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ABSTRACT 

Software estimation accuracy is one of the most difficult tasks 

for software developers. Defining the project estimated cost, 

duration and maintenance effort early in the development life 

cycle is greatest challenge to be achieved for software 

projects. Formal effort estimation models, like Constructive 

Cost Model (COCOMO) are limited by their inability to 

manage uncertainties and impression in software projects 

early in the project development cycle. A software effort 

estimation model which adopts a binary genetic algorithm 

technique provides a solution to adjust the uncertain and 

vague properties of software effort drivers. In this paper, 

COCOMO is used as algorithmic model and an attempt is 

being made to validate the soundness of genetic algorithm 

technique using NASA project data. The main objective of 

this research is to investigate the effect of crisp inputs and 

genetic algorithm technique on the accuracy of system’s 

output when a modified version of the famous COCOMO 

model applied to the NASA dataset. Proposed model 

validated by using 5 out of 18 NASA project dataset. 

Empirical results show that modified COCOMO for software 

effort estimates resulted in slightly better as compared with 

results obtained in [30]. The proposed model successfully 

improves the performance of the estimated effort with respect 

to the Variance Account For (VAF) criteria, MMRE and Pred. 
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1. INTRODUCTION 
Software cost estimation is the estimation of likely amount of 

effort, duration and staffing levels required to build a software 

system. Accurate Software development effort estimations are 

always supposed to be a difficult task to both, software 

developers and customers involved in development. The most 

significant form of software effort estimation is the one made 

at an early stage during a project, starting primarily from 

project feasibility and requirements specification documents. 

However, effort estimation at the early stages of the 

development is the most difficult task to obtain and they are 

often the least accurate, because very little detail about the 

project and the product size, the development duration and the 

required facilities are known at its beginning [1]. In recent 

years, the development of large-scale software projects is 

gaining a wide range of interest [2, 3]. Accurate software 

effort estimation and can provide powerful assistance for 

software management decisions. Project manager will 

significantly need to identify the cost estimate so that he can 

evaluate the project progress and have better resource 

utilization [4]. It was found that the main cost driver, effort 

has major impact on software cost estimation. The primary 

element which affects the effort estimation is the developed 

lines of code (DLOC). The DLOC include all instructions and 

formal statements of the program [5]. 

Nowadays, many software cost estimation models have been 

developed. Most of these models are based on the size 

measure, such as Lines of Code (LOC) and Function Point 

(FP), obtained from size estimation. It is quite obvious that the 

size estimation accuracy directly impacts on cost estimation 

accuracy.  

Based on this context, new alternative approach of 

evolutionary algorithms such as binary genetic algorithm can 

be a good choice to estimate task effort in software 

development. 

A review of the literature depicts that there are two major 

types of cost estimation methods Algorithmic and Non 

algorithmic models as discussed in various papers [5, 6, 7, 8, 

9, 10, 11, 12, and 13]. 

This paper provides a detailed study on the use of binary 

genetic algorithm as an optimization algorithm which can be 

used to tune the modified Constructive Cost Model 

(COCOMO) parameters such that a better effort estimate can 

be provided. The performance of the developed model was 

tested on NASA software project dataset provided in [2] and 

compared to the pre-existed model presented in [30]. The 

developed model was able to provide better estimation 

capabilities.  

2. PROBLEM FORMULATION 

2.1 Problem Statement 
Understanding and calculation of estimation models based on 

historical data are difficult due to inherent complex 

relationships between the related attributes. Attributes and 

relationships used to estimate software development effort 

could change over time and may differ for different software 

development environments. In order to address and overcome 

to these problems, a new model with accurate estimation will 

be desired. The problem based on algorithmic model i.e. 

COCOMO, has been taken into account. 

2.2 Algorithmic Models 
Some other famous algorithmic models are Albrecht’s 

Function Point [16, 17] and Putnam’s [18] SLIM. All of these 

require inputs, accurate estimate of specific attributes, such as 

Line Of Code (LOC), number of user screen, interfaces and 

complexity, which are always difficult to acquire during the 

early stage of software development. 
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2.3 The COCOMO  
One of the widely used quantitative model structures to 

estimate the software effort is the COCOMO which was 

developed by Boehm [5, 14]. The COCOMO is a regression 

based software cost estimation model. This model was built 

based on 63 software projects. The model helps in defining 

the mathematical relationship between the software 

development time, the effort in man-months and the 

maintenance effort [15]. One of the problems with using 

COCOMO today is that it does not match the development 

environment of recent times. 

The limitations of the algorithmic models led to the 

exploration of the non-algorithmic techniques like genetic 

algorithms. 

3. SOLUTION OF THE PROBLEM 
Recently, many questions about the applicability of using 

evolutionary computation techniques to develop estimation 

models have been introduced [19]. The objective of this study 

is to focus on developing an evolutionary model for 

estimating software effort using genetic algorithms. GAs will 

be used to estimate the parameters of a COCOMO based 

effort estimation model. 

