
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.9, November 2012

20

A Learning Automata based Solution for Optimizing
Dialogue Strategy in Spoken Dialogue System

G.Kumaravelan

Department of Computer Science.

Pondicherry University, Karaikal Campus, Karaikal.

R.Sivakumar
Department of Computer Science.

AVVM Sri Pushpam College, Poondi.

ABSTRACT

Application of reinforcement learning methods in the

development of dialogue strategies that support robust and

efficient human–computer interaction using spoken language

is a growing research area. In spoken dialogue system,

Markov Decision Processes (MDPs) provide a formal

framework for making dialogue management decisions for

planning. This framework enables the system to learn the

value of initiating an action from each possible state which in

turn facilitates the maximization of the total reward. However,

these MDP systems with large state-action spaces lead to

intractable solution. The goal of this paper is, thus, to present

a novel approximation method with sampling practice to

compute an optimal solution to control dialogue strategy

based on learning automata. Compared to other baseline

reinforcement learning methods the proposed approach

exhibits a better performance with regard to the learning

speed, good exploration/exploitation in its update and

robustness in the presence of uncertainty in the states

obtained.

General Terms

Human-Computer Interaction.

Keywords

Learning Automata, Reinforcement Learning, Markov

Decision Process, Spoken Dialogue System.

1. INTRODUCTION
In the recent years, spoken dialogue technology has emerged

as a demanding area for researchers in artificial intelligence

and human-computer interaction [1]. The Spoken Dialogue

System (SDS) receives speech inputs from the user and the

system responds with the required action and information. It

allows various interactive applications dealing with directory

assistance, information providing systems, robot control,

planning assistance, troubleshooting etc. These systems have

increasingly become competent of supporting multiple tasks

and of accessing information from a broad selection of

sources and services. The general spoken dialogue systems

typically consist of three components as shown in Figure 1.

The subsystems for input (conveying information from the

user to the system in terms of Signal Processing, Dialogue

Act Recognition, User Goal Recognition), control (deciding

how to react in terms of Discourse Analysis, Database Query,

System Action Prediction) and output (conveying information

from the system to the user in terms of Utterance

Realization).

This paper is primarily concerned with the design of the

Dialogue Management (DM), which is the central component

within the SDS. DM determines the related communicative

actions to be taken for a given goal and a particular set of

observations about the dialogue history. In other words, DM

is solely responsible for controlling the flow of interaction,

which is, referred to as dialogue strategy or policy in an

efficient and natural way. This is a challenging task in most of

the spoken dialogue systems wherein the dialogue strategy is

handcrafted by a human designer which leads to errors,

strenuous and non-portable.

Fig 1: High level architecture of spoken dialogue system

Current research trends indicate attempts to find a way to

automate the development of dialogue strategy using machine

learning techniques. In practice, Reinforcement Learning (RL)

techniques show appealing cognitive capabilities since they

try to learn the appropriate set of actions to choose in order to

maximize a scalar reward by following a trial and error

interaction with an environment [2]. In this context, the

dialogue strategy is regarded as a sequence of states with a

reward for executing an action which in turn inducing a state

transition in the conversational environment. The objective for

each dialogue state is to choose such an action that leads to

the highest expected long-term reward. For SDSs, these

reward signals are associated with task completion and

dialogue length. Hence, the system model covers the

dynamics of Markov Decision Processes (MDPs) with a set of

states S, a set of actions A, a state transition function, and a

reward for each selected action. In this framework, a

reinforcement learning agent aims at optimally mapping states

to actions, i.e. “finding the optimal policy so as to maximize

an overall reward” [3].

In order to use RL to optimize dialogue strategy, a number of

technical challenges need to be overcome. These include

choosing an appropriate reward function, scalability,

robustness, and portability [4]. In particular, because of

varying levels of confidence measure in speech recognition,

the state space of the dialogue often becomes continuous.

More recently, there have been several research attempts to

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.9, November 2012

21

overcome these issues to model uncertainty in the dialogue.

The limitations of these contributions indicate that the

dilemma in exploration versus exploitation type in learning

algorithms and curse of dimensionality in modeling the state

space has to be solved completely. Hence, this paper

examines and shows, with the aid of technique based on

learning automata called “Recursive Automata Sampling

Algorithm (RASA)” [5], how to approximate the continuous

state-action value function for estimating optimal dialogue

policy independent of state space size. The proposed approach

adapts a specific implementation of the Hidden Information

State (HIS) model [6]. In this proposed method, the state

estimator maintains the distribution of the intact dialogue

states often in multiple stages instead of discrete grid points. It

also identifies all possible dialogue paths to choose an action

that maximizes the reach of a dialogue towards a successful

completion.A major motivation is to improve robustness

where uncertainty and planning in relation to application

context in different situations of the dialogue exists. In

principle, the proposed learning approach has several

advantages over grid-based and rule-based approaches in the

dialogue systems viz.,

 adaptive sampling mechanism with probabilistic

and dynamical aspects

 a data-driven development cycle, and

 reduced computational demands.

