
International Journal of Computer Applications (0975 – 8887)

Volume 60– No.6, December 2012

37

Using P System with GPU Model to Design and

Implement a Public Key Cryptography

Salah Zaher

Faculty of computer &
information

Cairo University
Cairo, Egypt

Amr Badr
Faculty of computer

&information
Cairo University

Cairo, Egypt

Ibrahim Farag
Faculty of computer &

information
Cairo University

Cairo, Egypt

Tarek AbdElmaged
Egyptian Governmental

Security Consultant
Cairo, Egypt

ABSTRACT

Simulators are limited by the available resources on the GPU

as well as the CPU. Simulation of P systems with active

membrane using GPUs is a new concept in the development

of applications for membrane computing. P systems are an

alternative approach to extract all performance available on

GPUs due to its parallel nature. In this paper, a design and an

implementation of a simulator for a cryptography system

using GPU in a P system frame is presented. Then a

comparative study is conducted concerning the performance

of the GPU model and the CPU model in terms of the needed

time to perform encryption /decryption processes. The results

show that the proposed GPU system can help in enhancement

of encryption /decryption algorithm running in membrane

environment.

Keywords

GPU, CPU, Membrane Computing, P system.

1. INTRODUCTION
Membrane computing (or cellular computing) is an emerging

branch within natural computing that was introduced by Gh.

Paun [1]. The main idea is to consider biochemical processes

taking place inside living cells from a computational point of

view, in a way that gives us a new nondeterministic model of

computation by using cellular machines. Up to now, it has not

been possible to have implementations neither in vivo nor in

vitro of P systems, so handling and analysis of these devices

are performed by simulators. [2].

Driven by the video games market, programmable GPUs

(Graphics Processing Units) have evolved into a highly

parallel, multithreaded, many core processor. They were

designed to accelerate graphics applications, which transform

three-dimensional data (coordinates of triangle vertices) into

pixels that are displayed on a screen, using for this task

programming interfaces such as OpenGL and DirectX. The

massively parallel nature of graphics applications and its

arithmetic intensity leads the researches to explore mapping

more general non-graphics applications onto the GPU,

creating a new programming field called GPGPU (General-

Purpose on GPUs) [3] . Parallel computation on clusters is

the traditional environment to speed-up parallel applications.

Particularly, many simulators of P systems have been

designed for clusters of computers. However, this

computation is relatively expensive and it is available for

organizations that have enough resources to buy and maintain

those clusters. Nowadays, there are other cheaper solutions in

the computer market that provides parallel environments.

Among these solutions, the newest generations of graphics

processor units (GPUs) are massively parallel processors

which allow developing a wide range of parallel applications.

It is recalled that other parallel computing platforms are being

investigated, such as special hardware circuits [4]. GPUs can

support several thousand of concurrent threads providing a

massively parallel environment where parallel applications

can obtain huge performance [5]. Current NVIDIA’s GPUs,

for example, contain up to 240 scalar processing elements per

chip, they are programmed using C and CUDA [6], and they

have low cost compared with a cluster of computers. Using

the power that provides GPUs to simulate P systems with

active membranes is a new concept in the development of

applications for membrane computing. On the other hand, P

systems are an alternative approach to extract all performance

available on GPUs due to its parallel nature [7].

2. MEMBRANE COMPUTING
Membrane computing is a branch of natural computing, the

broad area of research concerned with computation taking

place in nature and with human-designed computing inspired

by nature. Besides systems biology that tries to understand

biological organisms as networks of interactions, and

synthetic biology that seeks to engineer and build artificial

biological systems, another approach to understanding nature

as computation is the research on computation in living cells

[8] ,[9]. Membrane computing abstracts computing models

from the architecture and the functioning of living cells, as

well as from the organization of cells in tissues, organs (brain

included) or other higher order structures such as colonies of

cells (e.g., bacteria).The initial goal was to learn from cell

biology something possibly useful to computer science, and

the area quickly developed in this direction. Several classes of

computing models were defined in this context, inspired from

biological facts or motivated from mathematical or computer

science points of view. A number of applications were

reported in the last few years in several areas biology, bio-

medicine, linguistics, computer graphics, economics,

approximate optimization, cryptography, etc. The models

investigated in membrane computing area are called P

systems.

