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ABSTRACT 

Application of reinforcement learning methods in the 

development of dialogue strategies that support robust and 

efficient human–computer interaction using spoken language 

is a growing research area. In spoken dialogue system, 

Markov Decision Processes (MDPs) provide a formal 

framework for making dialogue management decisions for 

planning. This framework enables the system to learn the 

value of initiating an action from each possible state which in 

turn facilitates the maximization of the total reward. However, 

these MDP systems with large state-action spaces lead to 

intractable solution. The goal of this paper is, thus, to present 

a novel approximation method with sampling practice to 

compute an optimal solution to control dialogue strategy 

based on learning automata. Compared to other baseline 

reinforcement learning methods the proposed approach 

exhibits a better performance with regard to the learning 

speed, good exploration/exploitation in its update and 

robustness in the presence of uncertainty in the states 

obtained.   

General Terms 

Human-Computer Interaction. 

Keywords 

Learning Automata, Reinforcement Learning, Markov 

Decision Process, Spoken Dialogue System. 

1. INTRODUCTION 
In the recent years, spoken dialogue technology has emerged 

as a demanding area for researchers in artificial intelligence 

and human-computer interaction [1]. The Spoken Dialogue 

System (SDS) receives speech inputs from the user and the 

system responds with the required action and information. It 

allows various interactive applications dealing with directory 

assistance, information providing systems, robot control, 

planning assistance, troubleshooting etc. These systems have 

increasingly become competent of supporting multiple tasks 

and of accessing information from a broad selection of 

sources and services. The general spoken dialogue systems 

typically consist of three components as shown in Figure 1. 

The subsystems for input (conveying information from the 

user to the system in terms of Signal Processing, Dialogue 

Act Recognition, User Goal Recognition), control (deciding 

how to react in terms of Discourse Analysis, Database Query, 

System Action Prediction) and output (conveying information 

from the system to the user in terms of Utterance 

Realization).  

This paper is primarily concerned with the design of the 

Dialogue Management (DM), which is the central component 

within the SDS. DM determines the related communicative 

actions to be taken for a given goal and a particular set of 

observations about the dialogue history. In other words, DM 

is solely responsible for controlling the flow of interaction, 

which is, referred to as dialogue strategy or policy in an 

efficient and natural way. This is a challenging task in most of 

the spoken dialogue systems wherein the dialogue strategy is 

handcrafted by a human designer which leads to errors, 

strenuous and non-portable.  

 

Fig 1: High level architecture of spoken dialogue system 

Current research trends indicate attempts to find a way to 

automate the development of dialogue strategy using machine 

learning techniques. In practice, Reinforcement Learning (RL) 

techniques show appealing cognitive capabilities since they 

try to learn the appropriate set of actions to choose in order to 

maximize a scalar reward by following a trial and error 

interaction with an environment [2]. In this context, the 

dialogue strategy is regarded as a sequence of states with a 

reward for executing an action which in turn inducing a state 

transition in the conversational environment. The objective for 

each dialogue state is to choose such an action that leads to 

the highest expected long-term reward. For SDSs, these 

reward signals are associated with task completion and 

dialogue length. Hence, the system model covers the 

dynamics of Markov Decision Processes (MDPs) with a set of 

states S, a set of actions A, a state transition function, and a 

reward for each selected action. In this framework, a 

reinforcement learning agent aims at optimally mapping states 

to actions, i.e. “finding the optimal policy so as to maximize 

an overall reward” [3]. 

In order to use RL to optimize dialogue strategy, a number of 

technical challenges need to be overcome. These include 

choosing an appropriate reward function, scalability, 

robustness, and portability [4]. In particular, because of 

varying levels of confidence measure in speech recognition, 

the state space of the dialogue often becomes continuous. 

More recently, there have been several research attempts to 
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overcome these issues to model uncertainty in the dialogue. 

The limitations of these contributions indicate that the 

dilemma in exploration versus exploitation type in learning 

algorithms and curse of dimensionality in modeling the state 

space has to be solved completely. Hence, this paper 

examines and shows, with the aid of technique based on 

learning automata called “Recursive Automata Sampling 

Algorithm (RASA)” [5], how to approximate the continuous 

state-action value function for estimating optimal dialogue 

policy independent of state space size. The proposed approach 

adapts a specific implementation of the Hidden Information 

State (HIS) model [6]. In this proposed method, the state 

estimator maintains the distribution of the intact dialogue 

states often in multiple stages instead of discrete grid points. It 

also identifies all possible dialogue paths to choose an action 

that maximizes the reach of a dialogue towards a successful 

completion.A major motivation is to improve robustness 

where uncertainty and planning in relation to application 

context in different situations of the dialogue exists. In 

principle, the proposed learning approach has several 

advantages over grid-based and rule-based approaches in the 

dialogue systems viz., 

 adaptive sampling mechanism with probabilistic 

and dynamical aspects 

 a data-driven development cycle, and 

 reduced computational demands. 

