
International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 5, December 2012

Feature-based Clustering of Web Data Sources

Alsayed Algergawy
Computer Engineering Department

Tanta University
Tanta, Egypt

ABSTRACT
The proliferation of web data sources increasingly demands
the integration of these sources. To facilitate the integration
process, a pre-analysis step is required to classify and group
data sources into their correct domains. In this paper, we pro-
pose a feature-based clustering approach for clustering web data
sources without any human intervention and based only on fea-
tures extracted from the source schemas. In particular, we make
use of both linguistic and structural schema features. We ex-
perimentally demonstrate the effectiveness of the proposed ap-
proach in terms of both the clustering quality and runtime.

General Terms:
Algorithms, Design, Experiments

Keywords:
Web data source, Data integration, Clustering, Performance.

1. INTRODUCTION
The number of structured data sources on the web is rapidly
increasing, e.g. the study in [5] estimated about 450,000 such
sources. Common examples of structured web sources are web-
sites that support access to databases through web forms. Such
databases hidden behind web forms constitute the so-called deep
web. A recent study by Google [6] reports about 10 million web
forms. A common characteristic of these structured sources is
that they exhibit a large degree of semantic heterogeneity result-
ing in largely different forms even within the same domain. This
raises the need to provide unified form-based access to differ-
ent sources of a domain, e.g. similar to some meta search en-
gines [9].
To this end, a few approaches have been proposed. A first ap-
proach is to model structured data sources as documents and
then apply keyword search on them. This approach has two main
disadvantages. Treating deep web data as documents completely
ignores the structure feature of these data sources. Furthermore,
applying keyword search results in a huge number of false pos-
itive candidates which dramatically reduces the quality of the
search process. Other approaches that consider structural fea-
tures are to use data integration. At web scale, the massive num-
ber of data sources makes even semi-automatic data integration
techniques impractical. As well as existing fully automatic data
integration techniques assume that the data sources are homoge-
nous, i.e. belonging to the same domain. Therefore, a pre-process
step is required to group and cluster similar data sources before
applying the integration process.
Only a few approaches have been proposed to group and classify
web data sources [7, 2, 1]. [2, 1] uses only element properties

that are represented in Web forms in the clustering process. [7]
proposes an approach to cluster Web data sources based on their
schemas using only schema elements’names. It completely ig-
nores the structural feature of these schemas.
In this paper, we propose a new approach for clustering web data
sources based on their schema (metadata) features. In particu-
lar, the approach makes use of both linguistic and structural fea-
tures of schema elements. We construct vectors per schema from
these features and use the vectors to compute the similarity be-
tween schemas. A hierarchical clustering algorithm is proposed
to group together similar schemas of the same domain. An exper-
imental evaluation validates the effectiveness and performance
of the proposed approach.
The rest of the paper is organized as follows. We introduce basic
definitions in Section 2. The feature-based clustering approach is
described in Section 3. Section 4 reports the experimental results.
We conclude in Section 5.

2. PRELIMINARIES
In this section we present definitions and basic concepts that be
used through the paper.

2.1 Schema graph
In order to make the proposed approach generic, we represent
structured web data such as web forms or the schemas of the
underlying databases (e.g., XML schemas and ontologies) as la-
beled directed acyclic graphs, called schema graphs (SG).
Definition 1. A schema graph is a rooted node-labeled directed
acyclic graph. It is represented as a 3-tuple (V,E,Labv), where:

—V = {r, v2, ..., vn} is a finite set of nodes, each of them is
uniquely identified by an object identifier (OID), where r is
the schema graph root node.

—E = {(vi, vj)|vi, vj ∈ V } is a finite set of edges.

—Labv is a finite set of node labels. These labels are strings for
describing the properties of the element and attribute nodes,
such as name and data type.

Figs. 1 and 2 show schema graphs representation of two web
data sources taken from [3]. DeptDB represents information
about departments with their employees and grants, as well as
the projects for which grants are awarded. OrgDB is a variation
of deptDB, where employees and funds are now grouped by or-
ganizations. Furthermore, OrgDB includes additional informa-
tion not present in DeptDB (e.g., organizations have addresses
and employees have phones.). The figures show that each node
is associated with the node name and the node identifier. For ex-
ample, in Fig. 1, the node v1 has the name DeptDB.