The main ingredients of a P system are (i) the membrane

structure, (ii) the mustiest of objects placed in the

compartments of the membrane structure, and (iii) the rules

for processing the objects and the membranes. Thus,

membrane computing can be defined as a framework for

devising cell-like or tissue-like computing models which

process multiset in compartments defined by means of

membranes [10].The membrane structure consisting of several

membranes arranged in a hierarchal structure [11]. A

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.6, December 2012

38

h

membrane structure is represented by a Venn diagram (or a

rooted tree) and is identified by a string of correctly matching

parentheses, with a unique external pair of parentheses

corresponding to the external membrane, called the skin. A

membrane without any other membrane inside is said to be

elementary. The following Example from [12] illustrates the

situation: the membrane structure in Fig.1 is identified by the

string.

µ = [1 [2 [5] 5 [6] 6]2 [3]3 [4 [7 [8]8] 7]4] 1

Fig 1: A membrane structure and its associated tree.

A P system with active membranes is a construct [13]

Π = (V, H, μ, w1, wm, R),

Where:

 (i) M ≥ 1;

(ii) V is an alphabet;

(iii) H is a finite set of labels for membranes;

(iv) μ is a membrane structure, consisting of m membranes,

labeled (not necessarily in a one-to-one manner) with

elements of H; all membranes in μ are supposed to be neutral;

(v) w1... wm are strings over V, describing the multisets of

objects placed in the regions of μ;

 (vi) R is a finite set of developmental rules;

(a) a
hh va ,

for VvVaHh ,},0,,{, ,

(object evolution rules, associated with membranes and
depending on the label and the charge of the membranes, but
not directly involving the membranes, in the sense that the
membranes are neither taking part to the application of these
rules nor are they modified by them);

(b) 21][][

hhhh ba ,

for VbaHh ,},0,,{,, 21 .

(Communication rules; an object is introduced into the

membrane, maybe modified during this process; also, the

polarization of the membrane can be modified, but not its

label);

(c) ba hhhh
21][][

 ,

for VbaHh ,},0,,{,, 21

(Communication rules; an object is sent out of the membrane,

maybe modified during this process; also, the polarization of

the membrane can be modified, but not its label);

(d) ba hh][, for VbaHh ,},0,,{,

(Dissolving rules; in reaction with an object, a membrane can

be dissolved, leaving its entire object in the surrounding

region, while the object specified in the rule can be modified);

(e) 321][][][

hhhhhh cba ,

for VcbaHh ,,},0,,{,,, 321

(Division rules for elementary membranes; in reaction with an

object, the membrane is divided into two membranes with the

same label, may be of different polarizations; the object

specified in the rule is replaced in the two new membranes by

possibly new objects; all the other objects are copied into both

resulting membranes);

(f)

 11110
][]...[][[

kkkk hhhhhhh

3

110

2

0
][[]]...[

hhhhhh nn

,]]...[][[]]...[6

0

44

110

5

0

3

hhhhhhhhh nnkkkk

for ,0,,1 niHhkn i

and }0,,{,..., 62

(Division of non-elementary membranes; this is possible only

if a membrane contains two immediately lower membranes of

opposite polarization, + and —; the membranes of opposite

polarizations are separated in the two new membranes, but

their polarization can change; all membranes of opposite

polarizations are always separated by applying this rule);

If the membrane labeled h0 contains other membranes than h1

,..., hn specified above, then they must have neutral charges in

order to make this rule applicable; these membranes are

duplicated and then become part of the content of both copies

of membrane h0; P automata , which are symport/ antiport P

systems which accept strings: the sequence of objects (the

terms “object" and “symbol" are used interchangeably)

imported by the system from the environment during a halting

computation is the string accepted by that computation (if

several objects are brought in the system at the same time,

then any permutation of them is considered as a substring of

the accepted string; a variant, is to associate a symbol to each

multiset and to build a string by such “marks" attached to the

imported mustiest) [14]. A sequence of transitions constitutes

a computation. A computation is successful if it halts; reaches

a configuration where no rule can be applied. If an output

region is specified, then the objects present in the output

regions can be counted in the halting configuration and this

number is the result of computation [15].

3. ARETHMATICS OPERATIONS IN

MEMBRANE COMPUTING
P systems are computing models, where certain objects can

evolve in parallel into a hierarchical membrane structure.

Recent results show that this model is a promising framework

for solving NP complete problems in polynomial time.

