
International Journal of Computer Applications (0975 – 8887)

Volume 61– No.19, January 2013

13

Energy-Efficient Improved Priority Ceiling
Protocol for Real Time System

Ajitesh Kumar
Department of Information

Technology
Hindustan Institute Of

Technology

and Mannagement, Agra

S.K.Gupta
Department Of Computer

Science

Bundelkhand Intitute Of

Engineering

and Technology, Jhansi

Mona Kumari
Department of Information

Technology

Anand Engineering College

Agra

ABSTRACT
Minimization of energy consumption in the battery operated
system is become a major issue. Most of the real-time
systems consist of a battery operated microprocessor
system with a limited battery life. So, energy consumption
is becoming a critical issue in the design of embedded
systems because of the popularity of portable devices such
as mobile devices and personal digital assistants.
In this paper we propose a approach to handle task
synchronization for Real Time Systems with energy
efficiency consideration. Our p r o p o s e d approach is a
variation of the well known priority ce i l in g protocol
(PCP) which is to enforce mutually exclusive a c c e s s to
shared resources. W e a r e using the concept of speed
locking i n p r o p o s e d a p p r o a c h s o t h a t we can
save the enrgy consumption.

Keywords: Real t i m e S y s t e m s , e n e r g y
consumption, task scheduling, critical section, DVS,
context switching

1. INTRODUCTION

There are a lot of real-time task scheduling algorithm with energy

constraint have been proposed to supports dynamic voltage

scaling. However, most of the work only considers

independent real-time task on DVS platforms. Some work is

also done in synchronizing of dependent real-time tasks for

minimizing energy consumptions [2,7]. With consideration

of energy consumption, we propose an approach for

scheduling and synchronizing of soft real time tasks. In this

paper, our aim to maximize the battery life time of the

system and these systems usually have one processor, memory

units and several non preemptive co-processors [3]. All non

preemptive processing elements and memory units are shared

resource among tasks.

Real-time tasks are scheduled based on priority-driven

schemes and modeled with timing parameters such as

periods, deadlines and minimum separation. Tasks whose

deadlines can never be violated are called hard real-time

tasks and those still contribute value to the system after

having violated their deadlines are soft real-time tasks. A

set of real-time tasks is called independent task set when

the execution of each task is independent, whereas tasks

will access a shared resource is called dependent task set.

Various real-time task scheduling algorithm with energy

constraint have been proposed to supports dynamic

voltage scaling [14]. However, most of the work only

considers independent real-time task on DVS platforms.

For independent task sets, optimal algorithms have been

proposed, such as rate monotonic (RM) [3] scheduling

and earliest deadline first (EDF) [12] scheduling for fixed

and dynamic priority tasks, respectively. For dependent

task sets, shared resources are assumed to be accessed

in a mutually exclusive manner by real-time tasks. When

scheduling dependent real-time tasks, the main focus is on

how to manage the priority inversion problem so that urgent

tasks could be serviced with proper timing/quality- of-

service guarantee. Excellent real-time concurrency

control methodologies have been proposed to synchronize

dependent real-time tasks, such as priority inheritance protocol

(PIP) [10], priority ceiling protocol (PCP) [18], and stack

resource policy (SRP) [20].

In these system, a higher priority task may blocked by lower

priority task due to resource sharing. Without blocking time

management, the task might miss its deadline. Here we

consider the problem of reducing the number of context

switches in real time system with priority driven preemptive

scheduling. Context switches occur whenever a task

relinquishes its control over the CPU to the next task in the

system. By reducing the number of context switching we can

save the energy.

To minimize the energy consumption and meet their

deadline on such systems, we propose an Energy Efficient

Improved Priority Ceiling Protocol. In this proposed

protocol we reduce the number of context switches which

are caused by task synchronization. In our method we

are disallowing higher priority task on available slack to

preempt the lower priority task those are in critical section.

2. PRELIMINARY

Here, we show the system model followed by motivational

example for proposed approach.

2.1. Task and System

model

This system model deals with energy minimization of random

arrival of aperiodic tasks and it also operate on different

frequency level.

We assume a task set of n aperiodic real time tasks τ =

τ1 , τ2 ,τn , and a set of resources R = r1 , r2rm

those are non-preempt-able in the system. The tasks are

independent and fully preemptive in nature. We are considered

the task to be released at critical instance time with worst case

execution time.