1

International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 5, December 2012

Fig. 1: Schema graph, deptDB Fig. 2: Schema graph, orgDB

2.2 Schema feature vectors
Each element (node) of a schema graph has its own internal fea-
tures, such as name, type, and constraint as well as structural fea-
tures that represent the element’s position in the schema graph. It
is known that the element name is the most useful internal feature
for schema elements while no single structural feature is com-
monly most significant. Therefore, in our implementation, we
consider both the element name and a set of the element struc-
tural features for the clustering process.
We therefore construct from each schema graph two feature vec-
tors, called TermVector and StrVector. TermVector is used to cap-
ture the linguistic properties of each schema. It is constructed by
the names of schema elements. Each name is extracted from the
schema and normalized by tokenizing it into a set of tokens. Dis-
tinct tokens with length higher than two are sorted into TermVec-
tor. For example, term vectors of the two data sources shown in
Figs. 1 and 2 are TV1{pname, dept, dno, pid, ename, eid, emp,
grant, year, emps, amount, function, country, dname, project}
and TV2{eid, ename, emp, emps, amount, type, oid, phones, ad-
dress, country, org, city, funds, pname, fund, addresses, phone,
number, oname}, respectively.
StrVector is used to represent the structural features of the
schema graph. We utilize a combination of a set of ten structural
element features, including the number of roots, the number of
levels, the total number of elements, the total number of paths,
etc. For example, term vectors of the two data sources shown in
Figs. 1 and 2 are SV1=[1.0, 5.0, 0.0, 19.0, 6.0, 13.0, 19.0, 6.0,
13.0, 18.0] and SV2=[1.0, 7.0, 0.0, 20.0, 10.0, 10.0, 20.0, 10.0,
10.0, 19.0].

3. FEATURE-BASED CLUSTERING
Given a set of heterogeneous web data sources each represented
by a schema graph, the problem is to group similar sources into
domains such that the intra-domain similarity is sufficiently high
and the inter-domain similarity is sufficiently small. In the fol-
lowing we present how to compute the similarity between data
sources and then introduce the clustering algorithm for grouping
these data sources.

3.1 Inter-schema similarity computation
In order to group similar data sources into domains, we com-
pute the similarity between every schema pair by using the two
feature vectors per schema. Given a set of web data sources
with schema graphs SG1, SG2,, SGn, we construct a n× n
schema similarity matrix, SchMat, to assess the similarity be-
tween every schema pair. To take both the linguistic and struc-
tural schema features into account, we use the following formula
to determine the similarity between schemas i and j:

Sim(SGi, SGj) = w × termV ectorSim(TVi, TVj) +

(1− w)× strV ectorSim(SVi, SVj) (1)

where TVi/SVi and TVj/SVj are the term/structure vectors of
schemas SGi and SGj , respectively. termV ectorSim is the
similarity measure to compute the term vector similarity. To this
end, we make use of the Jaccard coefficient given as

termV ectorSim(TVi, TVj) =
|TVi ∩ TVj |
|TVi ∪ TVj |

(2)

strV ectorSim is the similarity measure used to compute the
structural similarity. We use the cosine similarity given as

strV ectorSim(SVi, SVj) =

∑m
k=1 SVik × SVjk√∑m

k=1 SV
2
i ×

∑m
k=1 SV

2
j

(3)
where m is the number of items in the structural vector. Finally,
w is a weight used to quantify the importance of each similarity
measure.

Example 1. The term and structure similarities be-
tween the two data sources shown in Figs. 1 and 2
are termV ectorSim(deptDB, orgDB) = 0.29 and
strV ectorSim(deptDB, orgDB) = 0.5, respectively. Setting
the weight w to 0.5, the inter-schema similarity between the two
data sources is 0.39.

3.2 The clustering algorithm
Our goal is to group similar web data sources into domains.
Clustering is a useful technique for grouping schemas such that
schemas within the same domain are similar while schemas in
different domains are dissimilar. The clustering algorithm pre-
sented in this paper is an agglomerative hierarchical algorithm
mainly extended from the SCAN approach [11]. The hierar-
chical clustering algorithm is appropriate for this clustering
task since in general we do not know the number of clusters
in advance. The algorithm produces a tree called dendrogram
representing the hierarchy of clusters in a bottom-up fashion.
As shown in Algorithm 1, the proposed clustering algorithm
proceeds in four steps as follows:

—Preparation. The algorithm accepts a set of web data sources
(schemas), S, to be clustered and prepares it for the next
stages. The stage starts by initializing the output set of clusters
(ClusterSet) and the cluster hierarchy (Dendro), line 1. Then,
the algorithm computes the inter-schema similarities (SchMat)
in advance to avoid recomputing them multiple times during
clustering, line 2. The computation is based on Eq. 1.

—Cluster initialization. It constructs the bottom level of
the cluster hierarchy. Each schema represents its own clus-
ter resulting into n clusters in the cluster set (ClusterSet),

2

International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 5, December 2012

lines 3 to 6. Once getting the initial cluster set, the bottom
level of the hierarchy is added to the dendrogram, line 7.