Let us consider a basis q ≥ 2 and

 .,1,...,1,0

........
,

2

2

1

121

kqa

aqaqaaaax

i

k

kk

k

be an integer in basis q.
A P-system for x (called here Arithmetical P - System - APS

for short) can be defined in a natural way as,

),,...,,.,,,(21 RwwwHTV
on ,

Where the integer n0 is a constant fixed by the system in

Computer Architecture structure n0 = 8,16,32,64 or128.

The example of this paper uses without loss of the generality

the value,

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.6, December 2012

39

.1(),1(

,......,,...,2,1

,\,1,...,1,0;1

01

1200210

0

nikfwkia

wnnn

HfTVqTkn

iik

i

R is a set of rules, unspecified in this stage. Initial, all

membranes have a neutral polarity.

Graphically an APS is represented in figure 2.

Fig 2: The structure of APS

So, in an APS each membrane contains only one object: a

digit (terminal object) or f (special non terminal object); a

digit from the membrane i is more significant that all digits

situated in the membranes j with j < i and less significant that

all digits situated in the membranes j with j > i. A f membrane

is the most inner membrane or contains only f membranes. It

is considered here that every APS contains at least one f

membrane. Because an APS will be placed in other P systems,

the outer membrane 1 of an APS will be not considered the

skin.

3.1 The addition of two Arithmetical P -

System (APS)
In this section it is considered that the skin contains two APS.

A special object ax will be the catalyst of operation: the

addition of these APS will start in the moment when ax is

placed (somehow) in the skin as in Fig 3.

Fig 3: The addition of two APS

Also, in whole this paper the binary case (q = 2) should be

considered. The generalization to an arbitrary q is easy to be

accomplished.

3.2 Subtraction
Having defined the addition of two APS, the subtraction will

be easy to be constructed. Let be the unsigned integers

.,
,1

0

1

0

k

i

r

i

i

ir

i

ik qbbqaa contained into APS A

and B respectively. Supposing that a < b, then

.1

)1()1(
1 1

0

1

00

k

k

i

k

i

ii

ik

k

i

i

ik

qab

qqqaqbqabab

Hence, to subtract a from b means to add b with the

complement of a and with 1; finally, one unit have to be

subtracted in position 1k .

The algorithm is:

1. aa (A contains the complement of a);

2. bb 1 (The incrimination of B);

3. bba (B Contains the sum 1 ba);

4. bqb k (One unit is subtracted in the position

1k of B).

Steps (1) and (2) can be accomplished in parallel; moreover,

for (2) and (3) the problem is reduced to the addition of two

integers. It remains to solve only steps (1) and (4).

There are necessary (02n + 5) new objects:

 .,...,,,...,,,,,
00 00 nns xxccedcx

(The objects used in addition, incrimination and

decrimentation are not encountered. The rules used are:

1. .
0

000 ccpxs

The first step consists in initialization of the objects which

will start the four actions of the subtraction. Object p starts the

incrementation of B and C starts the operation of

complementarily (of A).

2. The rules used in complementarily of an APS are defined as

follows:

 00

iiii dc);1(oni

 0)1(
ii cxdx)1(,1,0 0nix ;

 0
i

fedif (1< 0ni);

 00

0 iii ee (1< 0ni).

Because only A has initially neutral polarity, C will penetrate

the membrane 1 of A and starts the operation of

complementarily.

3. When e arrives in the membrane 0, the operation of

addition of these two membranes (A and B) begins:

 0
00 xae .

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.6, December 2012

40

4. When the addition is performed, each dissolution of a

membrane from A modifies a counter:

).0(10 0

0

0 nixcixci

5. The first object f appears in the membrane 0 after

dissolving of the membrane k + 1 from A (k ≥ 1).

 .
0

00 kk xhfc

(i)
kx are new object which penetrates B until the membrane

k + 1 and will start the decrementation beginning with that

position. h neutralizes the other apparitions of f (if k < n):

 .0
0

0
hhf

(ii) Finally, the rule 0
0

uzf from the set (8) of addition

rules will be replaced by .
0

00 uzhf

(iii) These three rules acts following priorities (iii) > (ii) >

(i) because, if an object can evolve, it should evolve.

6. After the addition is finished, the action of kx begins:

 00

ikiiik xx)1(,1,...1 0nkki ;

11 01

kkk x 0
111 10

kkkk xx ;

 .
0

11
kukk dx

The complexity of subtraction is still constant. It depends only

on the number n0 of membranes which are in an APS.