This paper is organized as follows. Section II reviews the 

existing techniques and approaches developed in the design of 

DM. Section III is devoted to useful definitions and essential 

requirements in dialogue management framework, whereas 

Section IV presents a detailed description of the learning 

automata based algorithm to learn optimal dialogue strategy 

under uncertainty in rich and complex interactive settings. 

Sections V and VI present the effectiveness of the proposed 

approach through experiments and quantitative evaluation of 

the behaviours, respectively. The concluding section presents 

the summarization of the analysis. 

2. RELATED WORK 
This section reviews the divergent ways of implementing a 

dialogue strategy. First, the finite state-based approach 

represents the dialogue structure in the form of a state 

transition network, where transitions between dialogue states 

specify all legal paths through the network, which is suitable 

for system initiative interactions [7]. The design of such 

systems is relatively straightforward and their behaviour is 

predictable. One of the most popular methodologies is the 

Rapid Application Developer of CSLU Toolkit, which allows 

the designer to specify the dialogue as a finite state model 

using a drag-and-drop interface. Second, the frame-based 

approach, also known as slot-based method, represents the 

dialogue in the form of attribute-value structure that can be 

seen as a form for which the user should provide values for 

each field (attribute, slot) of the form. In this approach, the 

user has the freedom to take the initiative in the dialogue [8]. 

Finally, Plan-based systems view the communication as a 

planning process motivated by the achievement of certain 

goals [9]. However, the designers of a dialogue strategy may 

need to spend a great deal of time anticipating how potential 

users will interact with the system through repeated testing 

and refining so as to deploy dialogue systems with practical 

performance. 

To address this problem, the research community for DM has 

exploited the benefits of data-driven approaches in the 

development of stochastic dialogue modeling using RL based 

on MDPs [10]. This framework follows statistically data-

driven development cycle, a precise mathematical model, 

possibilities for generalization to unseen states, and 

theoretically principled dialogue modeling to dynamically 

allow changes to the dialogue strategy. Furthermore, small 

changes in the environment’s dynamics require recomputing 

the full policy with less time and effort. Hence to automate the 

design of dialogue strategy a number of on-line and off-line 

RL methods have been proposed in recent years [11]. The 

goal of these methods is to learn the value of initiating an 

action from each potential dialogue state to maximize the 

long-term reward. 

However, when the state-action spaces are small enough to 

represent in tabular form most of the state-of-the-art, RL 

algorithms like Q-learning and SARSA have been used to 

optimize the dialogue policy by incrementally updating the 

expected Q-values for each state-action pair via the Bellmann 

optimality equation. In addition, increase in the size of the 

state space for these algorithms could lead to the learning 

problem becoming intractable referred to as “curse of 

dimensionality”. Another setback of the above baseline RL 

algorithm is that it requires an update of the value function 

over the entire state space that is purely based on value 

iteration. In the large state space, one may stick to one-

iteration for a long-time before any improvement in 

performance is made. Hence, tabular RL algorithms are 

designed to operate on individual state-action pairs, and there 

is a practical limit to the size of the state-action table that can 

be implemented. This proves to be a major constraint for 

dialogue strategy developers. 

Several approaches to deal with the problem of large state-

action spaces have been proposed in recent years. One of the 

approaches is based on the idea that not all state variables are 

relevant for learning a dialogue strategy and the state-action 

space is reduced by carefully selecting a subset of the 

available state variables by function approximation and 

hierarchical decomposition. If the relevant variables are 

chosen, useful dialogue strategies can be learnt. This 

technique has been applied successfully in several recent 

studies [12][13]. In addition, eXtended Classifier System 

(XCS) model has been applied in dialogue strategy 

optimization to evolve and evaluate a population of rules/ and 

RL algorithm is applied to assign rewards to the rules [14]. 

However, it mitigates the curse of dimensionality problem by 

using a more compact representation with regions of state-

action, but it finds less optimal solutions compared to tabular 

value functions. 

A possible advantage of RASA compared to grid-based 

approaches is that it does not maintain expensive interpolation 

between grid points and it scale well to the large state spaces. 