This paper is organized as follows. Section II reviews the

existing techniques and approaches developed in the design of

DM. Section III is devoted to useful definitions and essential

requirements in dialogue management framework, whereas

Section IV presents a detailed description of the learning

automata based algorithm to learn optimal dialogue strategy

under uncertainty in rich and complex interactive settings.

Sections V and VI present the effectiveness of the proposed

approach through experiments and quantitative evaluation of

the behaviours, respectively. The concluding section presents

the summarization of the analysis.

2. RELATED WORK
This section reviews the divergent ways of implementing a

dialogue strategy. First, the finite state-based approach

represents the dialogue structure in the form of a state

transition network, where transitions between dialogue states

specify all legal paths through the network, which is suitable

for system initiative interactions [7]. The design of such

systems is relatively straightforward and their behaviour is

predictable. One of the most popular methodologies is the

Rapid Application Developer of CSLU Toolkit, which allows

the designer to specify the dialogue as a finite state model

using a drag-and-drop interface. Second, the frame-based

approach, also known as slot-based method, represents the

dialogue in the form of attribute-value structure that can be

seen as a form for which the user should provide values for

each field (attribute, slot) of the form. In this approach, the

user has the freedom to take the initiative in the dialogue [8].

Finally, Plan-based systems view the communication as a

planning process motivated by the achievement of certain

goals [9]. However, the designers of a dialogue strategy may

need to spend a great deal of time anticipating how potential

users will interact with the system through repeated testing

and refining so as to deploy dialogue systems with practical

performance.

To address this problem, the research community for DM has

exploited the benefits of data-driven approaches in the

development of stochastic dialogue modeling using RL based

on MDPs [10]. This framework follows statistically data-

driven development cycle, a precise mathematical model,

possibilities for generalization to unseen states, and

theoretically principled dialogue modeling to dynamically

allow changes to the dialogue strategy. Furthermore, small

changes in the environment’s dynamics require recomputing

the full policy with less time and effort. Hence to automate the

design of dialogue strategy a number of on-line and off-line

RL methods have been proposed in recent years [11]. The

goal of these methods is to learn the value of initiating an

action from each potential dialogue state to maximize the

long-term reward.

However, when the state-action spaces are small enough to

represent in tabular form most of the state-of-the-art, RL

algorithms like Q-learning and SARSA have been used to

optimize the dialogue policy by incrementally updating the

expected Q-values for each state-action pair via the Bellmann

optimality equation. In addition, increase in the size of the

state space for these algorithms could lead to the learning

problem becoming intractable referred to as “curse of

dimensionality”. Another setback of the above baseline RL

algorithm is that it requires an update of the value function

over the entire state space that is purely based on value

iteration. In the large state space, one may stick to one-

iteration for a long-time before any improvement in

performance is made. Hence, tabular RL algorithms are

designed to operate on individual state-action pairs, and there

is a practical limit to the size of the state-action table that can

be implemented. This proves to be a major constraint for

dialogue strategy developers.

Several approaches to deal with the problem of large state-

action spaces have been proposed in recent years. One of the

approaches is based on the idea that not all state variables are

relevant for learning a dialogue strategy and the state-action

space is reduced by carefully selecting a subset of the

available state variables by function approximation and

hierarchical decomposition. If the relevant variables are

chosen, useful dialogue strategies can be learnt. This

technique has been applied successfully in several recent

studies [12][13]. In addition, eXtended Classifier System

(XCS) model has been applied in dialogue strategy

optimization to evolve and evaluate a population of rules/ and

RL algorithm is applied to assign rewards to the rules [14].

However, it mitigates the curse of dimensionality problem by

using a more compact representation with regions of state-

action, but it finds less optimal solutions compared to tabular

value functions.

A possible advantage of RASA compared to grid-based

approaches is that it does not maintain expensive interpolation

between grid points and it scale well to the large state spaces.

In addition, RASA does not iteratively generate a new value

function over sampled information-states from a previously

known value function. However, at each dialogue turn, this

approach builds sampled tree of most likely information-states

and directly estimates the value of the state at the root of the

tree in a bottom- up fashion, which follows a distinct path

representing the true state of the dialogue with an adaptive

sampling scheme of the action space.

3. BACKGROUND
Reinforcement learning is a sub-area of Artificial Intelligence

(AI) which considers how an autonomous agent acts through

trial-and-error interaction with a dynamic unknown

environment. Here, the agent refers to an entity that can

perceive the state of the environment, and take actions to

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.9, November 2012

22

affect the environment's state. In turn, it receives a numerical

signal called reinforcement from the environment for every

action it takes. Its goal is to maximize the total reinforcements

it receives over time. In reinforcement learning, an

environment is often modeled as MDP, where the history of

the environment can be summarized in a sufficient statistic

called state to solve sequential decision making problems.