Let Pi denote the priority, Ti denote the time period, Ei

denote the worst case execution time and Di denote the

relative deadline. A task may access one or more non

preemptable shared resources. Before a task τi accesses a

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.19, January 2013

14

non-preempt-able shared resource rj it must first lock the

resource rj and unlock the resource when access is com-

pleted. Here we assume in this system the processor (DVS)

will support different operating speeds those are define as a

set of S = sslp , s1 , s2sn where s1 ≤ s2 ≤ s3 ≤

sn . Let lowest speed is denoted by smin = s1 and highest

speed is denoted by smax = sn , A processor can be in one

of the three possible states namely active, idle, and sleep. In

the active state the processor can run any of the speed

levels between s1 to sn , while in idle state s1 and sleep

state sslp

2.2.Motivations

Energy-efficient task scheduling for real-time system has

become a active research topic in the recent few years. For

the minimization of energy consumption many excellent

algorithms for scheduling has been proposed. However, little

work has been proposed for synchronizing real-time task

on DVS based processor. Now we shall use the following

example to illustrate the motivation of our proposed work.

Example 1: Suppose that an aperiodic task P arrives

at time 1 with execution time 4 units and need a resource
r1 during its execution of 2-4 time units, the deadline of

task P is 38; task Q arrives at time 3 and need a resource

r1 during its execution of 3rd time units, the deadline

of task Q is 36; task R arrives at time 6 and need a
resource r2 during its execution of 2-3 time units, the

deadline of task R is 32; task S arrives at time 7 and need

a resource r1 during its execution of 3rd time units, the

deadline of task P is 24. Each task has same execution time of

4 units. We also suppose that T has highest assign priority,

R has next highest priority, Q has 3rd highest and P has

lowest priority among all task.

The priority ceiling of the resources r1 and r2 are 1 and 2,

respectively.

Schedule the given aperiodic task set along with the Priority

Ceiling Protocol

(PCP)[12],

1. Figure 1 shows at a time 1 task P arrives and start

execution, the ceiling priority of the system at time 1 is

Ω and a time 2 task P locks the resource r1 , after r1

is allocated, the ceiling of the system is raised to 1, the

priority ceiling of r1 and at a time 3 a higher priority task

Q arrives and preempts the task P and at a time 5 task Q

attempts to access resource r1 , but already locked by P.Q

becomes block and P resumes its execution and inherits the

priority of Q.

2. At a time 6 higher priority task R arrives and preempts P

again and at a time 7 a higher priority task S arrives and

preempt R; Higher priority S need a resource r1 at a time 9

but resource is already locked by task P so that S becomes

block and task P inherits the priority of task S and resume

Non Crictical Section

Crictical Section r1 r2

S t
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R t
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Q
t
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P t
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 1. Schedule with Priority

Ceiling Protocol

its execution. During all these time, the ceiling of the

system remains at 1.

3. At a time 11 task S release r1 , the ceiling of the system

drops to Ω and at a time 12 when task R request r2 , its

priority 2 is higher than the ceiling of the system. Hence, its

request is granted according to the allocation rule of PCP
[12].

The above example shows that a lower priority task that

lock the resource r1 at starting of its execution for that

reason all higher priority task are blocked for some time

so that a number of context switches are increases. In this

example, there are 9 context switches, and the holding time

of resource by any task is long. Allowing the lower priority

task to execute its critical section by a higher priority task

on available slack, we can save the context switch and also

reduce the holding time of resource by any task.

The proposed protocol is a variation of priority ceiling

protocol (PCP) which is to enforce mutually exclusive access

to shared resources. We are also proposed the optimal fre-

quency level of tasks when they are using shared resources,

so that we reduce the energy consumption and minimized

the number of task those miss their deadline.

3. PROPOSED IMPROVED

PRIORITY CEILING PROTOCOL

Assumptions:

• The priority assigned to all task are fixed.(Before)

• Before the execution of any task the requirement

of resources are known.

3.1. Scheduling

Rule

At a time t, when tasks are released, the priority π(t) of

every task is equal to its assigned priority accept under the

priority inheritance rule.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.19, January 2013

15

Every ready job P is scheduled preemptively and in

priority driven manner under the condition:

If some lower priority task is in the critical section when

the higher priority task arrives.