3.1 Genetic Algorithms 
Genetic algorithms are adaptive heuristic search algorithms 

based on the Darwin theory of natural selection. They are 

introduced by John Holland [21] and extensively studied by 

Goldberg [22], De Jong [23, 24] and back [25]. GAs search 

the space of all possible solutions using a population of 

individuals which is considered as potential solutions of the 

problem under consideration. These solutions are computed 

based on their fitness. The solutions that best fit to the 

objective criterion survive in the upcoming generations and 

produce “offspring” which are variations of their Parents [20]. 

GAs has   been successfully   used   in   a   wide   variety   of   

difficult numerical optimization problems.  They   have been 

successfully used to solve system identification, signal 

processing and path searching problems [26, 27, 28, and 29]. 

Holland introduced the   binary   string   representation of 

genetic algorithms [21]. 

 

3.2 Evolutionary Process of Genetic 

Algorithm 
In all Evolutionary Algorithms (EAs) techniques, it is 

required to transfer the problem from its real domain to the 

domain of Evolutionary algorithms.  GAs offers different 

kinds of representations. The evolutionary process starts by 

the computation of the fitness of each individual in the initial 

population. While stopping criterion is not yet reached, do the 

following; 

 Select individuals for reproduction using some 

selection mechanisms (i.e. roulette wheel, 

tournament, rank, etc.). 

 Create an offspring using crossover and mutation 

operators. The probability of crossover and 

mutation are selected based on the application. 

 Compute the new generation. 

This process will end either when the optimal solution is 

found or the maximum number of generations is reached. 

 
Figure 1 General Scheme of Evolutionary Process 

4. Proposed approach for solving problem 
 To see, how the ideas of evolutionary algorithms are applied 

to function optimization, It is supposed that without loss of 

generality we want to minimize a function of n parameters 

f(a1,  a2, .....,  an).  A domain Di = [ αi, γi], for (i=1,2,...,n)  is  

identified  as  a  search  space  for  each parameter. f(a1, a2, 

......,  an) is positive function, where ai belongs Di. Candidate   

solutions are defined as n-dimensional vectors of parameters 

of the form: a1, a2,..., an  which can be viewed as 

“Chromosomes”  and these chromosomes consist of “genes”. 

For each such vector of parameter values, its associated 

function value serves as its fitness. The small values are used 

for minimization problems. 

The GA search process is based on using a population of 

individuals each of which is evaluated based on its fitness 

value. Individuals with higher fitness value are to the mating 

pool which inherits many but not all of the features of their 

parents. This is achieved using genetic operators like 

mutation and crossover [13, 14]. 

4.1 Evaluation criteria 

4.1.1 Fitness function  

The evaluation criterion to measure the performance of the 

developed GA based model is to calculate the Variance 

Account For (VAF) including Mean Magnitude of Relative 

Error (MMRE) and probability of a project having a relative 

error of less than or equal to L (PRED(L)). 

 

The VAF is calculated as: 

 

[1 - var (Actual Effort –Estimated Effort)/ var (Actual Effort)] 

× 100%                     (1) 

 

Where variance is termed as var. The variance is calculated 

as:           
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Here, x is the variable and n is the number of values of that 

variable. 

MMRE and PRED are calculated from the relative error, or 

RE, which is the relative size of the difference between the 

actual and estimated value of individual effort i : 

 

REi = (Estimated Efforti – Actual Efforti) /Actual Efforti)    (3) 

 

The magnitude of relative error [31] can be calculated by 

taking the absolute value of that relative error that is, 

                MREi = abs(REi)                                  (4) 

The MRE value is calculated for each observation i of 

actual and estimated effort. The aggregation of MRE over 

multiple observations (N) can be achieved through the Mean 

of MRE (MMRE) as follows: 
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A complementary criterion is the prediction at level L, 

Pred(L) = k/N, here k is the number of observations where 

MRE is less than or equal to L and N is the total number of 

observations. 

4.2 Dataset description 
Experiments have been conducted on a data set presented by 

Bailey and Basili[2]  to develop an effort estimation model. 

The dataset consists of three variables. They are the 

Developed Line of code (DLOC), the Methodology (ME) as 

an element contributing to the computation of the software 

developed effort and the measured effort. DLOC is described 

in Kilo Lines of Code (KLOC) and the Effort is in person- 

months. The dataset is given in Table 1. 

 

Table 1: The Dataset of NASA Software Projects 

Project No. KDLOC ME Actual Effort 

1 90.2 30 115.8 

2 46.2 20 96 

3 46.5 19 79 

4 54.5 20 90.8 

5 31.1 35 39.6 

6 67.5 29 98.4 

7 12.8 26 18.9 

8 10.5 34 10.3 

9 21.5 31 28.5 

10 3.1 26 7 

11 4.2 19 9 

12 7.8 31 7.3 

13 2.1 28 5 

14 5 29 8.4 

15 78.6 35 98.7 

16 9.7 27 15.6 

17 12.5 27 23.9 

18 100.8 34 138.3 

 

5. Results and Discussion 
The data for the first 13 projects were used to estimate the 

model parameters and the other 5 projects were used for 

testing their performance which is shown in table 3. 

