
International Journal of Computer Applications (0975 – 8887)

Volume 59– No.9, December 2012

22

Software Effort Estimation by Genetic Algorithm Tuned

Parameters of Modified Constructive Cost Model for

NASA Software Projects

Brajesh Kumar Singh

Department of Computer Science & Engineering,
MNNIT, Allahabad, India

A. K. Misra
Department of Computer Science & Engineering,

MNNIT, Allahabad, India

ABSTRACT

Software estimation accuracy is one of the most difficult tasks

for software developers. Defining the project estimated cost,

duration and maintenance effort early in the development life

cycle is greatest challenge to be achieved for software

projects. Formal effort estimation models, like Constructive

Cost Model (COCOMO) are limited by their inability to

manage uncertainties and impression in software projects

early in the project development cycle. A software effort

estimation model which adopts a binary genetic algorithm

technique provides a solution to adjust the uncertain and

vague properties of software effort drivers. In this paper,

COCOMO is used as algorithmic model and an attempt is

being made to validate the soundness of genetic algorithm

technique using NASA project data. The main objective of

this research is to investigate the effect of crisp inputs and

genetic algorithm technique on the accuracy of system’s

output when a modified version of the famous COCOMO

model applied to the NASA dataset. Proposed model

validated by using 5 out of 18 NASA project dataset.

Empirical results show that modified COCOMO for software

effort estimates resulted in slightly better as compared with

results obtained in [30]. The proposed model successfully

improves the performance of the estimated effort with respect

to the Variance Account For (VAF) criteria, MMRE and Pred.

Keywords

COCOMO; Effort estimation; algorithmic model, Variance

Account For, MMRE, Pred.

1. INTRODUCTION
Software cost estimation is the estimation of likely amount of

effort, duration and staffing levels required to build a software

system. Accurate Software development effort estimations are

always supposed to be a difficult task to both, software

developers and customers involved in development. The most

significant form of software effort estimation is the one made

at an early stage during a project, starting primarily from

project feasibility and requirements specification documents.

However, effort estimation at the early stages of the

development is the most difficult task to obtain and they are

often the least accurate, because very little detail about the

project and the product size, the development duration and the

required facilities are known at its beginning [1]. In recent

years, the development of large-scale software projects is

gaining a wide range of interest [2, 3]. Accurate software

effort estimation and can provide powerful assistance for

software management decisions. Project manager will

significantly need to identify the cost estimate so that he can

evaluate the project progress and have better resource

utilization [4]. It was found that the main cost driver, effort

has major impact on software cost estimation. The primary

element which affects the effort estimation is the developed

lines of code (DLOC). The DLOC include all instructions and

formal statements of the program [5].

Nowadays, many software cost estimation models have been

developed. Most of these models are based on the size

measure, such as Lines of Code (LOC) and Function Point

(FP), obtained from size estimation. It is quite obvious that the

size estimation accuracy directly impacts on cost estimation

accuracy.

Based on this context, new alternative approach of

evolutionary algorithms such as binary genetic algorithm can

be a good choice to estimate task effort in software

development.

A review of the literature depicts that there are two major

types of cost estimation methods Algorithmic and Non

algorithmic models as discussed in various papers [5, 6, 7, 8,

9, 10, 11, 12, and 13].

This paper provides a detailed study on the use of binary

genetic algorithm as an optimization algorithm which can be

used to tune the modified Constructive Cost Model

(COCOMO) parameters such that a better effort estimate can

be provided. The performance of the developed model was

tested on NASA software project dataset provided in [2] and

compared to the pre-existed model presented in [30]. The

developed model was able to provide better estimation

capabilities.

2. PROBLEM FORMULATION

2.1 Problem Statement
Understanding and calculation of estimation models based on

historical data are difficult due to inherent complex

relationships between the related attributes. Attributes and

relationships used to estimate software development effort

could change over time and may differ for different software

development environments. In order to address and overcome

to these problems, a new model with accurate estimation will

be desired. The problem based on algorithmic model i.e.

COCOMO, has been taken into account.