In addition, RASA does not iteratively generate a new value 

function over sampled information-states from a previously 

known value function. However, at each dialogue turn, this 

approach builds sampled tree of most likely information-states 

and directly estimates the value of the state at the root of the 

tree in a bottom- up fashion, which follows a distinct path 

representing the true state of the dialogue with an adaptive 

sampling scheme of the action space. 

3. BACKGROUND 
Reinforcement learning is a sub-area of Artificial Intelligence 

(AI) which considers how an autonomous agent acts through 

trial-and-error interaction with a dynamic unknown 

environment. Here, the agent refers to an entity that can 

perceive the state of the environment, and take actions to 
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affect the environment's state. In turn, it receives a numerical 

signal called reinforcement from the environment for every 

action it takes. Its goal is to maximize the total reinforcements 

it receives over time. In reinforcement learning, an 

environment is often modeled as MDP, where the history of 

the environment can be summarized in a sufficient statistic 

called state to solve sequential decision making problems. 

3.1 MDP Basics 

An MDP is formally a tuple{X, A, P, R,   }where X denotes 

the state space, A the action space, A(x)   A denote the set of 

permissible actions in state x, p(x,a)(y) the probability of 

transition from state x   X to state y   X when action a   A(x) 

is initiated, a reward function R: K →   where K ={ (x,a) | x 

  X, a   A(x)}, and   the discounting factor (0 ≤   ≤ 1). 

According to this formalism, let xt denote the state at time 

(stage) t   {0,1,…} and at indicates the action chosen at that 

time. If xt = x   X and at = a   A(x), the system transitions 

from state x to xt+1 = y   X with probability p(x,a)(y), and a 

immediate reward of R(x,a) is obtained. Once the transition to 

the next state has occurred, a new action is chosen, and the 

process is repeated. 

Let   be the set of all Markovian policies   = { i |  i : X A, 

i =  0,…,∞}. For simulation model the goal is to find the 

optimal reward-to-go values function for state x in stage i 

given by 

        
               

                                   (1) 

where x   X, w the reward bounded with the reward function 

R(x,a) and xt = f(xt-1,πt-1(xt-1),wt-1) a random variable denoting 

the state at stage t following policy  . It is assumed that every 

action in A is admissible at every state and the same amount 

of defined random number is associated with the reward and 

transition functions. 

Alternatively, it is well known that   
 (x) can be written 

recursively as follows: 

                             
              

                               (2) 

                 
                         

                 (3) 

If the transition probabilities and the reward function are 

known in advance, an optimal policy can be learnt by 

dynamic programming principles. Otherwise the agent needs 

to interact with its environment to learn these probabilities. 

3.2 Dialogue as a MDP 

Within the RL framework to dialogue management, dialogue 

strategies are represented as MDP, which serves as a formal 

representation of human-machine dialogue. One of the key 

advantages of statistical optimization methods for dialogue 

strategy is that “the problem can be formulated as a precise 

mathematical model which can be trained on real data” [15]. 

Every MDP is formally described by a finite state space 

representing all the currently available information regarding 

internal and external processes controlled by the dialogue 

system i.e., the knowledge of the concerned domain. For slot 

filling dialogue system, a common approach is to specify the 

number of state variables on the number of slots that need to 

be filled and grounded. For example, a travel information 

system might include departure city, destination city, date and 

time of travel. Thus, the total number of possible states is 

determined by the number of states and its corresponding slot 

in focus such as ‘unknown’, ‘known’ and ‘confirmed’. 

Similarly, the system action set is often narrowed to a small 

number of actions such as ‘request all’, ‘request n slots’, 

‘verify n slots’, ‘verify all’, or ‘quit’ by Dialogue Acts (DA). 

The state transition function describes the dynamics of the 

environment during the dialogue history. The reward function 

plays a critical role to notify what was a good dialogue since it 

would actually necessitate comparing dialogues with one 

another. In this framework, a DM is a system aiming at 

optimally mapping states to action that finds the best strategy 

π to maximize an overall reward over time, i.e., the policy that 

selects those actions, which yield the highest reward over the 

course of the dialogue. 

3.3 Learning Automata 
Learning Automata (LA) are adaptive decision-making 

devices operating on unknown random environment, and are 

associated with a finite set of actions and each action has a 

certain probability (unknown to the automaton) of getting 

rewarded by the environment of the automaton  [16]. The aim 

is to learn the ways to choose the optimal action (i.e. the 

action with the highest probability of being rewarded) through 

repeated interaction on the system. With regard to 

applications, LA have been used in game playing, parameter 

optimization, statistical decision making, distribution 

approximation, training hidden markov model, congestion 

avoidance in wireless networks, and modeling of student’s 

behaviour.  