3.3 Multiplication

Time complexity:)(0)(0 221 nnn if nnn 21 . t

Multiplication is implemented in a similar manner to addition,

coupling a predecessor with an adder. The idea is to provide

the first number to a predecessor, and perform the addition

iteratively until the predecessor reaches 0. The evolution is

started by the predecessor working over the first number. The

predecessor activates the adder by passing a communication

token. The adder is modified to use an extra backup

membrane which always contains the second number.

When the adder is triggered by the predecessor, it signals the

backup membrane which supplies a fresh copy of the second

number to the adder, and new addition iteration is performed.

At the end of the iteration, the adder sends out a token to the

predecessor. The procedure is repeated until the predecessor

reaches.

The P - systems which realize the product has initially the

same structure with that of addition, but here the starting

object is mx .

The no terminal objects used in this operation are

 fgppvvvbaxxzyyxm ,,1,,,,,,,,,,,,, 1010100 .

The rules are:

1. .
0

0000 yxxm

2.

 .),1(

,,

00

0

1111110

0

2

nn
iii bnibb

baay

i

3. ,yz
ii

).1(0nizy
iiii

4. ,0
0

11

0

11 v .1
11

0

11

0

11

 v

5. ,0
0

11 jvvj ,
00

ijiiij pv ,
0

itji jvtp

).2(,1,0, 0

0
nitjjfp

iji

6. ,
0

0000 gxfx ,
00

iiii hg

),1(0

0
nigxh

ii),,1,0(1

0

0
0

fxxxhn
n

 .
0

000

0

0 xfx

7. ,
0

111111 xyx
 ,

0

112

0

111 xx .
0

020 axxx

8. The addition of all APS in the membrane 0 is performed.

The f result represents the product between A and B.

3.4 Division
The division of two integers is a little more complicated.

Having two APS corresponding to a (nominator) and b

(denominator), the algorithm of division will work in three

steps:

1. At first two other APS for quotient (q) and remainder (r)

will be generated;

2. By decrementing q and renew membranes 0 will be

constructed, each membrane containing four APS for these

integers).,,,(rqba

3. In parallel, in each membrane 0 one verifies if the equality

rbqa holds. The membrane where this assertion is

true will keep the values q and r (the APS A and B are

dissolved). All the other membranes are dissolved.

The P system will have as new objects:

 .,,,,,,,,,,,,,,,,,, 32102111 lrrrrrqqqbababazxxxd

 Its initial structure is that from Figure 2, with xd instead of xa

(remember, the membrane 0 is not the skin; the skin s was not

drawn).

The rules are:

1. ,
0

00 xxxd
 ,

0

11

0

11 zx .
1111

 zx

2. ,
0

1111

0

11 qaz

 .
0

111111 rbz

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.6, December 2012

41

3. The rules for decrementation of Q and R are introduced.

The I value for q is a-1 and for r is b-1.

4. ,1,0
121111

0

111

xxqxqxq

 .
0

01210

0

110

0

01211110

 qqqq

5. ,
1021

 qrq ,

110101

 rr ,

0

111

0

110 rr

 .
0

1211 rrr

6. ,
131121

0

121

 xrxrxr ,1,0x

 .
0

0

0

1110

0

01110

0

01311210 rrrrr

7. .0
11

0

121

 rfr

8. .
11111

 msxxr

9.

0
0

0
0

0

1

0

1

nn

nn

ii

ii

i

i

bf

af

ibib

iaia

bib

aia

)1(

)1(0

oni

ni

.

1

0

01

11

00

0

0

11

11

11

lfba

lfba

lba

baba

baba

baffba

10.

 .

,,1,0,

),1(,

,,

0

111

0

00

0

00

000

0

11

0

1111

lfq

fxx

nillll

llll

oiiiiii

4. RSA ALGORITHM
RSA scheme is a block cipher in which the plain text and

cipher text are integers between 0 and n- 1 for some n [16].

4.1 Description of the Algorithm
RSA algorithm is specified as in [17], [18], [19], [20].

4.1.1 Key setup
To setup the key material, user Alice performs the following

steps:

1. Each user generates a public/private key pair by

selecting two large primes at random p, q.