3.1 MDP Basics

An MDP is formally a tuple{X, A, P, R, }where X denotes

the state space, A the action space, A(x) A denote the set of

permissible actions in state x, p(x,a)(y) the probability of

transition from state x X to state y X when action a A(x)

is initiated, a reward function R: K → where K ={ (x,a) | x

 X, a A(x)}, and the discounting factor (0 ≤ ≤ 1).

According to this formalism, let xt denote the state at time

(stage) t {0,1,…} and at indicates the action chosen at that

time. If xt = x X and at = a A(x), the system transitions

from state x to xt+1 = y X with probability p(x,a)(y), and a

immediate reward of R(x,a) is obtained. Once the transition to

the next state has occurred, a new action is chosen, and the

process is repeated.

Let be the set of all Markovian policies = { i | i : X A,

i = 0,…,∞}. For simulation model the goal is to find the

optimal reward-to-go values function for state x in stage i

given by

 (1)

where x X, w the reward bounded with the reward function

R(x,a) and xt = f(xt-1,πt-1(xt-1),wt-1) a random variable denoting

the state at stage t following policy . It is assumed that every

action in A is admissible at every state and the same amount

of defined random number is associated with the reward and

transition functions.

Alternatively, it is well known that
 (x) can be written

recursively as follows:

 (2)

 (3)

If the transition probabilities and the reward function are

known in advance, an optimal policy can be learnt by

dynamic programming principles. Otherwise the agent needs

to interact with its environment to learn these probabilities.

3.2 Dialogue as a MDP

Within the RL framework to dialogue management, dialogue

strategies are represented as MDP, which serves as a formal

representation of human-machine dialogue. One of the key

advantages of statistical optimization methods for dialogue

strategy is that “the problem can be formulated as a precise

mathematical model which can be trained on real data” [15].

Every MDP is formally described by a finite state space

representing all the currently available information regarding

internal and external processes controlled by the dialogue

system i.e., the knowledge of the concerned domain. For slot

filling dialogue system, a common approach is to specify the

number of state variables on the number of slots that need to

be filled and grounded. For example, a travel information

system might include departure city, destination city, date and

time of travel. Thus, the total number of possible states is

determined by the number of states and its corresponding slot

in focus such as ‘unknown’, ‘known’ and ‘confirmed’.

Similarly, the system action set is often narrowed to a small

number of actions such as ‘request all’, ‘request n slots’,

‘verify n slots’, ‘verify all’, or ‘quit’ by Dialogue Acts (DA).

The state transition function describes the dynamics of the

environment during the dialogue history. The reward function

plays a critical role to notify what was a good dialogue since it

would actually necessitate comparing dialogues with one

another. In this framework, a DM is a system aiming at

optimally mapping states to action that finds the best strategy

π to maximize an overall reward over time, i.e., the policy that

selects those actions, which yield the highest reward over the

course of the dialogue.

3.3 Learning Automata
Learning Automata (LA) are adaptive decision-making

devices operating on unknown random environment, and are

associated with a finite set of actions and each action has a

certain probability (unknown to the automaton) of getting

rewarded by the environment of the automaton [16]. The aim

is to learn the ways to choose the optimal action (i.e. the

action with the highest probability of being rewarded) through

repeated interaction on the system. With regard to

applications, LA have been used in game playing, parameter

optimization, statistical decision making, distribution

approximation, training hidden markov model, congestion

avoidance in wireless networks, and modeling of student’s

behaviour.

Formally the finite learning automaton is a quadruple <α, β, p,

T(α, β, p)>, where α, β, and p constitute an action set with r

actions, an environment response set, and the probability set p

containing r probabilities, each being the probability of

performing every action in the current internal automaton

state, respectively. The function of T is the reinforcement

algorithm, which modifies the action probability vector p with

respect to the performed action and received response. If the

response of the environment takes binary values, LA model is

P-model, and if it takes finite output set with more than two-

elements that take values in the interval [0,1], such a model is

referred to as Q-model, and when the output of the

environment is a continuous variable in the interval [0,1], it is

referred to as S-model. Several designs for T have been

proposed in the literature, reader is referred to [17] for an

extensive treatment. In this paper we target the Pursuit

learning algorithm, a special class of estimator algorithm in

the context of solving MDPs [18] for optimizing dialogue

strategy in spoken dialogue system.

