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ABSTRACT  
Keeping up with the advancement in hardware technology, the 

size and complexity of software systems are increasing at a 

rapid rate, thus, making them difficult to maintain, expand, 

and evolve. To alleviate such difficulties, change impact 

analysis (CIA) and its implementations has been the subject of 

research for several years. Generally, CIA facilitates 

regression testing. Specifically, CIA helps to estimate the 

potential consequences of a software change, including the 

affected module(s) and their data dependencies, re-testing 

needs, as well as the required resource planning. Historically, 

many CIA implementations use static analysis and traditional 

text-based impact reporting. Although useful, static based CIA 

implementations often cited as time- and effort-intensive (e.g. 

requiring extensive documentation/design search). Dynamic 

slicing is an option to address the aforementioned issues. 

However, the volume of analyzable data potentially impedes 

understanding. Visualization can be a good leverage for 

improving analyzability and understanding of impact analysis 

from dynamic slicing.In line with such a prospect, this paper 

offers a dynamic approach to visualize the impacts for support 

selective testing on regression testing.  

Keywords: dynamic change impact analysis, regression 

testing 

1. INTRODUCTION  
Gradually, software are replacing most other products (e.g., 

mechanical products) whenever possible – due to its 

customizability and changeability[1]. Nevertheless, in order to 

remain in use, software needs to evolve in line with 

technological advancement and user needs. Over the years, 

software systems are grown extremely in terms of size and 

functionality. It is now common to have commercial software 

with more than a million lines of codes. Such a significant 

growth has a strong influence as far as evolution is concerned. 

Evolution is an expensive task [2, 3], costing an average of 

two to four times the development costs. In the most part, 

evolution costs can be associated with regression testing.  

In order to reduce regression testing costs and avoid unwanted 

side effects (i.e., or ripple effects) resulting from evolution, 

there is a need to estimate the impact of change[4]. Change 

impact analysis (CIA) and its implementation have often been 

sought for to estimate the change including the affected 

module(s) and their data dependencies, re-testing needs, as 

well as the required resource planning [5]. 

Study on existing CIAsis dedicating that  most are using static 

tracing to address the impacts [6]. Orso et al [7] are indicated 

that obtaining the data via static tracing is reliable. However, 

concerning implementation, current static tracing practices 

have some specific problems/requirements (e.g., useless trace 

artifacts, unavoidable failures, too many up front activities 

and the necessity of comprehensive documentation). These 

problems/requirements are among of some reasons that 

making the static traceability intensive.  

Agrawal & Horgan [8], Korel & J. Rilling [9] Ryder and Tip 

[10] and Chao et al.  [11], believed, unlike static analysis, the 

dynamic analysis offers a reasonable price, size and 

maintainer’s effort. More often, in dynamic analysis requires 

placing a track to all functions/modules of a system for trace 

its execution. The tracking makes the CIA able to; not only 

address the dynamic impacts in terms of (i.e., 

loading/unloading of dynamic impacts) but also has good 

advantages to support the static dependencies. They are 

among of some reasons that make dynamic analysis as an 

attractive option. However, in dynamic tracing increasing the 

number of analysable data still, make the analysis stage 

complex and impede the understanding. Enhancing and 

improvement the reporting can be a key success for address 

the dynamic traceability issues (i.e., in terms of understanding 

and complexity).   

To improve the reporting the impacts, using visualization can 

be a good option in order to address dynamic tracing as well 

as understanding issues. Visualization potentially can provide 

multiple views for item's interest from different perspectives. 

For example, system interaction mapping can focus on call 

sites, depth of call, and dependency analysis. 

In light of the stated problem statement, (i.e., in terms of static 

traceability, dynamic traceability as well as reporting stage), 

this study investigates dynamic approach to visualize the 

impacts for support selective testing on regression testing.  

This paper organized as follows. Section 2 provides a problem 

definition model, emphasizing the role of CIA for regression 

testing to address issues related to reworking. Subsequently, 

section 3 discusses on some related work. Next, in section 4, 

the case studies and the implemented prototype (J-via) will be 

defined. Subsequently, in section 5, some obtain results from 

developed prototype (J-via) for support the approach will be 

demonstrated. Finally, in section 6, an outlines for conclusion 

will be given. 