Formally the finite learning automaton is a quadruple <α, β, p, 

T(α, β, p)>, where α, β, and p constitute an action set with r 

actions, an environment response set, and the probability set p 

containing r probabilities, each being the probability of 

performing every action in the current internal automaton 

state, respectively. The function of T is the reinforcement 

algorithm, which modifies the action probability vector p with 

respect to the performed action and received response. If the 

response of the environment takes binary values, LA model is 

P-model, and if it takes finite output set with more than two-

elements that take values in the interval [0,1], such a model is 

referred to as Q-model, and when the output of the 

environment is a continuous variable in the interval [0,1], it is 

referred to as S-model. Several designs for T have been 

proposed in the literature, reader is referred to [17] for an 

extensive treatment. In this paper we target the Pursuit 

learning algorithm, a special class of estimator algorithm in 

the context of solving MDPs [18] for optimizing dialogue 

strategy in spoken dialogue system. 

In the Pursuit learning algorithm , “the automaton pursues the 

current optimal action by increasing the probability of 

selecting the chosen action while decreasing the probabilities 

of all other actions” using sample average rewards. At 

iteration t, the automaton selects an action α(t)   A with 

respective probabilities p(t) = {p1(t), …, pr(t)}. Whether the 

automaton is rewarded or penalized, the next step is to 

increase the component of p(t) whose reward estimate is 

maximal (the current optimal action), and to decrease the 

probability of all the other action.  From a vector perspective, 

the probability of updating rules and reward estimate vector 

can be expressed as follows: 

                                                                (4) 

                                                            (5) 

As the algorithm proceeds and the different actions are 

explored, the automaton acquires more and more information 

about the reward probabilities d’s indirectly through the 

environment feedback β’s. In other words, estimates   (t) of d 

at time t can be used to update the sampling probabilities p(t) 

in such a way that those actions with large   (t)  are more 
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likely to be chosen again in the next iteration. In this case, em 

is the unit vector representing the currently estimated optimal 

action, namely, the action with the maximal reward estimate 

and the internal parameter µ controls the size of steps that can 

be made in moving from p(t-1) to p(t). In general, small 

values of µ correspond to slower rates of convergence, and 

vice versa. 

4. METHODOLOGY 
In light of the previous discussion, this section details how 

PLA sampling class of algorithm aimed at accurately and 

efficiently estimating the optimal state-value function for 

modelling the inherent uncertainty in spoken dialogue 

strategy. At each sampled state in the dialogue history, taking 

an action is adaptive at each stage that defines the union of the 

slots specified in the active dialogue goals. The state-action 

space is explored by selecting actions randomly which leads 

to the estimation of value function that converge to the true 

value asymptotically in the total number of samples. At the 

start of the dialogue, PLA sampling algorithm generates a 

sampled tree in a recursive manner to estimate the optimal 

value at an initial state. Consequently, an adaptive sampling 

mechanism is incorporated for selecting relevant action to 

sample at each branch in the tree. The branching process 

construction goes on until the last stage is reached. At each 

simulated (next) state at a stage, a fixed intermediate reward is 

allocated among feasible actions and the reward is used with 

the current probability estimate for the optimal action. In this 

case, a simulated state corresponds to an automaton viewed as 

a dialogue manager which in turn updates its value function 

along with the probability distribution over the action space at 

each iteration in a recursive manner to the context of solving 

MDP. 

Figure 2 presents PLA sampling algorithm for estimating 

  
     for a given state x. The inputs to the algorithm are 

charaterised as follows:  

 Stage i. 

 State x   X. 

 Sampling parameter Ni (    
          ) is the 

number of times action a has been sampled from 

state x in stage i. 

  i   [0,1] is the learning rate. 

Finally, the output of the algorithm is   
     , the estimate of 

  
    .  

As the dialogue progresses, the algorithm builds a sampled 

tree of depth H which defines the number stages to track the 

status of the slots and its values mentioned by both the user 

and the system in terms of dialogue acts in various contexts. 