• S1: if higher priority task will be blocked by lower

priority task in future:

Then we calculate the maximum amount of of slack

available for higher priority and permits the lower

priority task to execute its critical section, in that

available slack.

• S2: if higher priority task will never blocked by lower

priority task in future:

Then we calculate the maximum amount of slack avail-

able for higher priority and also check the availability of

resource used by higher priority task in the duration of

their execution of higher priority task and then permit the

lower priority task to execute its critical section, in that

available slack.

3.2. Resource Allocation Rule

When any task τ request a resource R at a time t:

• If resource is not free then the request is denied and

task τ is blocked

• If resource is free:

– If τ ’s priority π(t) is higher than current ceiling

priority Πt ,resource is allocated to task τ

– If τ ’s priority π(t) is not higher than current ceiling

priority Πt ,resource is is allocated to task τ only

if task τ is the task holding the resource(s) whose

priority ceiling equals Πt ;otherwise,τ ’s is denied

and τ becomes blocked.

3.3. Priority Inheritance Rule

• A task uses its assigned priority, unless its blocks higher

priority task or run on critical section, if a lower priority

task blocks higher priority task , the lower priority task

will inherits the priority of higher priority task.When

the lower priority task executes its critical section then it

resumes the priority it had at the point of obtaining the

lock on the resource.

• When a higher priority task permits the lower priority

task to executes its critical section in the duration of

available slack , the lower priority task inherits the

priority of higher priority task and executes its critical

section and after that it resumes its own priority.

The performance of modifying rules for real time task

set as compare to existing priority ceiling protocol can be seen

in example 1. Here, same example 1 is scheduled by proposed

improved priority ceiling protocol.

1. figure 2 shows at a time 1 task P arrives and start

execution, the ceiling priority of the system at time 1 is

Non Crictical Section

Crictical Section r1 r2

S t
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R t
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 18 19

Q
t
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P t
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 2. Schedule With Improved

Priority Ceiling Protocol

Ω and at a time 2 task P locks the resource r1 , after

r1 is allocated, the ceiling of the system is raised to 1, the

priority ceiling of r1 and at a time 3 a higher priority

task Q arrives, according to Scheduling Rule S1: now

check task Q will be blocked by task P in future.The

condition is true, so now we calculate the highest available
slack for task Q. The highest available slack for Q is

equal to Qlst − Qest =

dQ − eQ − Qest − eR − eS =(36-4-3-4-4)=21

time units

and lower priority task P requires 3 time units to
execute

its critical section that is lower than available slack so we

permits the lower priority task to executes its critical

section, with the inherited priority. During all this time ,

the ceiling of the system remains at 1.

2. At a time 5 when task P finish its critical section,

then task P preempts by task Q, and task P resumes its

own priority. And the ceiling of the system drops to Ω At

a time

6 the higher priority task will arrive and preempts the

lower priority task then we check lower priority task is in

critical section or not. the condition is false, so task R will

executed.

3. At a time 7 the higher priority task S will arrive and

preempt the task R then we check lower priority task is in

critical section or not. the condition is false, so task S will

executed with highest priority. At a time 9 task S locks the

resource r1 , after r1 is allocated, the ceiling of the

system is raised to 1, and a time 10 again system ceiling

goes down Ω.

4. At a time 11 task R request r2 , its priority 2 is

higher than the ceiling of the system Hence, its request is

granted according to the allocation rule of IPCP.

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.19, January 2013

16

So in our proposed protocol only 6 context

switches that results to consume less energy as compare to

existing approach. Besides reduction in energy

consumption it also

Improve the responsiveness of the system by guaranteed, to

not miss their deadline.

4. SPEED LOCKING ON IMPROVED

PRIORITY CEILING PROTOCOL

The speed locking concept is same as used by YA-Shu

Chen [1]. The processor speed is switched only when a

task is scheduled for the first execution, or when all of the

executing tasks have just finished their execution at this

time point.

The new processor speed is set based on the following four

conditions:

1. If no task is scheduled for the first execution, and

all of the executing tasks have just finished their execution

at this time point, then the speed is set as the one for the

idle mode.

2. If a task is scheduled for the first execution, and all of

the executing tasks have just finished their execution at this

time point, then the processor speed is set as the base speed of

the task which is calculated by the offline speed assignment.