2. PROBLEM DEFINITION MODEL 
Regression testing can be conducted using two approaches, 

namely, retest all and selective retesting. Figures 1(a) and 1(b) 

illustrate the use of both approaches [12].  
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Figure 1: (a) Retest All Approach and (b) Selective Retest Approach 

In this model, there is a program P and a set of test cases to 

validate P, called T. If and only if P’ be the modified version 

of P, then the regression testing aims validate P’. To test  P’, 

new test cases derived from the client’s new change request, 

which are called∆ T, must be developed.  

InFigure 1 (a), some modules may need to be changed in 

some situations while considering T and∆ T. Retesting all 

approaches can be costly. Additionally, some test cases in T 

may be outdated because of changes made in P. Therefore, 

some of the test cases in T may need to be updated.  

In Figure 1(b), using the same notation, the impacted modules 

or functions can be classified into known and unknown 

classes, which will be discussed in the following subsections.  

2.1 Known Impacted Function/Modules 
If the impacted function/modules have been 

identified, Finally, T’ can be selected and modified as a subset 

of T. The chosen test cases for T’ are selected from T if and 

only if they affect P’. ∆T can also be developed based on 

changes in the client’s requests.  

The final test suite is (T’+∆T). In some cases, the execution of 

the test case within the final test collection of (T’+∆T) should 

be prioritized to improve the chances of identifying faults.  

2.2 Unknown Impacted Function/Modules 
The above discussion relied on known impacted 

functions or modules. In most cases, however, the designer or 

the customer does not consider the impacts on software 

systems or their dependencies. Unknown impacts are a typical 

concern for software systems, including commercial off-the-

shelf (COTS) systems. The COTS part of any software system 

typically includes functionalities that are not included in the 

system requirements. Pre-existing functionalities are 

important because they may have interacted with or are 

affected by the non-COTS aspects of the software system. 

To identify the potential consequences of software evolution, 

as well as the impacted modules or functions, CIA is 

necessary [5]. Dynamic CIAs tracks the functions or modules 

of a system to trace their execution. Tracking allows the CIA 

to address the loading or unloading of dynamic impacts. The 

advantages of CIA lie in its capability to support static 

dependencies. 
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Figure 2: Example for Testing Levels 

Figure 2illustrates the testing levels, namely, acceptance, 

system, integration, and unit testing. Any changes in the 

system make regression testing essential for code unit 2 at the 

unit testing level and for major function 2 and major software 

function 3at the integration level. Given that major functions2 

and 3 affect software sub-system 1 and may also affect the 

overall software system, another round of regression testing at 

the system level must be performed. Based on the identified 

dependencies, the test cases that should be used must be 

determined.  

In the earlier example, in terms of known impacted 

modules/functions (see Figure 2), T’ can be selected as a 

subset of T. T' refers to the test cases that were impacted in P’. 

The test cases, which don’t have any impact on the changed 

module, can be discarded. ∆T can also be developed based on 

the client’s change requests. Recently tested suites have to be 

prioritized in this case.  The following subsection focuses on 

the scope of review for this study.  

3. RELATED WORKS 

Over the past few years, extensive research on CIA 

has been conducted, and research prototypes have been 

developed. However, previous studies focused on different 

aspects of developed CIAs. Thus, different definitions of CIA 

have been given. For example, Pfleeger[4] defined CIA from 

a risk management perspective, considering it an “evolution of 

many risks associated with change, including estimates of the 

effect on resources, effort, and schedules.”Turver and Munro 

[5] approached CIA as requirement engineers and stated that 

CIA is the “assessment of change to a source code of a 

module on other modules of a system to measure complexity 

as well as change scope determining.” They are stating that 

the impact has to be estimated first before actually 

implementing any changes to preven such side effects as 

ripple effects. Regarding the given problem definition model, 

Zamli et al. [12] discussed CIA from a testing perspective, 

stating that following the consequence of change is a good 

option to highlight affected parts to reduce regression testing 

costs and to prevent of rework. The change impact analysis 

(CIA) can be done by dependency analysis or traceability 

analysis. However, this study is focused on dependency 

analysis and some related works will be given as follows.  