Algorithm 1 Clustering algorithm

Require: A set of schemas, S = {S1, S2, ..., Sn}
Ensure: A set of clusters, Clust Set
{// Step 1: Preparation}

1: ClusterSet⇐ φ, Dendro⇐ φ;
2: SchMat[][]⇐ computeInterSchema(S)
{// Step 2: Cluster initialization}

3: for Si ∈ S do
4: Cluster C ⇐ newCluster(Si);
5: ClusterSet.add(C);
6: end for
7: Dendro.addLevel(ClusterSet);
{// Step 3: Cluster hierarchy construction}

8: dist⇐ 1;
9: while ClusterSet.size() > 1 do

10: k ⇐ ClusterSet.size();
11: ClusterSet⇐ mergeCluster(dist)
12: if k > ClusterSet.size() then
13: Dendro.addLevel(ClusterSet);
14: computeIntraSim(ClusterSet);
15: k ⇐ ClusterSet.size();
16: end if
17: if noMoreMerge() then
18: break;
19: end if
20: dist⇐ dist+ δ;
21: end while
{// Step 4: Best cluster set selection}

22: return Dendro.getBestCluster(BestLevel);

—Cluster hierarchy construction. This is the main stage of
the clustering algorithm and is dedicated to constructing the
cluster hierarchy. It first initializes the distance between levels
of hierarchy with 1, line 8. The algorithm iteratively merges
clusters at a certain level until either the number of clus-
ters reaches 1 or there is no possibility to merge more clus-
ters. We keep the current size of the cluster set in variable
k, lines 10&15. If the number of clusters after merging is
changed, line 12, the new cluster set is added to the cluster
hierarchy at the specified level. Furthermore, as we will ex-
plain later, the intra-cluster similarity is computed and the k
value is updated. After that the algorithm checks if there is
a possibility to further merge clusters and finally updates the
distance for the current hierarchy level.
Having two clustersC1 andC2 containing k1 and k2 elements
respectively, the similarity between them can be expressed as
the average inter-schema similarity. It can be represented as
follows:

Sim(C1, C2) =

∑k1
i=1

∑k2
j=1 Sim(S1i, S2j)

k1 + k2
(4)

where sim(S1i, S2j) is the inter-schema similarity between
S1i ∈ C1 and S2j ∈ C2 computed by Eq.0??. Having this
similarity between every cluster pair, a condition is required to
decide if elements in the cluster pair should be merged. This
condition has to reflect the level of the cluster hierarchy at
which elements come together. Therefore, the introduced dis-
tance variable is used (dist, line 8). Elements of every cluster
pair are combined when the similarity between the two clus-
ters exceeds the predefined level similarity threshold (1/dist).
The value of the level distance is then updated to reflect the
nature of the next level (line 20, Algorithm 1).

Fig. 3: Using name feature.

—Best cluster set selection. The task of the final stage is to
select the best cluster set. Each level in the dendrogram is
associated with a value that represents the average value of
intra-cluster similarities of clusters at that level. The algorithm
returns the cluster set at the level with the best value, line 22.

4. EXPERIMENTAL EVALUATION
In order to evaluate the performance of the proposed approach,
we conducted a set of experiments utilizing real-world on-
tologies of different sizes representing heterogeneous web data
sources. We ran all our experiments on a 2.66 GHz Intel(R)
Xeon(R) processor with 4 GB RAM running Windows 7. We
implemented the approach in Java.

Table 1. : Data set specification

Series Tested sources No. data sources min./max. No. of elements
1 PO (XDR) 5 27/614
2 Webdirectory (OWL) 4 418/3234
3 Spicy (XSD) 4 20/125

4.1 Data set
Table 1 shows the characteristics of the test schemas from differ-
ent domains and represented in different formats. Series 1 con-
tains five XML schemas for purchase orders (PO) taken from
[4]. Series 2 includes five ontologies from the Web directory do-
main [8]. Series 3 contains four XML schemas from [10] be-
longing to two different domains. More details about data sets in
Table 1 can be found in [4, 8].

4.2 Experimental Results
We present results for three sets of experiments. The first set is
to study the effect of the term vector feature on the clustering
process. The effect of the structural feature is then investigated
in the second set. Finally, the combination of both features is
studied. Results are shown in Figs. 3, 4, and 5. Each figure rep-
resents a cluster hierarchy (dendrogram), where the horizontal
axis represents data sources that to be clustered and the vertical
axis represents the dendrogram levels at different distances. As
mentioned in Algorithm 1, the distance (dist) is set to an initial
value (in the set of experiments dist = 0) and it then increases
by a step of 0.5 (δ = 0.5). When the similarity between two data
sources (or two set of clusters) is higher than the current distance,
the two sources (sources of the two clusters) are then merged to
form a new level in the cluster hierarchy.

3

International Journal of Computer Applications (0975 - 8887)
Volume 60 - No. 5, December 2012

Fig. 4: Using structure feature.