3. If a task is scheduled for the first execution, and some of

the executing tasks have not finished their execution at this

time point, then the processor speed is set as the maximum

of its base speed which is calculated by the offline speed

assignment and the current processor speed.

4. Otherwise, the processor speed remains.

A speed locking concepts could be better illustrated

by applying the concepts on same example 1.

We suppose that the base speed of task P,Q,R and S
are set as smax , 3/4smax , 1/2smax and 1/4smax

where smax = 100. In the example a lower priority

task is assigned a higher base speed in execution due to a

greater task preemption cost from higher priority tasks.

1. As shown in figure 3, when task P arrives at a
time 1, the processor speed is set as smax , at a time 2

task P successfully locks r1 and processor speed remains

the same. At time 5 task P successfully executed with
processor speed smax , and at the same time, Q will be

executed with processor speed 3/4smax (condition 2) and

stretch the execution time of Q is 4 to 5.3. And a time 6,

task R will arrives for first execution and set the processor
speed 3/4smax (condition 3).

2. At time 7, task S will arrives, and preempt the task R

and execute with processor speed 3/4smax (condition

3)

and stretch the execution time 4 to

5.3.

3. At time 12.3, current processor speed is 3/4smax , more

than the base speed of task R. So that task R will executes
with 3/4smax (condition 3).

As a result, no task will violate its timing constraint under

speed locking on IPCP.

Non Crictical Section

Crictical Section r1 r2

S t
 1 4 7 9 12.3 18 24 30 38

R t
 1 4 6 7 12.3 16.6 32 38

Q
t
 1 3 4 5 6 10 16.6 20.9 36 38

P t
 1 2 3 4 5 6 9 10 11 16 32 36 38
 Figure 3. Improved Priority Ceiling Protocol With Speed

Locking

Table I
CO M PA R I S O N O F TA S K EN E R G Y CO N S U M P

T I O N

Now we schedule the same set of task under PCP with

speed locking.

When task P arrives at a time 1, the processor speed is

set as smax , at a time 2 task P successfully locks r1

and processor speed remains the same. At a time 3 when task

Q preempts P, the processor speed will remain

same(condition

3). Note that the processor speed stays at smax until

all task finish its execution.

Table 1 evaluate the performance of Improved Priority

Ceiling Protocol, it shows the percentage energy saving.

Now we assume that, 1 joule energy will be consume in

one process switching and 0.5 joule energy will be consume

in speed switching overhead.

So Total energy consumption = (Task energy consumption +

Process Switching Overhead + Speed Switching Overhead)

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.19, January 2013

17

Now the total energy consumption in the case of speed

locking in PCP is (16 ∗ 1003 +9+0)=16000009 joule.
And in case of proposed approach the total energy con-

sumption is (4 ∗ 1003 +5.3 ∗ 753 +5.3 ∗ 753 +5.3 ∗ 753 +6+0)=

10707818.5
joule.

So, from above calculation we have consumed less energy in

comparison with existing approach.

5. OBSERVATION AND

DISCUSSION

In this section, we present the result of Improved Priority

Ceiling Protocol.

5.1. No. Of Context Switches

Since one context switch can be associated with each task

arrival, the number of context switches will equal the

number of tasks when there is no preemption. Each

preemption leads to one extra context switch when the

preempted task resumes whereas each blocking causes two

more context switches. The reduction in context switches

due to synchronization using Improved PCP is shown in

Fig.4.

5.2. Effect of Discrete Speed

Experiments were also conducted to evaluate the energy

consumption of Speed locking-PCP with different number

of processor speeds. Note that when the number of available

processor speeds is finite, the available speeds are derived

by picking up real numbers between 0.1 to 1 with an equal

consecutive distance. For example, 0.1, 0.55, and 1 were

the available speeds of a processor. Fig. 5 and 6 shows

the average energy consumption of speed locking-IPCP

and PCP with different tasks in a task set and the total

CPU utilizations at the maximum processor speed. The

overhead in speed switching was 0.5 ms at the maximum

processor speed in all cases. The horizontal axis represents the

number of speed levels of a processor, and the vertical axis

represents the average energy consumption.

The required number of available processor speeds, in

general, increased, when the total CPU utilization increased,

or when the total number of tasks increased. Compare the

figure 5 and 6 the energy consumption of task execution,

when there were 5 available processor speeds, was 10 %

more than that when there is more number of speed

levels.It means when we have more no of speed levels

then we consume less energy.