3.1 Dependency Analysis 
Dependency analysis focuses on impact information 

captured from the source code. Dependency analysis can be 

categorized onto two groups of static dependency analysis and 

dynamic dependency analysis [13]. 

3.1.1 Static Dependency Analysis 
Static dependency analysis involves obtaining data 

from the source code. The data are then analyzed to assess the 

impact of a change. This method is categorized into four 

groups, namely, data dependency, slicing, call graph, and 

retrieve information, which will be subsequently discussed. 

CIA Studies focusing on data dependency analysis have been 

conducted by M. Lee et al. [14], who identified three different 

object-oriented dependency graphs that  can compute the 

transitive closure to identify impacted elements. They also 

proposed a concept based on intra-method data dependency. 

According to this concept, the impacts on entities located in 

the method bodies are calculated by the graphs. Change 

dependencies between methods are calculated by inter-method 

data dependency graphs, whereas a change impact at the 

system level is calculated by object-oriented system 

dependency graphs. The researchers also distinguished four 

different types of impacts between two related entities. The 

four impacts are contaminated, which refers to both elements 

being impacted; clean, which indicates no impact; semi-

contaminated, in which the target is not impacted by the 

source, but with the source having been potentially impacted; 

and semi-clean, wherein the source is not impacted, but 

changes exist in the target. 

Weights are assigned to the relationships among entities 

depending on the types of impact relations they have. The 

total change impact weight is obtained by computing the sum 

of the weights that have been assigned to the relations 

between two entities. To calculate the impacts, the total 

change impact weight is assigned to all three graphs. 

JTracker is a CIA approaches that supports regression testing 

[15] and addresses the impact sets by printing the dependency 

graphs. JTracker then analyzes the program and builds a 

dependency database, considering such relations as 

inheritance, aggregation, and other relations between classes, 

as dependencies. JTracker marks the classes that the 

programmer needs to inspect. This particular CIA reuses the 

results previously gathered by impact calculations and then 

updates them depending on any of the changes to the program. 

This process is accomplished by creating a dependency graph 

of the program based on input-output mapping. The graph is 

then enhanced using static data flow information from the 
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method bodies. The results of each analysis process are stored, 

which allows one to conduct an incremental search for 

impacted entities, thereby reducing costs. 

Zalewski and Schupp[16] proposed conceptual change impact 

analysis (CCIA), which is based on the principle of pipes and 

filters. CCIA assesses the impacts of library changes. The first 

step in CCIA is to locate changes that impact conceptual 

specifications. Optional filters are then applied to refine the 

output for the detection of specific kinds of impacts. Two 

filter algorithms are given, one to detect the impact of a 

change on the degree of generality and one to detect the 

compatibility with different versions. In the second step, the 

change is implemented, and the differences between the 

original and the modified program are identified. This step is 

followed by the construction of a dependency graph, with 

nodes being annotated with information obtained from the 

differencing process. The last step involves a depth-first 

search, which is performed to propagate the impacts of a 

change through the graph. Additional node information is 

used to reduce change propagation. The researchers also 

created two algorithms for use in searching for specific kinds 

of impacts, namely, constraint change, which verifies if the 

requirements for algorithm parameters have changed, and 

concept compatibility, which verifies the compatibility of a 

concept between versions. 

Petrenko and Rajlich[17] developed JRipples, which uses 

static dependency analysis and enhances impact analysis to 

handle the variable granularity of the analyzed software 

artifacts. A dependency graph of the program is also built to 

mark the annotated nodes (e.g., changed, propagated, 

inspected, or blank). Using this method, the programmer 

determines whether the impact propagates at a coarse or at a 

fine level of granularity. All the child nodes of an impacted 

element will be marked.  If the granularity is defined by the 

programmer, the parent nodes will be marked. If granularity 

does not exist, entire code fragments will be selected by the 

programmer. Subsequently, the all-encompassing entities will 

be marked and used to propagate the impact.  