In the Pursuit learning algorithm , “the automaton pursues the

current optimal action by increasing the probability of

selecting the chosen action while decreasing the probabilities

of all other actions” using sample average rewards. At

iteration t, the automaton selects an action α(t) A with

respective probabilities p(t) = {p1(t), …, pr(t)}. Whether the

automaton is rewarded or penalized, the next step is to

increase the component of p(t) whose reward estimate is

maximal (the current optimal action), and to decrease the

probability of all the other action. From a vector perspective,

the probability of updating rules and reward estimate vector

can be expressed as follows:

 (4)

 (5)

As the algorithm proceeds and the different actions are

explored, the automaton acquires more and more information

about the reward probabilities d’s indirectly through the

environment feedback β’s. In other words, estimates (t) of d

at time t can be used to update the sampling probabilities p(t)

in such a way that those actions with large (t) are more

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.9, November 2012

23

likely to be chosen again in the next iteration. In this case, em

is the unit vector representing the currently estimated optimal

action, namely, the action with the maximal reward estimate

and the internal parameter µ controls the size of steps that can

be made in moving from p(t-1) to p(t). In general, small

values of µ correspond to slower rates of convergence, and

vice versa.

4. METHODOLOGY
In light of the previous discussion, this section details how

PLA sampling class of algorithm aimed at accurately and

efficiently estimating the optimal state-value function for

modelling the inherent uncertainty in spoken dialogue

strategy. At each sampled state in the dialogue history, taking

an action is adaptive at each stage that defines the union of the

slots specified in the active dialogue goals. The state-action

space is explored by selecting actions randomly which leads

to the estimation of value function that converge to the true

value asymptotically in the total number of samples. At the

start of the dialogue, PLA sampling algorithm generates a

sampled tree in a recursive manner to estimate the optimal

value at an initial state. Consequently, an adaptive sampling

mechanism is incorporated for selecting relevant action to

sample at each branch in the tree. The branching process

construction goes on until the last stage is reached. At each

simulated (next) state at a stage, a fixed intermediate reward is

allocated among feasible actions and the reward is used with

the current probability estimate for the optimal action. In this

case, a simulated state corresponds to an automaton viewed as

a dialogue manager which in turn updates its value function

along with the probability distribution over the action space at

each iteration in a recursive manner to the context of solving

MDP.

Figure 2 presents PLA sampling algorithm for estimating

 for a given state x. The inputs to the algorithm are

charaterised as follows:

 Stage i.

 State x X.

 Sampling parameter Ni (
) is the

number of times action a has been sampled from

state x in stage i.

 i [0,1] is the learning rate.

Finally, the output of the algorithm is
 , the estimate of

 .

As the dialogue progresses, the algorithm builds a sampled

tree of depth H which defines the number stages to track the

status of the slots and its values mentioned by both the user

and the system in terms of dialogue acts in various contexts.

Initially, a root node is associated to the first decision stage

and a branching factor of Ni at each level i initializes the

probability distribution over the action space as the

uniform distribution. At each dialogue cycle, the previous

system act and each input user act is get compared and an

action which is either primitive or abstract is sampled from

the probability distribution and reward rk is assigned

independently (an action and a reward resultant to an edge in

the tree). For the sampled action a(k) A(), the Q-function

estimate is updated using the expected reward

 (and next state , and the count

variable
 (x0) is incremented, where a recursive call is

made to estimate
 at the simulated next state by executing

dialogue repeatedly. At the end of each dialogue, this is

followed by updating the estimate of the optimal action with

the discounted reward and its probability distribution Px0(k)

respectively in the direction of current estimate of the optimal

action by adding μi to its probability mass and subtracting a

proportional amount from all other actions. In this case, E(.)

denotes the expectation corresponding to the estimated

optimal action with the highest reward. After N0, iterations,

the PLA algorithm estimates the optimal value
) by the

Q-function value at the currently estimated optimal action of

the x0-automaton by setting

(6)

Fig 2: PLA based policy optimization algorithm

5. EXPERIMENTS
The dialogue management problem studied in this paper is a

task-oriented, slot-filling dialogue system in the travel

planning domain. In slot-filling dialogues, an effective

strategy is the one that interacts with the user in a satisfactory

way while trying to minimize the length of the dialogue. The

goal of the experimental system is to give information about

flights based on specific user preference in a simulated

learning environment.

5.1 Task Representation

The state space representation of the dialogue problem has

four slots representing the confidence of slot values of 1)

departure city, 2) destination city, 3) departure date, and 4)

departure time of the air travel domain. Each of these slot-

values is associated with filling and confirming the confidence

of the slot relevant to the dialogue history information which

defines the level of stages in the learning algorithm. For

example, a particular slot has not yet been stated, stated but

not grounded, or grounded. The action space of the human-

machine spoken dialogue includes the following system

Input: i, x, , .