2. Compute N=p. q.

3. Compute).1).(1()(qpN

4. Selecting at random the encryption key e Where

.1))(,gcd(),(1 NeNe

5. Solve the following equation to find decryption

Key d where)(mod1. Nde and

.0 Nd

6. Publish their public encryption key

},{ NeKU

7. keep secret private decryption key

},,{ pqdKR

4.1.2 Encryption
To send a message m < N to Alice, the sender Bob creates the

cipher text c as follows:

)(mod Nmc e

4.1.3 Decryption
To decrypt the cipher text c. Alice computes

)(mod Nmc e

4.2 Modular Exponentiation
RSA uses fast exponential algorithm called "repeated square

and multiply" the algorithm repeats the following process:

dividing the exponent into 2, performing square and

performing an extra multiplication if exponent is odd.

Modular Exponentiation algorithm:

INPUT x, y, n: integers with ;1,0,0 nyx

OUTPUT).(modnx y

Mod_ exp (x, y, n);

1. If y = 0 return (1) ;

2. If y (mod 2) = 0 return (mod_exp (x2(mod n), y ÷ 2, n);

3. Return (x. mod_exp ((x2(mod n), y ÷ 2, n).

5. EXPREMINTAL RESULTS
The performance of calculations under membrane computing

using GPU is compared with that using CPU in the same

environment of the membrane model. The simulation was

performed using laptop with Intel core2 due 2.66Ghz with

RAM 3G using windows 7 with 32 bits GPU used is ATI

4650 rad eon mobility with memory dedicated 128M. The

simulator was built using mathematical version8. Table 1

shows comparison for addition and subtraction between GPU

& CPU. The calculations were made for 10N±10N The results

of comparison for multiplication and division operations are

shown in table 2& table 3 respectively where performance is

calculated for 48*4N in case of multiplication and 48 /48-N is

used in case of division where N ranges from 2 to 7. The

results are graphed in Fig. 4 for addition and subtraction and

in Fig. 5 & Fig. 6 for multiplication and division respectively.

Results of Arithmetic operations with GPU are used in

calculations of encryption/decryption time for RSA and

compared with normal encryption/decryption time using CPU.

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.6, December 2012

42

The results are recorded for various sizes of messages The

results are shown in table 4 and the corresponding graph in

figure 7.

Table 1: Addition and subtraction performance

N GPU time (s) CPU time (s)

2 1.00586*10^-13 0.015

3 1.00586*10^-13 0.016

4 1.00586*10^-13 0.016

5 1.00586*10^-13 0.109

6 0.11 0.578

7 0.904 4.633

Fig 4: Addition and subtraction performance

Table 2: multiplication performance

N GPU time (s) CPU time (s)

2 0.031 0.157

3 0.108 0.380

4 0.271 0.930

5 1.123 2.946

6 3.602 8.920

7 17.892 27.781

Fig 5: Multiplication performance

Table 3: division performance

N GPU time (s) CPU time (s)

2 0.109 0.390

3 0.281 0.920

4 1.123 2.746

5 4.602 8.720

6 18.892 27.581

7 76.425 89.404

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6

GPU

CPU
0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8

N

T
IM

E
(S

)

GPU

CPU

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.6, December 2012

43

Fig 6: Division performance

Table 4: encryption/ decryption time of GPU membrane

versus CPU

Encryptad/

decrypted

massage size

(bits)

Encryption/

decryption time

using CPU

(seconds)

Encryption/

decryption time

using GPU

membrane

(seconds

16 140 90

32 391 128

64 798 324

128 1402 758

256 3214 1521

512 7857 3412

1024 21154 10500

Fig 7: Encryption/Decryption time using membrane GPU

versus CPU

6. CONCLOUSION AND FUTURE

WORK
In this paper, an analysis of arithmetic operations using the

membrane computing environment with both GPU and CPU

is proposed. Moreover, a comparison between the

performances of both techniques is conducted. The results of

the comparison showed that membrane computing with GPU

technique enhanced the arithmetic operations corresponding

to the normal CPU technique. The cause of enhancement is

using properties of parallel processing of GPU. Consequently,

GPU is ideal for membrane models with massive

computations. Many applications need massive calculations

like encryption /decryption processes that can be enhanced

using GPU with membrane model. RSA cryptography is

analyzed and implemented using arithmetic calculations under

GPU membranes and compared with normal CPU

calculations. The results show that the RSA performance is

enhanced by using GPU membrane model .