The tuning parameters for the GA evolutionary process, to 

estimate the COCOMO parameters, which include the 

population size, crossover, mutation types and selection 

mechanisms are given in the Table 2. 

 

Table 2 Parameters of GA evolutionary process 

Operator Type 

Selection Mechanism Roulette wheel Selection 

Crossover Type Single Point Binary Crossover 

Mutation Type Non Uniform Mutation 

Population Size 5 

Domain Search of a 02:04 

Domain Search of b 0.1:0.9 

Domain Search of c -0.5:0.5 

Domain Search of d    0:20 

 

 

 

 

Table 3 Showing the Effort Estimated by GA 

Project 

No. 

Actual 

Effort 

Estimated 

Effort KDLOC 

1 115.8 118.7299525 90.2 

2 96 73.42066986 46.2 

3 79 74.1895744 46.5 

4 90.8 83.35094298 54.5 

5 39.6 48.14962838 31.1 

6 98.4 94.60984978 67.5 

7 18.9 25.07660947 12.8 

8 10.3 18.00257187 10.5 

9 28.5 36.4181323 21.5 

10 7 7.009573391 3.1 

11 9 12.2344847 4.2 

12 7.3 14.43507557 7.8 

13 5 3.841133884 2.1 

14 8.4 9.858026695 5 

15 98.7 103.7365314 78 

16 15.6 19.44267998 9.7 

17 23.9 24.18104153 12.5 

18 138.3 128.0677328 100.8 

 

Now, we will explore the proposed modeling process and 

describe the mathematical equations for the    model. This 

model is proposed, based on some theoretical aspects related 

to linear model structure development process. Adding the 

ME in COCOMO will have the significant effect and improve 

the model prediction quality as given in proposed model. It is 

also found that adding a bias term d similar to the classes of 

regression models helps to stabilize the model and reduce the 

effect of noise in measurements. 

5.1 Model  
The proposed model structure considered the effect of ME as 

linearly related to the effort. The proposed model structure has 

their parameters a, b, c and a new bias parameter d. 

The proposed model is given mathematically as follows: 

 

                  Effort =a(DLOC )
b  

+ c (ME )+ d  (6) 

 

Our goal is to find the model parameters which most suited to 

accurately and the software effort for project development. In 

table 3, the actual effort and the estimated effort based on the 

proposed model are shown using the same dataset given in 

table 1. The estimated parameters a, b, c and d for proposed 

model are estimated using GAs as follows: 

 

Effort =3.3602 (DLOC )0.8116   - 0 .4524(ME ) + 17 .8025(7) 

 

 

Figure 4 Actual Efforts and Estimated Effort 
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Figure 5. The best so far curve of Var 

 
 

  

Figure 6 Convergence  of the model parameters a, b, c and 

d 

Figures 4-6 show the actual effort and estimated effort using 

binary GA, best so far curve for different generations and the 

convergence of the proposed model parameters after each 

generation. 

Genetic Algorithms is used   to   estimate   the COCOMO 

model parameters. The estimation capabilities for the model 

are shown in Table 4. A slightly better estimation capability 

was achieved using developed model as compared to other 

models [30]. From the Table 4, it can be observed that taking 

into consideration the effect of ME and adding new bias d 

help to improve the computed VAF. The proposed model 

successfully improves the performance of the estimated effort 

with respect to the VAF criteria. 

Table 4 Estimation capabilities of the Models 

 

 

Figure 7 depicts comparison made between 18 results 

produced by data for proposed model and corresponding data 

set for [30] as well. It can observed by the figure 7 that MRE 

produced  by proposed model is always kept lower to the 

mean of MRE which shows the accuracy of the model. But in 

case of [30], there are few spikes with high MRE which show 

the inconsistency in the estiamtion of efforts. 

 

 

Figure 7 MRE Graph for two models 

Table 5 shows the MMRE and Pred. Thus, proposed model 

gives around 40% improvement in performance and Pred (25) 

of proposed model gives the 72.22 percentage of projects 

which were predicted with a MRE less than or equal to 0.25. 

Table 5 Comparison between the performance of two 

models 

Model Name MMRE Pred(25%) 

Proposed Model 0.2298287 72.222222 

model proposed by Sheta[30] 0.636397 38.888889 

% Improvement 40.656827   

 

6. CONCLUSION 
In this study, new model structure is proposed to estimate the 

software effort for projects sponsored by NASA using binary 

genetic algorithm. Modified version of the famous COCOMO 

model was provided to consider the effect of methodology in 

effort estimation. The performance of the developed model 

was tested on NASA software project data presented in [2]. 

The developed models were able to provide good estimation 

capabilities. 
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