Output:

)

Initialization:

 Set

 ; initial random order of actions;

 Set
 ; number of times action a is sampled from

 the state x;

 Set ; average reward on taking

 action a from the state x;

 Set k = 0 ; iteration count;

// Generate dialogue using -greedy policy

 repeat
 // Random action selection with probability along with

 reward rk from user simulator

 Sample ;
 Update Q-function estimate for

 (

 ;

 ;

 ;

 Update optimal action estimate policy

 Update probability distribution over action space

 with respect to pursuit scheme defined in equation (4)

 ;
 ;

 until k = ; converged

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.9, November 2012

24

action model available for exploration in every state and is

given as follows:

 Greet

 Ask a slot (REQUEST_INFO())

 Explicit confirm (EXPCONF())

 Implicit confirm and ask a slot

(REQUEST_INFO_WITH_IMPCONF())

 Close and present information

Similarly the user action model is the following:

 Yes – answer

 No – answer

 Provide-asked

 Re-provide-asked

 Remain silent

Table 1. The principal dialogue acts used in flight booking

system

System dialogue acts User dialogue acts

GREETING() command (bye)

REQUEST_INFO(dep_value) provide_

Info(dep_value)*

REQUEST_INFO(dest_value) provide_

Info(dest_value)*

REQUEST_INFO(date_value) provide_

Info(date_value)*

REQUEST_INFO(time_value) provide_

Info(time_value)*

REQUEST_INFO_WITH_IMP

CONF(dep_value)

answer(yes)

REQUEST_INFO_WITH_IMP

CONF(dest_value)

answer(yes)

REQUEST_INFO_WITH_IMP

CONF(date_value)

silence()

REQUEST_INFO_WITH_IMP

CONF(time_value)

EXPCONF(low+medconfs)

DATABASE-RESULT

* Multiple slot values can be provided in a single utterance

The most common dialogue acts for task oriented human-

machine simulated dialogue are listed in table 1 and a simple

dialogue illustrating their use is shown in table 2.

5.2 User Simulation

Initially, a baseline system is built using hand-crafted policy.

This uses a large number of internal system variables and

advanced strategies such as variable confidence thresholds

that try to fill the available slots one after the other and

terminate the dialogue episode if all the slots are filled. In

order to keep the design problem tractable, the hand-crafted

policy has been kept as simple as possible instead of taking

much dialogue context into account. To assert the impact of

the sample-efficiency of the proposed method, different sizes

of datasets (dialogue corpora) which represent the problem

space are required. However, collecting large amounts of data

may take a lot of time. Therefore, a user simulation technique

has been used to generate different datasets [19]. The task of

the user simulator is to provide examples of how a human

would behave while interacting with the system. It provides

user actions at a dialogue act level and uses two main

components user goal and user agenda. At the start of each

dialogue, the goal describes the full set of constraints that the

user requires to satisfy such as departure city, destination city,

date and time. The agenda stores an ordered list of dialogue

acts that the user is planning to use in stack like structure in

order to omplete its task. At the end of every dialogue the

system receives a -1 penalty for every action it takes, a final

reward of +20 in case of successful dialogue when all the

necessary information has been obtained. In the case where no

flight detail matches the attribute-slot values, the dialogue is

deemed successful and a suitable alternative is offered. Since

a characteristic dialogue will require about six or seven turns

to complete, this implies that the achievable cumulative

reward has an upper bound of 14.

Table 2. An example dialogue and its representation at the

dialogue act level

5.3 Behaviour of Value Function

Approximation

In each experiment, a dialogue strategy was allowed to evolve

over a fixed number of dialogues with a simulated user. For

each of these training sessions, the resulting estimated value

function is used to compute the estimated optimal policy. The

stopping criterion is based on the number of changes made to

the policy. For simplicity, the number of samples (N) at each

stage is taken to be the same and thus the input parameter

(learning rate) is chosen to be , independent of the

stages. The estimates of value function obtained by the

policies trained using varied number of samples is shown in

table 3. Figure 3 plots the (averaged) estimates of value

Spea

ker Utterance

Dialogue act

SYS Welcome to the travel

planning system. How can I

help you today?

Please give the name of the

city that you are starting

from.

[GREETING]

[REQUEST_INFO

dep_val)]

USR I would like to fly from

Chennai

[provide_info

dep_val=’chennai’)]

SYS So you want to travel from

Chennai. Which city are

you travelling to?

[REQUEST_INFO_

WITH_IMPCONF(d

est_val)]

USR Mumbai [provide_info

(dest_val=’mumbai’

)]

SYS Ok, please give me the date

you wish to leave.

[REQUEST_INFO

(date_value)]

USR April 14th [provide_info

(date_val=’14/04/20

11’)]

SYS At what time do you prefer

to travel?

[REQUEST_INFO

(time_val)]

USR In the morning [provide_info

(time_val=’morning’

)]

SYS Ok, accessing the database.

I found 2 flights from

Chennai to Mumbai. Choice

1: departing at six thirty

a.m. and arriving at eight

fifteen a.m. The price is

2500 rupees. Choice 2:

departing at nine a.m. and

arriving at ten twenty a.m.