Fig. 3 represents the cluster hierarchy using only the term vec-
tor feature. It should be noted that the algorithm needs a dis-
tance of 1200.5 to construct the dendrogram. According to Step
4 in Algorithm 1, we obtained the best cluster solution at level 9
(dist = 7.0). The cluster solution consists of four sets of clus-
ters, each representing a specific domain. Fig. 4 shows the clus-
ter hierarchy using only the structural vector feature. It needs a
distance of 7.0 to build the dendrogram. The best cluster solu-
tion occurs at level 7 (dist = 4.0) and consists of four sets of
clusters. The cluster hierarchy produced by using both the term
vector and structural vector features is illustrated in Fig. 5. To
construct the dendrogram, it requires a distance of 22.5. The best
cluster solution is reached at level 9 (dist = 6.05).
To validate the performance of the cluster solution, we used both
the quality of cluster solution and the run time evaluation. Stan-
dard measures, such as Precision, Recall, and F-measure are used
as criteria for the quality, and the number of iterations required
to construct the dendrogram is used as a criterion for run time.
Results are reported in Table 2. The table shows that using only
the structural vector feature is not sufficient to correctly cluster
web data sources into their corresponding domains. This can be
explained as follows: First, different Web data sources are struc-
tured and engineered by different people. So, there is a large pos-
sibility that data sources from different domains are modeled by
the same structure. Furthermore, in our implementation, we use
some ad-hoc combination of several structural features that can-
not correctly quantify the similarity between all sources. How-
ever, the table indicates that using the structural feature is the
fastest method to construct the dendrogram.
Table 2 also shows that both using the term vector and using both
vectors produce a perfect cluster solution (F-measure=1). This
can be explained as data sources from the same domain tend to
used common terms, which makes the term vector adequate to
correctly quantify the similarity between data sources. It should
be noted that using only the term vector requires a large num-
ber of iterations to build the dendrogram and with the combined
consideration of the structural vectors speed up the clustering.
The table indicates that using only the term vector requires 2400
iterations, which reduces to 45 when the structure vector is com-
bined with the term vector.

Table 2. : Performance result

Quality Run time
P R F-meas. distmax No. of iterations

Term vector 1 1 1 1200.5 2400
Str. vector 0.775 0.75 0.76 7.0 14

Both 1 1 1 22.5 45

Fig. 5: Using both features.

5. CONCLUSIONS
Data sources on the web are proliferating and the need to de-
velop high performance techniques to manage them is crucial.
We proposed a feature-based clustering approach to group web
data sources into their corresponding domains. The approach is
generic, can deal with different data models and does not de-
pend on human intervention. We carried out a set of experiments
to validate the performance of the approach. Results show that
combining both the term vector and the structural vector outper-
forms the other settings. Further work will investigate the exten-
sion of the approach to integrate more features such as semantic
information to further improve the approach.

6. REFERENCES
[1] L. Barbosa and J. Freire. Combining classifiers to identify

online databases. In WWW, 2007.
[2] L. Barbosa, J. Freire, and A. S. da Silva. Organiz-

ing hidden-web databases by clustering visible web doc-
uments. In ICDE, pages 326–335, 2007.

[3] L. Chiticariu, M. A. Hernndez, P. G. Kolaitis, and L. Popa.
Semi-automatic schema integration in Clio. In VLDB’07,
pages 1326–1329, 2007.

[4] H. H. Do and E. Rahm. Matching large schemas: Ap-
proaches and evaluation. Information Systems, 32(6):857–
885, 2007.

[5] T. M. Ghanem and W. G. Aref. Databases deepen the web.
Computer, 37(1):116–117, 2004.

[6] J. Madhavan, S. R. Jeffery, S. Cohen, X. L. Dong, D. Ko,
C. Yu, and A. Halevy. Web-scale data integration: You can
only afford to pay as you go. In CIDR, pages 342–350,
2007.

[7] H. A. Mahmoud and A. Aboulnaga. Schema clustering and
retrieval for multi-domain pay-as-you-go data integration
systems. In SIGMOD, 2010.

[8] S. Massmann and E. Rahm. Evaluating instance-based
matching of web directories. In 11th Workshop on Web
and Databases (WebDB), 2008.

[9] W. Meng and C. T. Yu. Advanced Metasearch Engine Tech-
nology. Morgan & Claypool Publishers, 2010.

[10] E. Peukert, S. Massmann, and K. Konig. Comparing sim-
ilarity combination methods for schema matching. In GI-
Workshop, pages 692–701, 2010.

[11] N. Yuruk, M. Mete, X. Xu, and T. A. J. Schweiger. AH-
SCAN: Agglomerative hierarchical structural clustering al-
gorithm for networks. In ASONAM0́9.

4

	Introduction
	Preliminaries
	Schema graph
	Schema feature vectors

	Feature-based Clustering
	Inter-schema similarity computation
	The clustering algorithm

	Experimental Evaluation
	Data set
	Experimental Results

	Conclusions
	References