Other source code entities may be affected by changed 

methods that call them either directly or indirectly. Assessing 

the impact of a method change is best achieved by analyzing 

the call behavior of a system. Generally, call graph analysis 

involves a statistical analysis of the source code. The method 

calls are then extracted and stored in a graph or matrix, which 

is used to assess the propagation of an assumed change.  

An approach based on call graphs was developed by Ryder 

and Tip[10]. The affected tests are checked, and the ones that 

must be re-executed are identified using this approach. This 

approach also determines the change that caused the test to 

fail. A tool called Chianti was later developed based on this 

approach [18].   

An approach called CCGImpact, which is implemented in 

PCIA, was proposed by Badri et al. [19], who sought to 

improve the call graph’s accuracy in predicting changes and to 

keep costs low. Thus, the static call graphs were combined 

with static control flow information, thereby addressing the 

lack of precision of traditional call graph-based approaches. 

This method records all control flows between method calls to 

improve the call graph with information on the call order. 

Infeasible paths are eliminated by removing excluded calls. 

To create control call graphs (CCG), the source code is 

analyzed without considering the statements and instructions 

that do not invoke a method call. Sequence information can 

enhance CCGs by generating compacted sequences that can 

be used in pruning infeasible paths. The process ultimately 

obtains a program’s behavioral profile.  

Program slicing was proposed by Weiser [20]to support 

dependency analysis. This method captures the key portions 

of a program and then removes parts that are unimportant in 

evaluating specific variables at a certain location. 

Binkley and Harman [21] introduced the concepts of 

dependence clusters and dependence pollution based on 

slicing and proposed a visualization method to locate the 

clusters. The size of computed slices is significant here. To 

perform this method, slices of the same size are createdfor 

each variable. The variables comprise a cluster, and any 

change in a variable is replicated to the other variables within 

the same cluster. Further studies found that 80% of all studied 

programs contained clusters, 10% of which are unchanged. 

GRACE, is a CIA, which is a program dependency graph 

(PDG) based on Visual Basic, was developed by Korpi and 

Koskinen[22]. GRACE is capable of supporting impact 

analysis for Visual Basic. The program uses static forward 

slicing to capture the possibly affected parts of a program. 

GRACE consists of the parser, which translates Visual Basic 

programs into abstracts yntax trees (AST), and the PDG 

generator, which converts the ASTs into graphs. GRACE also 

combines single graphs with system graphs. To compute the 

impacted code entities, GRACE performs a straightforward 

reachability analysis on the PDG.  

One challenge in static slicing is determining how it can be 

enhanced to reduce the set of proposed impacts. [23] used 

probabilistic algorithms to address this issue, basing their 

work on the three observations. First, the probability of being 

affected by a particular change is not the same for all 

statements. Second, the likelihood of being affected is low for 

some data dependencies. Finally, changes with a higher 

probability are propagated by data dependencies rather than 

by control dependencies. 

Impact analysis can be supported when evolutionary outlines 

are uncovered from the source code [24]. To accomplish this, 

the information is retrieved, allowing developers to track 

frequent change patterns and pinpoint which code entities are 

involved.  

The patterns on a class level, which will be used to retrieve 

the information, were identified by Vaucher et al.[25]. The 

method they used to calculate the level of change for each 

class evolution involved the retrieval of information on the 

implementation and functional changes from the source code. 

To recover implementation changes, the numbers of the 

added, removed, and modified instructions of methods are 

counted. The total change of a class is then determined by 

computing the sum of all relative and functional changes. 

Upon acquiring all the information, classes are clustered 

according to their change behavior. Furthermore, similar 

groups of class clusters (e.g., class patterns, code stabilizer, 

punctual changes, and common concerns) are identified using 

dynamic time warping.   

The class patterns are then grouped according to which ones 

change simultaneously. Code stabilizations are the new 

classes that must undergo modifications before attaining 

stability. