all higher priority task are blocked for some time 

so that a number of context switches are increases. In this 

example, there are 9 context switches, and the holding time 

of resource by any task is long. Allowing the lower priority 

task to execute its critical section by a higher priority task 

on available slack, we can save the context switch and also 

reduce the holding time of resource by any task. 

The proposed protocol is a variation of priority ceiling 

protocol (PCP) which is to enforce mutually exclusive access 

to shared resources. We are also proposed the optimal fre- 

quency  level of tasks when they are using shared resources, 

so that we reduce the energy consumption and minimized 

the number of task those miss their deadline. 
 

3.  PROPOSED IMPROVED 

PRIORITY CEILING PROTOCOL 

Assumptions: 

•  The priority assigned to all task are fixed.(Before) 

•  Before the execution of any task the requirement 

of resources are known. 
 
3.1. Scheduling 

Rule 

At a time t, when tasks are released, the priority π(t) of 

every task is equal to its assigned priority accept under the 

priority inheritance rule. 

 

 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 61– No.19, January 2013 

15 

Every ready  job  P  is  scheduled  preemptively  and  in 

priority driven manner under the condition: 

If some lower priority task is in the critical section when 

the higher priority task arrives. 

•  S1: if higher priority task will be blocked by lower 

priority task in future: 

Then we calculate the maximum amount of of slack 

available for higher priority and permits the lower 

priority task to execute its critical section, in that 

available slack. 

•  S2: if higher priority task will never blocked by lower 

priority task in future: 

Then we calculate the maximum amount of slack avail- 

able for higher priority and also check the availability of 

resource used by higher priority task in the duration of 

their execution of higher priority task and then permit the 

lower priority task to execute its critical section, in that 

available slack. 
 

3.2. Resource Allocation Rule 

When any task τ request a resource R at a time t: 

•  If resource is not free then the request is denied and 

task τ is blocked 

•  If resource is free: 

–  If τ ’s priority π(t) is higher than current ceiling 

priority Πt ,resource is allocated to task τ 

–  If τ ’s priority π(t) is not higher than current ceiling 

priority Πt ,resource is is allocated to task τ  only 

if task τ is the task holding the resource(s) whose 

priority ceiling equals Πt ;otherwise,τ ’s is denied 

and τ becomes blocked. 
 

3.3. Priority Inheritance Rule 

•  A task uses its assigned priority, unless its blocks higher 

priority task or run on critical section, if a lower priority 

task blocks higher priority task , the lower priority task 

will inherits the priority of higher priority task.When 

the lower priority task executes its critical section then it 

resumes the priority it had at the point of obtaining the 

lock on the resource. 

•  When a higher priority task permits the lower priority 

task to executes its critical section in the duration of 

available slack  ,  the  lower  priority task  inherits the 

priority of higher priority task and executes its critical 

section and after that it resumes its own priority. 

The performance of modifying rules for real time task 

set as compare to existing priority ceiling protocol can be seen 

in example 1. Here, same example 1 is scheduled by proposed 

improved priority ceiling protocol. 

1. figure 2 shows at a time 1 task P arrives and start 

execution, the ceiling priority of the system at time 1 is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Non Crictical Section 
 
Crictical Section       r1                        r2           
 
                                 
 
S                                                                                         t 
    1 2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 
 
 
R                                                                                        t 
    1 2  3  4  5  6  7  8  9  10       11 12 13 14    17   18 19 
 
 
Q                                                                                         
t 
    1 2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 
 
 
P                                                                                         t 
    1 2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 
 
 

Figure 2.    Schedule With Improved 

Priority Ceiling Protocol 

 
Ω and at a time 2 task P locks the resource r1 , after 

r1 is allocated, the ceiling of the system is raised to 1, the 

priority ceiling of r1 and at a time 3 a higher priority 

task Q arrives, according to Scheduling Rule S1: now 

check task Q will be blocked by task P in future.The 

condition is true, so now we calculate the highest available 
slack for task Q. The highest available slack for Q is 

equal to Qlst − Qest = 

dQ  − eQ  − Qest − eR − eS   =(36-4-3-4-4)=21 

time units 

and lower priority task P requires 3 time units to 
execute 

its critical section that is lower than available slack so we 

permits the lower priority task to executes its critical 

section, with the inherited priority. During all this time , 

the ceiling of the system remains at 1. 

2. At a time 5 when task P finish its critical section, 

then task P preempts by task Q, and task P resumes its 

own priority. And the ceiling of the system drops to Ω At 

a time 

6 the higher priority task will arrive and preempts the 

lower priority task then we check lower priority task is in 

critical section or not. the condition is false, so task R will 

executed. 

3. At a time 7 the higher priority task S will arrive and 

preempt the task R then we check lower priority task is in 

critical section or not. the condition is false, so task S will 

executed with highest priority. At a time 9 task S locks the 

resource r1 , after r1  is allocated, the ceiling of the 

system is raised to 1, and a time 10 again system ceiling 

goes down Ω. 

4. At a time 11 task R request r2  , its priority 2 is 

higher than the ceiling of the system Hence, its request is 

granted according to the allocation rule of IPCP. 
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So  in  our  proposed  protocol  only  6  context  

switches that results to consume less energy as compare to 

existing approach. Besides reduction in energy 

consumption it also 
 

Improve the responsiveness of the system by guaranteed, to 

not miss their deadline. 
 

4. SPEED LOCKING ON IMPROVED 

PRIORITY CEILING PROTOCOL 

The speed locking concept is same as used by YA-Shu 

Chen [1].  The  processor  speed  is  switched  only  when  a 

task is scheduled for the first execution, or when all of the 

executing tasks  have  just  finished their  execution at  this 

time point. 

The new processor speed is set based on the following four 

conditions: 

 

1.  If  no  task  is  scheduled  for  the  first  execution,  and 

all of the executing tasks have just finished their execution 

at this time point, then the speed is set as the one for the 

idle mode. 

2. If a task is scheduled for the first execution, and all of 

the executing tasks have just finished their execution at this 

time point, then the processor speed is set as the base speed of 

the task which is calculated by the offline speed assignment. 

3. If a task is scheduled for the first execution, and some of 

the executing tasks have not finished their execution at this 

time point, then the processor speed is set as the maximum 

of its base speed which is calculated by the offline speed 

assignment and the current processor speed. 

4. Otherwise, the processor speed remains. 

 

A   speed   locking  concepts  could   be   better   illustrated 

by applying the concepts on same example 1. 

We  suppose  that  the  base  speed  of  task  P,Q,R  and  S 
are set as smax , 3/4smax , 1/2smax   and 1/4smax   

where smax   =  100.  In  the  example  a  lower  priority  

task  is assigned a higher base speed in execution due to a 

greater task preemption cost from higher priority tasks. 

 

1.  As  shown  in  figure  3,  when  task  P  arrives  at  a 
time 1,  the processor speed is set as smax ,  at  a  time 2 

task P successfully locks r1  and processor speed remains 

the same. At time 5 task P successfully executed with 
processor speed smax ,  and  at  the  same time, Q  will  be 

executed with processor speed 3/4smax  (condition 2) and 

stretch the execution time of Q is 4 to 5.3. And a time 6, 

task R will arrives for first execution and set the processor 
speed 3/4smax  (condition 3). 

2. At time 7, task S will arrives, and preempt the task R 

and execute with processor speed 3/4smax   (condition 

3) 

and stretch the execution time 4 to 

5.3. 

3. At time 12.3, current processor speed is 3/4smax , more 

than the base speed of task R. So that task R will executes 
with 3/4smax (condition 3). 

As a result, no task will violate its timing constraint under 

speed locking on IPCP. 

 
 
 
 
 

Non Crictical Section 
 
Crictical Section       r1                        r2           
 
                                 
 
S                                                                                         t 
    1          4     7   9           12.3       18  24        30     38 
 
 
R                                                                                        t 
    1     4    6  7  12.3                16.6                          32  38 
 
 
Q                                                                                         
t 
    1     3   4   5  6       10                 16.6          20.9  36  38 
 
 
P                                                                                         t 
    1 2  3  4  5 6         9  10 11  16                32    36       38 
    Figure 3.    Improved Priority Ceiling Protocol With Speed 

Locking 

 

Table I 
CO M PA R I S O N O F TA S K EN E R G Y CO N S U M P 

T I O N 
 

 
 

 
Now we schedule the same set of task under PCP with 

speed locking. 

When task P arrives at a time 1, the processor speed is 

set as smax , at a time 2 task P successfully locks r1  

and processor speed remains the same. At a time 3 when task 

Q preempts P, the processor speed will remain 

same(condition 

3). Note that the processor speed stays at smax  until 

all task finish its execution. 

Table  1  evaluate  the  performance  of  Improved  Priority 

Ceiling Protocol, it shows the percentage energy saving. 

Now we assume that, 1 joule energy will be consume in 

one process switching and 0.5 joule energy will be consume 

in speed switching overhead. 

So Total energy consumption = (Task energy consumption + 

Process Switching Overhead + Speed Switching Overhead) 
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Now the total energy consumption in the case of speed 

locking in PCP is (16 ∗ 1003 +9+0)=16000009 joule. 
And in case of proposed approach the total energy con- 

sumption is (4 ∗ 1003 +5.3 ∗ 753 +5.3 ∗ 753 +5.3 ∗ 753 +6+0)= 

10707818.5 
joule. 

So, from above calculation we have consumed less energy in 

comparison with existing approach. 
 

5.  OBSERVATION AND 

DISCUSSION 

In this section, we present the result of Improved Priority 

Ceiling Protocol. 

 

5.1. No. Of Context Switches 

Since  one  context  switch  can  be  associated  with  each task  

arrival,  the  number  of  context  switches  will  equal the  

number of  tasks when there is  no  preemption. Each 

preemption leads to one extra context switch when the 

preempted task resumes whereas each blocking causes two 

more context switches. The reduction in context switches 

due to synchronization using Improved PCP is shown in 

Fig.4. 

 

5.2. Effect of Discrete Speed 

Experiments were also conducted to evaluate the  energy 

consumption of Speed locking-PCP with different number 

of processor speeds. Note that when the number of available 

processor speeds is finite, the available speeds are derived 

by picking up real numbers between 0.1 to 1 with an equal 

consecutive distance. For example, 0.1, 0.55, and 1 were 

the available speeds of  a  processor. Fig. 5  and 6  shows 

the  average  energy  consumption  of  speed  locking-IPCP 

and PCP with different tasks in a  task set and the total 

CPU utilizations at the maximum processor speed. The 

overhead in speed switching was 0.5 ms at the maximum 

processor speed in all cases. The horizontal axis represents the 

number of speed levels of a processor, and the vertical axis 

represents the average energy consumption. 

The   required   number   of   available   processor   speeds, in 

general, increased, when the total CPU utilization increased, 

or when the total number of tasks increased. Compare the 

figure 5 and 6 the energy consumption of task execution, 

when there were 5 available processor speeds, was 10 % 

more than that when there is more number of speed  

levels.It  means  when  we  have  more  no  of  speed levels 

then we consume less energy. 

 

5.3. Effect of Speed Switching Overhead 

The results show that the overhead in speed switching had 

little impacts on the number of required processor speeds. 

Fig. 7 and 8 shows the average energy consumption of 

Speed Locking-IPCP and PCP, when there are ten tasks with 

the total CPU utilization at the maximum speed, respectively, 

and the available speeds could be any number between 0.1 and 

1.0. The horizontal axis represents the overhead in speed 

switching at the maximum processor speeds (ranged from 
 
 

 
 

Figure 4.    Reduction in Context 

Switches 
 

 
 

Figure 5.   Average Energy Consumption Vs No. of Speed 

Levels with U= 
0.4 and 10 task 

 

 
 

Figure 6.   Average Energy Consumption Vs No. of Speed 

Levels with U= 
0.6 and 20 task 

 

 
 

Figure 7.    Average Energy Consumption Vs Speed 
Switching Overheads with U= 0.2 and 10 Task 

 

 
 

Figure 8.    Average Energy Consumption Vs Speed 
Switching Overheads with U= 0.6 and 20 Task 
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0  to  1  ms), and  the  vertical axis represents the  normal- 

ized energy consumption. As shown in Fig. 10, when the 

overhead in speed switching was 1.0 ms at the maximum 

processor speed, the normalized energy consumption of Speed 

Locking-PCP could reach 0.2, which was 20% of the average 

energy consumption of PCP with Speed Locking. It means 

when speed switching overhead increases, the energy 

consumption is also increases. 

 
6. CONCLUSION AND FUTURE WORK 
 

In this paper we present a task synchronization techniques 

which minimizes the system energy consumption for real time 

system.  We  must  emphasize  on  the  major  goal  of this 

research work is to minimize the energy consumption by 

reducing the number of context switching, and at the 

same  time  to  minimize  the  number  of  deadline  misses. 

We present a solution for reducing the number of context 

switches in task synchronization. 

 
The objective is to minimize the energy consumption of a 

given task set, provided that the schedulability of tasks is 

guaranteed. We use the concept of speed locking[24] in task 

execution and extend the Proposed Priority Ceiling Protocol 

by locking the processor speed in a restricted manner so that 

the cost in speed switching is better managed. One particular 

characteristic  of  the  concept  is  that  no  speed  switching 

occurs when a lock request to a semaphore is blocked, or 

when a task resumes its execution from a blocked request. 

To reduce the cost in priority inversion, tasks with lower 

priorities are assigned higher processor speed. The proposed 

protocol is called Energy-Efficient Improved Priority Ceiling 

Protocol (EEIPCP) which is an extension of well known 

priority ceiling protocol (PCP). 

The performance evaluations shows that our proposed proto- 

col can significantly reduce the number of context switching 

normally range from 10 to 20%, and minimize the energy 

consumption and outperform previous work. We have 

performed simulations to compare the energy saving under the 

original protocol with proposed one. The percentage of energy 

savings normally range in 15 and 20 in either system 

environments. 
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