7. ACKNOWLEDGMENTS
Our thanks, respect and never ending gratitude to every one

shared in this work. Great thanks to them for their effort,

encouragement, advice, support and guidance.

8. REFERENCES
[1] Paun, G. 2000. Computing with membranes. Journal of

Computer and System Sciences, 61, 1, 108-143, and

Turku Center for Computer Science-TUCS Report No

208.

[2] Gutierrez, M.A., Naranjo, M.J. Perez, Jimenez, A.

Riscos., and Nunez. 2006. Available membrane

computing software. Applications of Membrane

Computing, Natural Computing Series, Springer

{Verlag, Chapter 15, pp. 411- 436 .

[3] NVIDIA CUDA., World Wide Web electronic

publication: HHUUhttp://www.nvidia.com/UUHH cuda.

[4] Nguyen, V., Kearney, D. J., and Gioiosa. 2009. An

algorithm for non-deterministic object distribution in P

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

N(bits)

T
IM

E
(s

)

GPU

CPU

0

5000

10000

15000

20000

25000

16 32 64 128 256 512 1024
size (bits)

e
n

c
r
y
p

ti
o

n
/d

e
c
r
y
p

ti
o

n
 t

im
e
(s

)

CPU

GPU

http://www.nvidia.com/

International Journal of Computer Applications (0975 – 8887)

Volume 60– No.6, December 2012

44

systems and its implementation in hardware. Lecture

Notes in Computer Science, 5391, 325-354.

[5] Hartley, T.D., Catalyurek, U., Ruiz, A., Igual, F., Mayo,

R., and Ujaldon, M. 2008. Biomedical image analysis on

a cooperative cluster of GPUs and multicores. ICS '08:

Proceedings of the 22nd annual international conference

on Supercomputing, ACM, pp. 15-25.

[6] Nickolls,J., Buck, I., Garland, M., and Skadron, K. 2008.

Scalable parallel programming with CUDA. Queue, 6, 2,

40-53.

[7] Jose M. Cecilia., Gines D. Guerrero., Jose M., Garcia.,

Miguel A., and Martinez–del–Amor. 2009. Ignacio Perez

Hurt ado, Mario J. Perez– Jimenez. A massively parallel

framework using P systems and GPUs, Symposium on

Application Accelerators in High Performance

Computing, July.

[8] Endy, D. 2005. Foundations for engineering biology.

Nature, pp 438:449–453.

[9] Dassow,G. and Paun, G. 1999. "Journal of Universal

Computer Science, vol. 5, no. 2, pp 33-49".

[10] Ibarra, O.H. and Paun, G. 2007. “Membrane Computing:

General View” The European Academy of Sciences.

[11] Paun, G. 2002. “Membrane Computing: An

introduction” Springer Verlag, Berlin, ISBN: 3-540-

42601-4.

[12] Sosik, P. and Alfonso Rodriguez-Patton. 2007.

“Membrane computing and complexity theory: A

characterization of PSPACE” Journal of Computer and

System Sciences73, pp.137–152.

[13] Adorna, H., G. Paun, G. and PEREZ- JIMENEZ, M.J.

2010. On Communication Complexity in Evolution-

Communication P Systems "Romanian Journal Of

Information " Volume 13, Number 2, , pp.113-130.

[14] Paun, G. and Perez Jimenez, M.J. 2010. "Solving

Problems in a distributed Way in Membrane Computing:

DP systems" Int. J. of Computers, Communications &

Control, ISSN 1841-9836, E-ISSN 1841-9844 Vol. V,

No. 2, pp. 238-250.

[15] Paun G. 2002. “Application of Membrane Computing”

Springer- Verlag, Berlin, ISBN: 3-540- 25017-4.

[16] Stallings, W. 2011. "Cryptography and Network Security

Principles and Practices", fifth Edition, ISBN:13 978-0-

13-705632-3.

[17] Paar. C. and jan pelzl.2010. "understanding

cryptography "Spring Verlag ,Berlin , ISBN : 978 -3-642

– 04100 - 6.

[18] Esslinger, B. 2010. "The cryptool script cryptography ,

mathematics and more", available [http:

//www.cryptool.org] .

[19] Schneier, B. 1996. "Applied cryptography Protocol ,

Algorithms and Code in C" ISBN:13 978-0-047-

1117094, .

[20] Katz, J. and lindel, y. 2008. "introduction to modern

cryptography", ISBN: 978-1-58488-551-1.