Initially, a root node is associated to the first decision stage 

and a branching factor of Ni at each level i initializes the 

probability distribution over the action space     as the 

uniform distribution. At each dialogue cycle, the previous 

system act and each input user act is get compared and an 

action which is either primitive or abstract is sampled from 

the probability distribution        and reward rk is assigned 

independently (an action and a reward resultant to an edge in 

the tree). For the sampled action a(k)   A(  ), the Q-function 

estimate is updated using the expected reward  

  (            and next state               , and the count 

variable      
 (x0) is incremented, where a recursive call is 

made to estimate    
   at the simulated next state by executing 

dialogue repeatedly. At the end of each dialogue, this is 

followed by updating the estimate of the optimal action with 

the discounted reward and its probability distribution Px0(k) 

respectively in the direction of current estimate of the optimal 

action by adding μi to its probability mass and subtracting a 

proportional amount from all other actions. In this case, E(.) 

denotes the expectation corresponding to the estimated 

optimal action with the highest reward. After N0, iterations, 

the PLA algorithm estimates the optimal value   
    ) by the 

Q-function value at the currently estimated optimal action of 

the x0-automaton by setting  

   
         

 

  
     

   
                     

               

(6)   

Fig 2: PLA based policy optimization algorithm 

 

5. EXPERIMENTS 
The dialogue management problem studied in this paper is a 

task-oriented, slot-filling dialogue system in the travel 

planning domain. In slot-filling dialogues, an effective 

strategy is the one that interacts with the user in a satisfactory 

way while trying to minimize the length of the dialogue. The 

goal of the experimental system is to give information about 

flights based on specific user preference in a simulated 

learning environment. 

5.1 Task Representation  

The state space representation of the dialogue problem has 

four slots representing the confidence of slot values of 1) 

departure city, 2) destination city, 3) departure date, and 4) 

departure time of the air travel domain. Each of these slot-

values is associated with filling and confirming the confidence 

of the slot relevant to the dialogue history information which 

defines the level of stages in the learning algorithm. For 

example, a particular slot has not yet been stated, stated but 

not grounded, or grounded. The action space of the human-

machine spoken dialogue includes the following system 

Input: i, x,   ,   . 

Output:     
          

       )  

Initialization: 

   Set          
 

      
  ; initial random order of actions; 

   Set   
       ; number of times action a is sampled from           

    the state x; 

   Set                      ; average reward on taking  

    action a  from the state x; 

   Set k = 0 ; iteration count; 

// Generate dialogue using  -greedy policy 

   repeat 
      // Random action selection with probability   along with  

 reward rk from user simulator  

      Sample                     ; 
      Update Q-function estimate for             

                                          (            

                                                                 
                  ; 

                     
            

      ;   

                    
               

                 
    ; 

       Update optimal action estimate policy 

                                    
                  

       Update probability distribution over action space 

          with respect to pursuit scheme defined in equation (4) 

                                            
                                                                                 ; 
            ;  

     until   k =   ; converged 
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action model available for exploration in every state and is 

given as follows: 

 Greet 

 Ask a slot (REQUEST_INFO()) 

 Explicit confirm (EXPCONF()) 

 Implicit confirm and ask a slot 

(REQUEST_INFO_WITH_IMPCONF()) 

 Close and present information 

Similarly the user action model is the following: 

 Yes – answer 

 No – answer 

 Provide-asked 

 Re-provide-asked 

 Remain silent  

 

Table 1. The principal dialogue acts used in flight booking 

system 

System dialogue acts User dialogue acts 

GREETING() command (bye) 

REQUEST_INFO(dep_value) provide_ 

Info(dep_value)* 

REQUEST_INFO(dest_value) provide_ 

Info(dest_value)* 

REQUEST_INFO(date_value) provide_ 

Info(date_value)* 

REQUEST_INFO(time_value) provide_ 

Info(time_value)* 

REQUEST_INFO_WITH_IMP

CONF(dep_value) 

answer(yes) 

REQUEST_INFO_WITH_IMP

CONF(dest_value) 

answer(yes) 

REQUEST_INFO_WITH_IMP

CONF(date_value) 

silence() 

REQUEST_INFO_WITH_IMP

CONF(time_value) 

 

EXPCONF(low+medconfs)  

DATABASE-RESULT  

* Multiple slot values can be provided in a single utterance 

 

The most common dialogue acts for task oriented human-

machine simulated dialogue are listed in table 1 and a simple 

dialogue illustrating their use is shown in table 2. 

5.2 User Simulation  

Initially, a baseline system is built using hand-crafted policy. 