5.3. Effect of Speed Switching Overhead

The results show that the overhead in speed switching had

little impacts on the number of required processor speeds.

Fig. 7 and 8 shows the average energy consumption of

Speed Locking-IPCP and PCP, when there are ten tasks with

the total CPU utilization at the maximum speed, respectively,

and the available speeds could be any number between 0.1 and

1.0. The horizontal axis represents the overhead in speed

switching at the maximum processor speeds (ranged from

Figure 4. Reduction in Context

Switches

Figure 5. Average Energy Consumption Vs No. of Speed

Levels with U=
0.4 and 10 task

Figure 6. Average Energy Consumption Vs No. of Speed

Levels with U=
0.6 and 20 task

Figure 7. Average Energy Consumption Vs Speed
Switching Overheads with U= 0.2 and 10 Task

Figure 8. Average Energy Consumption Vs Speed
Switching Overheads with U= 0.6 and 20 Task

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.19, January 2013

18

0 to 1 ms), and the vertical axis represents the normal-

ized energy consumption. As shown in Fig. 10, when the

overhead in speed switching was 1.0 ms at the maximum

processor speed, the normalized energy consumption of Speed

Locking-PCP could reach 0.2, which was 20% of the average

energy consumption of PCP with Speed Locking. It means

when speed switching overhead increases, the energy

consumption is also increases.

6. CONCLUSION AND FUTURE WORK

In this paper we present a task synchronization techniques

which minimizes the system energy consumption for real time

system. We must emphasize on the major goal of this

research work is to minimize the energy consumption by

reducing the number of context switching, and at the

same time to minimize the number of deadline misses.

We present a solution for reducing the number of context

switches in task synchronization.

The objective is to minimize the energy consumption of a

given task set, provided that the schedulability of tasks is

guaranteed. We use the concept of speed locking[24] in task

execution and extend the Proposed Priority Ceiling Protocol

by locking the processor speed in a restricted manner so that

the cost in speed switching is better managed. One particular

characteristic of the concept is that no speed switching

occurs when a lock request to a semaphore is blocked, or

when a task resumes its execution from a blocked request.

To reduce the cost in priority inversion, tasks with lower

priorities are assigned higher processor speed. The proposed

protocol is called Energy-Efficient Improved Priority Ceiling

Protocol (EEIPCP) which is an extension of well known

priority ceiling protocol (PCP).

The performance evaluations shows that our proposed proto-

col can significantly reduce the number of context switching

normally range from 10 to 20%, and minimize the energy

consumption and outperform previous work. We have

performed simulations to compare the energy saving under the

original protocol with proposed one. The percentage of energy

savings normally range in 15 and 20 in either system

environments.

REFERENCES
[1] A. Arya Paul, B. Anju.S.Pillai., “Reducing the

Number of Context Switches in Real Time Systems.”

2011 IEEE.

[2] Abhilash Thekkilakattil,Abhilash Thekkilakattil,Radu

Dobrin and Sasikumar Punnekkat., “Preemption Control

using Fre- quency Scaling in Fixed Priority Scheduling ”,

IEEE/IFIP INTERNATIONAL CONFERENCE ON

EMBEDDED AND UBIQUITOUS COMPUTING 2010.

[3] C. L. Liu and J. W. Layland. “Scheduling algorithms for

multiprogramming in a hard real-time environment.” pages

46-61. JACM, Vol. 20, No. 1, January 1973.

[4] C. Rusu, R. Melhem, and D. Moss, “Maximizing the

system value while satisfying time and energy

constraints,” in Proc. Real-Time Syst. Symp., 2002, p.

246.

[5] D. Zhu, R. Melhem, and B. Childers. “Scheduling with

dy- namic voltage/speed adjust- ment using slack

reclamation in multi-processor real-time systems.” pages

84-94. In Proceed- ings of IEEE 22th Real-Time System

Symposium, 2001.

[6] F. Yao, A. Demers, and S. Shankar. “A scheduling

model for reduced CPU energy.” pages 374-382. IEEE.

Proceedings of the 36th Annual Symposium on

Foundations of Computer Science, 1995.