The price is 3700 rupees.

[DATABASE_RES

ULT]

USR Ok, thank you goodbye bye()

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.9, November 2012

25

function as a function of the number of samples used for

training during the dialogue episodes. Our experimental

results show that the dialogue policy learned using PLA

performs significantly better than the hand-coded policy and

needs only few samples to learn fairly good policies. Most

importantly, it is revealed from the table 3 that a higher value

of learning rate (μ) leads to faster convergence but results in a

suboptimal action due to the fact that the pursuit scheme is

guaranteed to be -optimal. Hence, generally the

computational efficiency at worst case is determined

by , where N is fixed with some predefined maximum

value according to the experimental settings.

Table 3. Value function estimates of the PLA method

Number of

samples

at each stage

(N)

PLA

Learning

parameter

(μ)

Estimated

optimal

value

4 11.33

(0.27)

0.1591

13.602

10 12.87

(0.25)

0.0670

15 13.31

(0.16)

0.0408

25 13.56

(0.13)

0.0273

Each entry represents the mean based on 100 test

episodes with standard error in parenthesis

Fig 3. Convergence of value function estimate tested on a

user simulator

Figure 4 shows the efficiency of the dialogue policies learned

using PLA is marginally superior when compared to the

policies learned using Reinforcement Learning with Grid

Points (RLGP). Both these algorithms have been proven to

converge towards the optimal policy. The PLA is converged

very quickly with almost 500 steps. This speed of

convergence is one of the advantages of the PLA method

when developing a new system or adapting it to changes in

the tendency in the data. In contrast, RLGP policies require a

large number of iterations irrespective of the number of

samples used for training. Since the policies learned using

PLA have relatively less variations, these policies are more

stable and reliable when compared to RLGP.

Fig 4. Comparison of value function estimate in different

approaches

6. EVALUATION
To evaluate the effectiveness of a learnt strategy with real

users, an end-to-end dialogue system with complete speech

and language processing modules becomes inevitable. This

section describes one such trial of learnt strategy with hand-

coded baseline strategy. In both the cases, the performance of

the trained policy and the hand-crafted policy were tested with

the PARAdigm for DIalogue System Evaluation framework

[20]. The primary objective is to maximize user satisfaction,

and it derives a combined performance metric for a dialogue

system as a weighted linear combination of task-success

measures and dialogue costs.

6.1 System Configuration and Trial Setup

The system integrates existing modules for speech recognition

and synthesis with hand-coded modules implementing

language parsing, language generation and database

connectivity. The recognizer used was the application toolkit

for HTK [21] with a vocabulary of about 1,800 words. The

speech synthesis was based on the festival text-to-speech

system [22]. The natural language parser consisted of a hand-

coded set of pattern matching rules to extract the dialogue act

type with a list of slot/value pairs from each utterance and

some code to parse dates. Similarly, the language generator

was a relatively simple template-based system, comprising a

set of rules for combining texts with slot values. The system

dialogue acts allows the system to request the user for the slot

values or to confirm these values, either explicitly or

implicitly and to restart or end the dialogue. Finally, the

system presents the results of a user’s database query. The

user dialogue acts allow the user to provide slot information

and to terminate the dialogue.

To evaluate the learnt strategies, 20 postgraduate students

(eight-female, 12-male) with an average age of 21 have tested

our system. Each participant was asked to complete six pre-

defined dialogue tasks where each task involved finding the

details of the flights from one city to another city on a specific

date and time. It is important to mention that since our testers

had no previous experience with a dialogue system, our

experiments were performed by novice users.

6.2 Subjective Trial Results

To evaluate user satisfaction, each participant was given the

user-satisfaction survey Table 4 used within PARADISE

framework, which measures the opinion of the respondents

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.9, November 2012

26

with several metrics about the behaviour or the performance

of the system (TTS performance, ASR performance, task

ease, interaction pace, user expertise, system response,

Expected behaviour, and Future use). The answers to the

questions were based on a five-class ranking 1, indicating

strongly disagree, to 5, indicating strongly agree. For our

experiment, the mean user satisfaction value was 28.70 as

shown in Table 5. These results indicate that the performance

of the PLA learnt strategy (system A) is perceived to have a

comparable quality to baseline RLGP (system B) in terms of

task ease-of-use, user expertise, expected behaviour and

future use.

Table 4. User satisfaction metrics

Metric Statement

TTS quality I found the system easy to understand.

Task ease-of-use It was easy to get the information I

wanted.

Interaction pace Was the pace of interaction with the

system appropriate in this conversation?

User experience I knew what I could say or do at each

point in the dialogue.

System response How often was the system sluggish and

slow to reply?

Expected

behavior

The system worked the way I expected

it to.

Future use Based on this experience, I would use

this system regularly.