2.2 Algorithmic Models
Some other famous algorithmic models are Albrecht’s

Function Point [16, 17] and Putnam’s [18] SLIM. All of these

require inputs, accurate estimate of specific attributes, such as

Line Of Code (LOC), number of user screen, interfaces and

complexity, which are always difficult to acquire during the

early stage of software development.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.9, December 2012

23

2.3 The COCOMO
One of the widely used quantitative model structures to

estimate the software effort is the COCOMO which was

developed by Boehm [5, 14]. The COCOMO is a regression

based software cost estimation model. This model was built

based on 63 software projects. The model helps in defining

the mathematical relationship between the software

development time, the effort in man-months and the

maintenance effort [15]. One of the problems with using

COCOMO today is that it does not match the development

environment of recent times.

The limitations of the algorithmic models led to the

exploration of the non-algorithmic techniques like genetic

algorithms.

3. SOLUTION OF THE PROBLEM
Recently, many questions about the applicability of using

evolutionary computation techniques to develop estimation

models have been introduced [19]. The objective of this study

is to focus on developing an evolutionary model for

estimating software effort using genetic algorithms. GAs will

be used to estimate the parameters of a COCOMO based

effort estimation model.

3.1 Genetic Algorithms
Genetic algorithms are adaptive heuristic search algorithms

based on the Darwin theory of natural selection. They are

introduced by John Holland [21] and extensively studied by

Goldberg [22], De Jong [23, 24] and back [25]. GAs search

the space of all possible solutions using a population of

individuals which is considered as potential solutions of the

problem under consideration. These solutions are computed

based on their fitness. The solutions that best fit to the

objective criterion survive in the upcoming generations and

produce “offspring” which are variations of their Parents [20].

GAs has been successfully used in a wide variety of

difficult numerical optimization problems. They have been

successfully used to solve system identification, signal

processing and path searching problems [26, 27, 28, and 29].

Holland introduced the binary string representation of

genetic algorithms [21].

3.2 Evolutionary Process of Genetic

Algorithm
In all Evolutionary Algorithms (EAs) techniques, it is

required to transfer the problem from its real domain to the

domain of Evolutionary algorithms. GAs offers different

kinds of representations. The evolutionary process starts by

the computation of the fitness of each individual in the initial

population. While stopping criterion is not yet reached, do the

following;

 Select individuals for reproduction using some

selection mechanisms (i.e. roulette wheel,

tournament, rank, etc.).

 Create an offspring using crossover and mutation

operators. The probability of crossover and

mutation are selected based on the application.

 Compute the new generation.

This process will end either when the optimal solution is

found or the maximum number of generations is reached.

Figure 1 General Scheme of Evolutionary Process

4. Proposed approach for solving problem
 To see, how the ideas of evolutionary algorithms are applied

to function optimization, It is supposed that without loss of

generality we want to minimize a function of n parameters

f(a1, a2,, an). A domain Di = [αi, γi], for (i=1,2,...,n) is

identified as a search space for each parameter. f(a1, a2,

......, an) is positive function, where ai belongs Di. Candidate

solutions are defined as n-dimensional vectors of parameters

of the form: a1, a2,..., an which can be viewed as

“Chromosomes” and these chromosomes consist of “genes”.

For each such vector of parameter values, its associated

function value serves as its fitness. The small values are used

for minimization problems.

The GA search process is based on using a population of

individuals each of which is evaluated based on its fitness

value. Individuals with higher fitness value are to the mating

pool which inherits many but not all of the features of their

parents. This is achieved using genetic operators like

mutation and crossover [13, 14].

4.1 Evaluation criteria

4.1.1 Fitness function

The evaluation criterion to measure the performance of the

developed GA based model is to calculate the Variance

Account For (VAF) including Mean Magnitude of Relative

Error (MMRE) and probability of a project having a relative

error of less than or equal to L (PRED(L)).

The VAF is calculated as:

[1 - var (Actual Effort –Estimated Effort)/ var (Actual Effort)]

× 100% (1)

Where variance is termed as var. The variance is calculated

as:

2

1

2

1

1
)(

n

1

n

i

i

n

i

i x
n

x (2)

Here, x is the variable and n is the number of values of that

variable.

MMRE and PRED are calculated from the relative error, or

RE, which is the relative size of the difference between the

actual and estimated value of individual effort i :

REi = (Estimated Efforti – Actual Efforti) /Actual Efforti) (3)

The magnitude of relative error [31] can be calculated by

taking the absolute value of that relative error that is,

 MREi = abs(REi) (4)

The MRE value is calculated for each observation i of

actual and estimated effort. The aggregation of MRE over

multiple observations (N) can be achieved through the Mean

of MRE (MMRE) as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.9, December 2012

24

N

i

iMRE
N

MMRE
1

 (5)

A complementary criterion is the prediction at level L,

Pred(L) = k/N, here k is the number of observations where

MRE is less than or equal to L and N is the total number of

observations.

4.2 Dataset description
Experiments have been conducted on a data set presented by

Bailey and Basili[2] to develop an effort estimation model.

The dataset consists of three variables. They are the

Developed Line of code (DLOC), the Methodology (ME) as

an element contributing to the computation of the software

developed effort and the measured effort. DLOC is described

in Kilo Lines of Code (KLOC) and the Effort is in person-

months. The dataset is given in Table 1.

Table 1: The Dataset of NASA Software Projects

Project No. KDLOC ME Actual Effort

1 90.2 30 115.8

2 46.2 20 96

3 46.5 19 79

4 54.5 20 90.8

5 31.1 35 39.6

6 67.5 29 98.4

7 12.8 26 18.9

8 10.5 34 10.3

9 21.5 31 28.5

10 3.1 26 7

11 4.2 19 9

12 7.8 31 7.3

13 2.1 28 5

14 5 29 8.4

15 78.6 35 98.7

16 9.7 27 15.6

17 12.5 27 23.9

18 100.8 34 138.3

5. Results and Discussion
The data for the first 13 projects were used to estimate the

model parameters and the other 5 projects were used for

testing their performance which is shown in table 3.

The tuning parameters for the GA evolutionary process, to

estimate the COCOMO parameters, which include the

population size, crossover, mutation types and selection

mechanisms are given in the Table 2.

Table 2 Parameters of GA evolutionary process

Operator Type

Selection Mechanism Roulette wheel Selection

Crossover Type Single Point Binary Crossover

Mutation Type Non Uniform Mutation

Population Size 5

Domain Search of a 02:04

Domain Search of b 0.1:0.9

Domain Search of c -0.5:0.5

Domain Search of d 0:20

Table 3 Showing the Effort Estimated by GA

Project

No.

Actual

Effort

Estimated

Effort KDLOC

1 115.8 118.7299525 90.2

2 96 73.42066986 46.2

3 79 74.1895744 46.5

4 90.8 83.35094298 54.5

5 39.6 48.14962838 31.1

6 98.4 94.60984978 67.5

7 18.9 25.07660947 12.8

8 10.3 18.00257187 10.5

9 28.5 36.4181323 21.5

10 7 7.009573391 3.1

11 9 12.2344847 4.2

12 7.3 14.43507557 7.8

13 5 3.841133884 2.1

14 8.4 9.858026695 5

15 98.7 103.7365314 78

16 15.6 19.44267998 9.7

17 23.9 24.18104153 12.5

18 138.3 128.0677328 100.8

Now, we will explore the proposed modeling process and

describe the mathematical equations for the model. This

model is proposed, based on some theoretical aspects related

to linear model structure development process. Adding the

ME in COCOMO will have the significant effect and improve

the model prediction quality as given in proposed model. It is

also found that adding a bias term d similar to the classes of

regression models helps to stabilize the model and reduce the

effect of noise in measurements.

5.1 Model
The proposed model structure considered the effect of ME as

linearly related to the effort. The proposed model structure has

their parameters a, b, c and a new bias parameter d.

The proposed model is given mathematically as follows:

 Effort =a(DLOC)
b

+ c (ME)+ d (6)

Our goal is to find the model parameters which most suited to

accurately and the software effort for project development. In

table 3, the actual effort and the estimated effort based on the

proposed model are shown using the same dataset given in

table 1. The estimated parameters a, b, c and d for proposed

model are estimated using GAs as follows:

Effort =3.3602 (DLOC)0.8116 - 0 .4524(ME) + 17 .8025(7)

Figure 4 Actual Efforts and Estimated Effort

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.9, December 2012

25

Figure 5. The best so far curve of Var

Figure 6 Convergence of the model parameters a, b, c and

d

Figures 4-6 show the actual effort and estimated effort using

binary GA, best so far curve for different generations and the

convergence of the proposed model parameters after each

generation.

Genetic Algorithms is used to estimate the COCOMO

model parameters. The estimation capabilities for the model

are shown in Table 4. A slightly better estimation capability

was achieved using developed model as compared to other

models [30]. From the Table 4, it can be observed that taking

into consideration the effect of ME and adding new bias d

help to improve the computed VAF. The proposed model

successfully improves the performance of the estimated effort

with respect to the VAF criteria.

Table 4 Estimation capabilities of the Models

Figure 7 depicts comparison made between 18 results

produced by data for proposed model and corresponding data

set for [30] as well. It can observed by the figure 7 that MRE

produced by proposed model is always kept lower to the

mean of MRE which shows the accuracy of the model. But in

case of [30], there are few spikes with high MRE which show

the inconsistency in the estiamtion of efforts.

Figure 7 MRE Graph for two models

Table 5 shows the MMRE and Pred. Thus, proposed model

gives around 40% improvement in performance and Pred (25)

of proposed model gives the 72.22 percentage of projects

which were predicted with a MRE less than or equal to 0.25.

Table 5 Comparison between the performance of two

models

Model Name MMRE Pred(25%)

Proposed Model 0.2298287 72.222222

model proposed by Sheta[30] 0.636397 38.888889

% Improvement 40.656827

6. CONCLUSION
In this study, new model structure is proposed to estimate the

software effort for projects sponsored by NASA using binary

genetic algorithm. Modified version of the famous COCOMO

model was provided to consider the effect of methodology in

effort estimation. The performance of the developed model

was tested on NASA software project data presented in [2].

The developed models were able to provide good estimation

capabilities.

7. REFERENCES
[1] Parvinder S. Sandhu, Porush Bassi, and Amanpreet

Singh Brar, Software Effort Estimation Using Soft

Computing Techniques, World Academy of Science,

Engineering and Technology pp 46 2008.

[2] Bailey, J. W. and V. R. Basili, 1981. A meta model for

software development resource expenditure. Proc. Intl.

Conf. Software Engineering, pp: 107-115.

[3] Boraso, M., C. Montangero and H. Sedehi,

1996.Software cost estimation: An experimental study of

model performances. Tech-nical Report TR-96-22,

Departimento Di Informatatica, Uni-versita Di Pisa,

Italy.

[4] B. Boehm, Software Cost Estimation with COCOMO II,

Prentice Hall PTR, Upper Saddle River, New Jersey,

2000.

[5] B.W. Boehm,Software engineering economics,

Englewood Cliffs, NJ: Prentice-Hall, 1981.

46

66

86

1 2 3 4 5 6 7 8 9 10

B
e

st
 S

o
 F

ar

Generation

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17

MRE[30]

MRE(propo
sed)

Model Name Model Input Model

Output

VAF

Proposed

Model

KDLOC and ME Effort 98.91

Model

Proposed by

sheta[30]

KDLOC and ME Effort 97.565

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.9, December 2012

26

[6] C. E. Walston, C. P. Felix, A method of programming

measurement and estimation, IBM Systems Journal, vol.

16, no. 1, pp. 54 73, 1977.

[7] G.N. Parkinson, Parkinson's Law and Other Studies in

Administration, Houghton-Miffin, Boston, 1957.

[8] L. H. Putnam, A general empirical solution to the macro

software sizing and estimating problem, IEEE Trans.

Soft. Eng., pp. 345-361, July 1978.

[9] J. R. Herd, J.N. Postak, W.E. Russell, K.R. Steward,

Software cost estimation study: Study results, Final

Technical Report, RADCTR77- 220, vol. I, Doty

Associates, Inc., Rockville, MD, pp. 1-10, 1977.