[7] Giuseppe Lipari, Gerardo Lamastra, and Luca Abeni.,

“Task Synchronization in Reservation-Based Real-Time

Systems”, IEEE TRANSACTIONS ON

COMPUTERS,VOL. 53, NO. 12,DECEMBER 2004

[8] H. Aydin, R. Melhem, D. Moss, and P. Meja-Alvarez,

“Deter- mining optimal processor speeds for periodic real-

time tasks with different power characteristics,” in Proc.

Euromicro Conf. Real-Time Syst,, 2001, p. 225.

[9] Intel Corporation. Enhanced Intel Speed Step Technology

for the Intel Pentium M Processor, March 2004.

[10] L. Sha, R. Rajkumar, and J. Lehoczky. “Priority

Inheritance Protocols: An approach to real-time

synchronization.” Page 1175V1185. IEEE Transactions

on Computers, 1990.

[11] Linwei Niu., “System-Level Energy-Efficient Scheduling

for Hard Real-Time Embedded Systems.” 2011EDAA

[12] Marko Bertogna and Sanjoy Baruah., “Limited

Preemption EDF Scheduling of Sporadic Task Systems”,

IEEE TRANS- ACTIONS ON INDUSTRIAL

INFORMATICS, VOL. 6, NO. 4, NOVEMBER 2010.

[13] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs.

“Dynamic speed scaling to manage energy and

temperature.” pages 520-529. In Proceedings of the 2004

Symposium on Foundations of Computer science, 2004.

[14] Padmanabhan Pillai and Kang G. Shin “Real-Time

Dynamic Voltage Scaling for Low-Power and Embedded

Operating Systems” U.S. Airforce Office of Scientific

Research under Grant AFOSR F49620-01-1-0120.

[15] Ramesh Mishra, Namrata Rastogi, Dakai Zhu, Daniel

Mosse, and Rami Melhem. “Energy aware scheduling for

distributed real-time systems.“ page 21. In International

Parallel and Distributed Processing Symposium, 2003.

[16] R. Jejuikar and R. Gutpa, ”Energy aware task scheduling

with task synchronization for embedded real-time

system,“ IEEE Trans. Comput. Aided Design of Integr.

Circuits Syst., vol. 25, no. 6, pp. 10241037, 2006.

[17] Ron Cytron, Morgan Deters and Christopher Gill .

“Rate- Monotonic Analysis in the C++ Type System’

’Sponsored by DARPA under contract F33615-00-C-

1697. Oct 2002.

[18] S. Davari and S.K. Dhall. ” On a real-time task

allocation problem.“ 19 Annual Hawaii May 2012.

[19] Sandy Irani, Sandeep Shukla, and Rajesh Gupta.

”Algorithms for power savings.“ pages 37-46. In

Proceedings of the Four- teenth Annual ACM-SIAM

Symposium on Discrete Algo- rithms, 2003. International

Conference on System Sciences, January 1985.

[20] T. P. Baker. ”A stack-based resource allocation policy for

real time processes.“ IEEE 11th Real-Time Systems

Symposium, December 4-7, 1990.

[21] T.-W. Kuo and A. K. Mok. ”Load adjustment in adaptive

real- time systems.“ IEEE 12th Real-Time Systems

Symposium, December 1991.

[22] W. Kim, J. Kim, and S. Mi, “Preemption-aware

dynamic voltage scaling in hard real-time systems,” in

Proc. Int. Symp. Low Power Electronics and Design,

International Journal of Computer Applications (0975 – 8887)

Volume 61– No.19, January 2013

19

2004, pp. 393398.

[23] Yann-Hang Lee, Krishna P. Reddy, and C. M. Krishna.

“Scheduling techniques for reducing leakage power in

hard real-time systems.” pages 105-112. In 15th

Euromicro Confer- ence on Real-Time Systems (ECRTS),

2003.

[24] Ya-Shu Chen, Chuan-Yue Yang, and Tei-Wei Kuo,

“Energy- Efficient Task Synchronization for Real-Time

Systems,“ IEEE TRANSACTIONS ON INDUSTRIAL

INFORMATICS, VOL.6, NO. 3, AUGUST 2010.

[25] Y. Zhang, X. Hu, and D.Z. Chen. Task scheduling and

voltage selection for energy minimization. pages 183-188.

Annual ACM IEEE Design Automation Conference,

2002.