This uses a large number of internal system variables and 

advanced strategies such as variable confidence thresholds 

that try to fill the available slots one after the other and 

terminate the dialogue episode if all the slots are filled. In 

order to keep the design problem tractable, the hand-crafted 

policy has been kept as simple as possible instead of taking 

much dialogue context into account. To assert the impact of 

the sample-efficiency of the proposed method, different sizes 

of datasets (dialogue corpora) which represent the problem 

space are required. However, collecting large amounts of data 

may take a lot of time. Therefore, a user simulation technique 

has been used to generate different datasets [19]. The task of 

the user simulator is to provide examples of how a human 

would behave while interacting with the system. It provides 

user actions at a dialogue act level and uses two main 

components user goal and user agenda. At the start of each 

dialogue, the goal describes the full set of constraints that the 

user requires to satisfy such as departure city, destination city, 

date and time. The agenda stores an ordered list of dialogue 

acts that the user is planning to use in stack like structure in 

order to omplete its task. At the end of every dialogue the 

system receives a -1 penalty for every action it takes, a final 

reward of +20 in case of successful dialogue when all the 

necessary information has been obtained. In the case where no 

flight detail matches the attribute-slot values, the dialogue is 

deemed successful and a suitable alternative is offered. Since 

a characteristic dialogue will require about six or seven turns 

to complete, this implies that the achievable cumulative 

reward has an upper bound of 14.   

 

Table 2. An example dialogue and its representation at the 

dialogue act level 

5.3 Behaviour of Value Function 

Approximation 

In each experiment, a dialogue strategy was allowed to evolve 

over a fixed number of dialogues with a simulated user. For 

each of these training sessions, the resulting estimated value 

function is used to compute the estimated optimal policy. The 

stopping criterion is based on the number of changes made to 

the policy. For simplicity, the number of samples (N) at each 

stage is taken to be the same and thus the input parameter   

(learning rate) is chosen to be         , independent of the 

stages. The estimates of value function obtained by the 

policies trained using varied number of samples is shown in 

table 3.  Figure 3 plots the (averaged) estimates of value 

Spea

ker Utterance 

 

Dialogue act 

 

SYS Welcome to the travel 

planning system. How can I 

help you today? 

Please give the name of the 

city that you are starting 

from. 

[GREETING] 

 

 

[REQUEST_INFO 

dep_val)] 

 

USR I would like to fly from 

Chennai 

[provide_info 

dep_val=’chennai’)] 

SYS So you want to travel from 

Chennai. Which city are 

you travelling to? 

[REQUEST_INFO_

WITH_IMPCONF(d

est_val)] 

USR Mumbai [provide_info 

(dest_val=’mumbai’

)] 

SYS Ok, please give me the date 

you wish to leave. 

[REQUEST_INFO 

(date_value)] 

USR April 14th [provide_info 

(date_val=’14/04/20

11’)] 

SYS At what time do you prefer 

to travel? 

[REQUEST_INFO 

(time_val)] 

USR In the morning [provide_info 

(time_val=’morning’

)] 

SYS Ok, accessing the database. 

I found 2 flights from 

Chennai to Mumbai. Choice 

1: departing at six thirty 

a.m. and arriving at eight 

fifteen a.m. The price is 

2500 rupees. Choice 2: 

departing at nine a.m. and 

arriving at  ten twenty a.m. 

The price is 3700 rupees. 

[DATABASE_RES

ULT] 

 

 

 

 

USR Ok, thank you goodbye bye() 
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function as a function of the number of samples used for 

training during the dialogue episodes.  Our experimental 

results show that the dialogue policy learned using PLA 

performs significantly better than the hand-coded policy and 

needs only few samples to learn fairly good policies. Most 

importantly, it is revealed from the table 3 that a higher value 

of learning rate (μ) leads to faster convergence but results in a 

suboptimal action due to the fact that the pursuit scheme is 

guaranteed to be  -optimal. Hence, generally the 

computational efficiency at worst case is determined 

by      , where N is fixed with some predefined maximum 

value according to the experimental settings. 