[10] R. E. Park, PRICE S, The calculation within and why,

Proc. of ISPA Tenth Annual Conference, Brighton,

England, pp. 231-240, July 1988.

[11] R.K.D. Black, R. P. Curnow, R. Katz, M. D. Gray, BCS

Software Production Data, Final Technical Report,

RADC-TR-77-116, Boeing Computer Services, Inc.,

March, pp. 5-8, 1977.

[12] R. Tausworthe, Deep Space Network Software Cost

Estimation Model, Jet Propulsion Laboratory Publication

81-7, pp. 67-78, 1981

[13] W. S. Donelson, Project Planning and Control, Proc.

Datamation, pp. 73- 80, June 1976.

[14] Boehm, B., 1995. Cost Models for Future Software Life

Cycle Process: COCOMO2 Annals of Software

Engineering.

[15] Kemere, C.F., 1987. An empirical validation of software

cost estimation models. Communication ACM, 30: 416-

429.

[16] Boehm B., C. Abts and S. Chulani, 2000. Software

development cost estimation approaches-A survey. Ann.

Software Eng., 10: 177-205. DOI: 10.1023/A:

1018991717352.

[17] Boehm, B., 1995. Cost models for future software life

cycle processes: COCOMO 2.0. Ann. Software Eng. 1:

45 60.

[18] Putnam, L.H., 1978. A general empirical solution to the

macro software sizing and estimating problem. IEEE

Trans. Software Eng., 4: 345-361.

http://portal.acm.org/citation.cfm?id=1313641.

[19] Dolado. C.J. and M. Leey, 2001. Can genetic

programming improve software effort estimation?

Comparative evaluation. Inform. Software Technol., 43:

863-873.

[20] Sheta. A. and K. DeJong, 1996. Parameter

estimation of nonlinear systems in noisy

environment using genetic algorithms. Proc. IEEE Intl.

Symp. Intelligent Control (ISIC’96), pp: 360-366.

[21] Holland, J., 1975. Adaptation in Natural and

Artificial Systems. Ann Arbor, MI: University of

Michigan Press.

[22] Goldberg, D., 1989. Genetic Algorithms in Search,

Optimization and Machine Learning. New York,

Addison-Wesley.

[23] De Jong, K.A., 1975. Analysis of Behavior of a Class of

Genetic Adaptive Systems. Ph.D. Thesis. University of

Michigan, Ann Arbor, MI.

[24] De Jong, K., 1992. Are genetic algorithms function

optimizers? Proc. Sec. Parallel Problem Solving From

Nature Conference, pp:3-14. The Netherlands: Elsevier

Science Press.

[25] Back, T. and H.P. Schwefel, 1993. An overview of

evolutionary algorithms for parameter optimization.

Evolutionary Computation, 1, pp: 1-

[26] Kristinsson. K. and G. Dumont, 1992. System

identification and control using genetic algorithms. IEEE

Transaction on Systems, Man and Cybernetics, 22:

1022-1046.

[27] Fonseca, C., E. Mendes, Fleming and S.A. Billings,1993.

Nonlinear model term selection with genetic algorithms.

Proc. IEE/IEEE Workshop on Natural Algorithms in

Signal Process., pp: 27/1 –27/8.

[28] Schultz. A. and J. Grefenstette, 1994. Evolvingrobot

behavior. Proc. Artificial Life Conf. MIT Press.

[29] Chipperfield, A.J. and P.J. Fleming, 1996. Genetic

algorithms in control systems engineering.

IASTED J. Computers and Control, 24: 1.

[30] Sheta, A. F., Estimation of the COCOMO Model

Parameters Using Genetic Algorithms for NASA

Software Projects, Journal of Computer Science 2 (2):

118-123, 2006

[31] Burgess, C.J. and M. Lefley, 2001, Can genetic

programming improve software effort estimation? A

comparative evaluation. Inform. Software Technol., 43:

863-873. DOI: 10.1016/S0950-5849(01)00192-6.