Table 5. User satisfaction survey results

Criteria System A System B

TTS quality 4.3 0.7 4.1 0.6

Task ease-of-use 4.2 0.8 3.8 0.7

Interaction pace 3.7 0.4 3.5 0.5

User experience 4.3 0.7 3.9 0.7

System response 3.7 0.6 3.5 0.5

Expected behavior 4.1 0.8 3.6 0.7

Future use 4.1 0.9 3.5 0.7

User satisfaction 28.7 26.3

6.3 Objective Trial Results

The task success of the whole dialogue is measured by how

well the system and participant accomplish the information

requirements of the task by the end of the dialogue. In our

experimental setup we have used the well known Graded

Task Success (GTS) measure [23] that penalizes with different

values defined as follows:

Table 6 presents the summary of task success measures and

dialogue quality costs which are intended to capture the user’s

perception of the system’s performance. Similarly, table 7

summarizes the correlation analysis between task success

measures and user satisfaction. From the result it was

observed that all metrics defined in table 4 correlate

moderately with overall user satisfaction, the metrics taking

task easy and expected behavior having higher degree of

correlation. According to PARADISE framework to compute

the system performance we performed multiple regression

analysis on our data with user satisfaction as the dependent

variable, task-success measures and dialogue costs as the

independent variables by the following equation.

 (7)

where α is a weight on the task success metric k, and wi is a

weight on the dialogue cost function ci computed from table 6.

 is a Z-score normalization function

 defined

over task success and cost values to account for the fact that

they can be measured on different scales (sum, seconds,

percentages, etc.) where corresponds to the standard

deviation of x. From several regression analysis on the

normalized dialogue quality metrics (system turns, user turns,

system words per turn, user words per turn and interaction

time) user turns and GTS were chosen to be the predictors

(independent variables) of user satisfaction (dependent

variable) at p < 0.05 significance and yields the predictive

equation:

 (8)

Hence for the 120 test dialogues we found the mean

performance of the learnt policy perform better than the hand-

coded policy at p < 0.05.

Table 6. Mean values of task success and dialogue quality

metrics based on 120 dialogues

Metric System A System B

GTS (%) 76.09 7.2 64.37 6.5

System turns 6.15 0.7 7.02 1.2

User turns 4.75 0.5 5.10 0.6

System words

per turn
32.30 5.2 34.24 6.1

User words per

turn

 5.79 1.5 5.34 2.1

Interaction

time
22.10 9.6 25.28 11.27

Table 7. Correlation coefficient between task success and

user satisfaction metric (significance at ρ < 0.05)

Metric
GTS

System A System B

TTS quality .61 .52

Task ease-of-use .82 .69

Interaction pace .42 .38

User experience .35 .22

System response NS* NS*

Expected behavior .59 .51

Future use .56 .46

* NS denotes Not significant

7. CONCLUSION
This paper has presented a sample efficient approximation

method for dialogue manager to generate an optimal response

based on MDP framework. The proposed method computes

both the optimal action from a given dialogue state and the

corresponding optimal value on a sampled tree recursively

through sampling and simulations. The performance of the

system has been evaluated by interaction with a simulated

user and through a live user trial with respect to PARADAISE

framework. To generate an action, the sampled tree is

traversed recursively in a bottom-up fashion with an adaptive

sampling scheme which defines the stages in the problem

space. At each level, the automaton queries the local policy

based on the immediate reward, and the action proposed by

the policy is either primitive or abstract, which depends on the

1 for flights details without problems

2/3 for flights details with small problems

1/3 for flights details with severe problems

 0 otherwise

GTS =

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.9, November 2012

27

confidence measure of the slot in focus. If the action is

primitive, it is directly executed by the automaton. Otherwise,

the automaton queries the policy through its corresponding

levels until the so-called slot values are grounded with higher

confidence. It has been experimentally demonstrated that the

optimal dialogue strategy can be obtained with a small

number of training samples and has the potential for

significant improvements in robustness compared to hand-

crafted and grid-based approaches. Evaluation by real user

using PARADAISE framework shows satisfactory results of

the learnt policy compared to the baseline reinforcement

learning with gird points. For future work, we believe that our

approach can also be extended in the direct context of

Partially Observable MDPs which account for approximately

linear running time of learning algorithms when the state

space is continuous and directly incorporates uncertainty

imposed to a noisy channel. This suggests that system beliefs

need to be modeled at different levels of granularity. In

addition, while the results of RASA show faster convergence

in finding optimal dialogue policy compared to the grid-based

Monte Carlo algorithms, another matter for future

investigation is to apply leaning automata based actor-critic

approach into the proposed method to significantly speed up

policy optimization. Finally, some supplementary informative

interaction parameters with respect to PARADISE model are

to be investigated to increase the validity of the resulting

quality prediction.

8. REFERENCES
[1] McTear, M. 2004. Spoken Dialog Technology: Toward

the Conversational User Interface, Springer-Verlag.