 

Table 3. Value function estimates of the PLA method 

Number of 

samples 

at each stage 

(N) 

PLA 

Learning 

parameter 

(μ) 

Estimated 

optimal 

value 

4 11.33 

(0.27) 

0.1591  

13.602 

10 12.87 

(0.25) 

0.0670 

15 13.31 

(0.16) 

0.0408 

25 13.56 

(0.13) 

0.0273 

Each entry represents the mean based on 100 test 

episodes with standard error in parenthesis 

 

 

Fig 3.  Convergence of value function estimate tested on a 

user simulator 

 

Figure 4 shows the efficiency of the dialogue policies learned 

using PLA is marginally superior when compared to the 

policies learned using Reinforcement Learning with Grid 

Points (RLGP). Both these algorithms have been proven to 

converge towards the optimal policy. The PLA is converged 

very quickly with almost 500 steps. This speed of 

convergence is one of the advantages of the PLA method 

when developing a new system or adapting it to changes in 

the tendency in the data. In contrast, RLGP policies require a 

large number of iterations irrespective of the number of 

samples used for training. Since the policies learned using 

PLA have relatively less variations, these policies are more 

stable and reliable when compared to RLGP. 

 

 
 

Fig 4.  Comparison of value function estimate in different 

approaches 

 

6. EVALUATION 
To evaluate the effectiveness of a learnt strategy with real 

users, an end-to-end dialogue system with complete speech 

and language processing modules becomes inevitable. This 

section describes one such trial of learnt strategy with hand-

coded baseline strategy. In both the cases, the performance of 

the trained policy and the hand-crafted policy were tested with 

the PARAdigm for DIalogue System Evaluation framework 

[20]. The primary objective is to maximize user satisfaction, 

and it derives a combined performance metric for a dialogue 

system as a weighted linear combination of task-success 

measures and dialogue costs. 

6.1 System Configuration and Trial Setup 

The system integrates existing modules for speech recognition 

and synthesis with hand-coded modules implementing 

language parsing, language generation and database 

connectivity. The recognizer used was the application toolkit 

for HTK [21] with a vocabulary of about 1,800 words. The 

speech synthesis was based on the festival text-to-speech 

system [22]. The natural language parser consisted of a hand-

coded set of pattern matching rules to extract the dialogue act 

type with a list of slot/value pairs from each utterance and 

some code to parse dates. Similarly, the language generator 

was a relatively simple template-based system, comprising a 

set of rules for combining texts with slot values. The system 

dialogue acts allows the system to request the user for the slot 

values or to confirm these values, either explicitly or 

implicitly and to restart or end the dialogue. Finally, the 

system presents the results of a user’s database query. The 

user dialogue acts allow the user to provide slot information 

and to terminate the dialogue. 

To evaluate the learnt strategies, 20 postgraduate students 

(eight-female, 12-male) with an average age of 21 have tested 

our system. Each participant was asked to complete six pre-

defined dialogue tasks where each task involved finding the 

details of the flights from one city to another city on a specific 

date and time. It is important to mention that since our testers 

had no previous experience with a dialogue system, our 

experiments were performed by novice users. 

6.2 Subjective Trial Results 

To evaluate user satisfaction, each participant was given the 

user-satisfaction survey Table 4 used within PARADISE 

framework, which measures the opinion of the respondents 
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with several metrics about the behaviour or the performance 

of the system (TTS performance, ASR performance, task 

ease, interaction pace, user expertise, system response, 

Expected behaviour, and Future use). The answers to the 

questions were based on a five-class ranking 1, indicating 

strongly disagree, to 5, indicating strongly agree. For our 

experiment, the mean user satisfaction value was 28.70 as 

shown in Table 5. These results indicate that the performance 

of the PLA learnt strategy (system A) is perceived to have a 

comparable quality to baseline RLGP (system B) in terms of 

task ease-of-use, user expertise, expected behaviour and 

future use. 

Table 4. User satisfaction metrics 

Metric Statement 

TTS quality I found the system easy to understand. 

Task ease-of-use It was easy to get the information I 

wanted. 

Interaction pace Was the pace of interaction with the 

system appropriate in this conversation? 

User experience I knew what I could say or do at each 

point in the dialogue. 

System response How often was the system sluggish and 

slow to reply? 

Expected 

behavior 

The system worked the way I expected 

it to. 

Future use Based on this experience, I would use 

this system regularly. 

Table 5. User satisfaction survey results 

Criteria System A System B 

TTS quality 4.3   0.7 4.1   0.6 

Task ease-of-use 4.2   0.8 3.8   0.7 

Interaction pace 3.7   0.4 3.5   0.5 

User experience 4.3   0.7 3.9   0.7 

System response 3.7   0.6 3.5   0.5 

Expected behavior 4.1   0.8 3.6   0.7 

Future use 4.1   0.9 3.5   0.7 

User satisfaction 28.7 26.3 

6.3 Objective Trial Results 

The task success of the whole dialogue is measured by how 

well the system and participant accomplish the information 

requirements of the task by the end of the dialogue. In our 

experimental setup we have used the well known Graded 

Task Success (GTS) measure [23] that penalizes with different 

values defined as follows: 

  

 

 

 

 

Table 6 presents the summary of task success measures and 

dialogue quality costs which are intended to capture the user’s 

perception of the system’s performance. Similarly, table 7 

summarizes the correlation analysis between task success 

measures and user satisfaction. From the result it was 

observed that all metrics defined in table 4 correlate 

moderately with overall user satisfaction, the metrics taking 

task easy and expected behavior having higher degree of 

correlation.  According to PARADISE framework to compute 

the system performance we performed multiple regression 

analysis on our data with user satisfaction as the dependent 

variable, task-success measures and dialogue costs as the 

independent variables by the following equation. 

 

                            
 
                    (7) 

 

where α is a weight on the task success metric k, and wi is a 

weight on the dialogue cost function ci computed from table 6. 

  is a Z-score normalization function      
    

  
 defined 

over task success and cost values to account for the fact that 

they can be measured on different scales (sum, seconds, 

percentages, etc.) where    corresponds to the standard 

deviation of x. From several regression analysis on the 

normalized dialogue quality metrics (system turns, user turns, 

system words per turn, user words per turn and interaction 

time) user turns and GTS were chosen to be the predictors 

(independent variables) of user satisfaction (dependent 

variable) at p < 0.05 significance and yields the predictive 

equation: 

 

                                               (8) 

 

Hence for the 120 test dialogues we found the mean 

performance of the learnt policy perform better than the hand-

coded policy at p < 0.05. 

Table 6. Mean values of task success and dialogue quality 

metrics based on 120 dialogues 

Metric System A  System B  

GTS (%) 76.09   7.2 64.37    6.5 

System turns   6.15   0.7   7.02    1.2 

User turns   4.75   0.5   5.10    0.6 

System words 

per turn 
32.30   5.2 34.24    6.1 

User words per 

turn 

  5.79   1.5   5.34    2.1 

Interaction 

time 
22.10    9.6 25.28   11.27 

Table 7. Correlation coefficient between task success and 

user satisfaction metric (significance at ρ < 0.05) 

Metric 
GTS 

System A  System B  

TTS quality .61 .52 

Task ease-of-use .82 .69 

Interaction pace .42 .38 

User experience .35 .22 

System response NS* NS* 

Expected behavior .59 .51 

Future use .56 .46 

*  NS denotes  Not significant 

 

7. CONCLUSION 
This paper has presented a sample efficient approximation 

method for dialogue manager to generate an optimal response 

based on MDP framework. The proposed method computes 

both the optimal action from a given dialogue state and the 

corresponding optimal value on a sampled tree recursively 

through sampling and simulations. The performance of the 

system has been evaluated by interaction with a simulated 

user and through a live user trial with respect to PARADAISE 

framework. To generate an action, the sampled tree is 

traversed recursively in a bottom-up fashion with an adaptive 

sampling scheme which defines the stages in the problem 

space. At each level, the automaton queries the local policy 

based on the immediate reward, and the action proposed by 

the policy is either primitive or abstract, which depends on the 

1       for    flights details without problems 

2/3    for    flights details with small problems 

1/3    for    flights details with severe problems  

  0              otherwise 

GTS = 
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confidence measure of the slot in focus. If the action is 

primitive, it is directly executed by the automaton. Otherwise, 

the automaton queries the policy through its corresponding 

levels until the so-called slot values are grounded with higher 

confidence. It has been experimentally demonstrated that the 

optimal dialogue strategy can be obtained with a small 

number of training samples and has the potential for 

significant improvements in robustness compared to hand-

crafted and grid-based approaches. Evaluation by real user 

using PARADAISE framework shows satisfactory results of 

the learnt policy compared to the baseline reinforcement 

learning with gird points. For future work, we believe that our 

approach can also be extended in the direct context of 

Partially Observable MDPs which account for approximately 

linear running time of learning algorithms when the state 

space is continuous and directly incorporates uncertainty 

imposed to a noisy channel. This suggests that system beliefs 

need to be modeled at different levels of granularity. In 

addition, while the results of RASA show faster convergence 

in finding optimal dialogue policy compared to the grid-based 

Monte Carlo algorithms, another matter for future 

investigation is to apply leaning automata based actor-critic 

approach into the proposed method to significantly speed up 

policy optimization. Finally, some supplementary informative 

interaction parameters with respect to PARADISE model are 

to be investigated to increase the validity of the resulting 

quality prediction.  
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