[2] Sutton, R. S., and Barto, A. G. 1998. Reinforcement

Learning an Introduction, MIT press, Cambridge, MA.

[3] Singh, S., Litman, D., and Walker, M. 2002. Optimizing

dialogue management with reinforcement leaning:

Experiments with the NJFun system. Journal of Artificial

Intelligence, vol. 16, 105– 133..

[4] Paek, T., and Pieraccini, R. 2008. Automating spoken

dialogue management design using machine learning: an

industry perspective. Speech Communication, vol. 50,

no.8-9, 716–729.

[5] Chang, H. S., Fu, M., Hu, J., and Marcus, S. I. 2007.

Recursive learning automata approach to markov

decision processes. IEEE Trans Automat Contr, Vol. 52,

no.7, 1349-1355.

[6] Young, S., Gasic, M., Keizer, S., Mairesse, F.,

Schatzmann, J., Thomson, B., and Yu, K. 2010. The

hidden information state model: A practical framework

for POMDP-based spoken dialogue management.

Computer Speech & Language, vol. 25, 150-174.

[7] McTear, M. 1998. Modelling spoken dialogues with state

transition diagrams: experience with the CSLU toolkit. In

Proc. ICSLP, 1223-1226.

[8] Goddeau, D., Meng, H., Polifroni, J., Seneff, S., and

Busayapongchai, S. 1996. A form-based dialogue

manager for spoken language applications. In Proc.

ICSLP, 701–704.

[9] Rich, C., and Sidner, C. 1998. Collagen: A collaboration

manager for software interface agents. User Modeling

and User-Adapted Interaction, vol. 8, no. 3/4, 315–350,

1998.

[10] Pietquin, O., and Dutoit, T. 2006. A probabilistic

framework for dialog simulation and optimal strategy

learning. IEEE Trans Audio Speech Lang Process, vol.

14(2), 589–599.

[11] Frampton, M., and Lemon, O. Recent research advances

in Reinforcement Learning in Spoken Dialogue Systems.

2009. The Knowledge Engineering Review, vol. 24, no.

04, 375–408.

[12] Henderson, J., Lemon, O., and Georgila, K. 2008. Hybrid

Reinforcement/Supervised Learning of Dialogue Policies

from Fixed Data Sets. Computational Linguistics, vol. 34

(4), 487–512.

[13] Cuayáhuitl, H., Renals, S., Lemon, O., and Shimodaira,

H. 2010. Evaluation of a hierarchical reinforcement

learning spoken dialogue system. Computer Speech &

Language, vol. 24, no. 2, 395–429.

[14] Toney, D., Moore, J., and Lemon, O. 2006. Evolving

optimal inspectable strategies for spoken dialogue

systems. In Proc HLT, 173–176.

[15] Rieser, V. 2008. Bootstrapping Reinforcement Learning-

based Dialogue Strategies fromWizard-of-Oz data. PhD

dissertation, Saarbruecken Dissertations in

Computational Linguistics and Language Technology,

Vol. 28.

[16] Thathachar, M. A. L., and Sastry, P. S. 2004. Networks

of Learning Automata: Techniques for Online Stochastic

Optimization, Kluwer.

[17] Oommen B. J., and Misra, S. 2009. Cybernetics and

learning automata. Springer Handbook of Automation,

pp. 221-235.

[18] Chang, H. S., Fu, M., Hu, J. , and Marcus, S. I. 2007. An

adaptive sampling algorithm for solving Markov decision

processes. Operations Research, vol. 53(1), 126-139.

[19] Schatzmann, J., Weilhammer, K., Stuttle, M. N., and

Young, S. 2006. A survey of statistical user simulation

techniques for reinforcement-learning of dialogue

management strategies. The Knowledge Engineering

Review, vol. 21, no. 02, 97–126.

[20] Walker, M., Litman, D., Kamm, C., and Abella, A. 1998.

PARADISE: a framework for evaluating spoken

dialogue agents. In Proc., Assoc. Comput. Linguist.

(ACL), 271–280.

[21] Young, S. ATK: an application toolkit for HTK.

Available:http://mi.eng.cam.ac.uk/research/dialogue/atk_

home

[22] Yamagishi, J., Zen, H., Toda, T., and Tokuda, K. 2007.

Speaker-independent HMM-based speech synthesis

system – HTS-2007 system for the Blizzard challenge

2007. In Proc The Blizzard Challenge,

http://www.cstr.ed.ac.uk/projects/festival/

[23] Dethlefs, N., Cuayahuitl, H., Richter, K., Andonova, E.,

and Bateman, J. Evaluating task success in a dialogue

system for indoor navigation. In Proc. 14th Workshop on

the Semantics and Pragmatics of Dialogue, 143-146.

http://www.cstr.ed.ac.uk/projects/festival/

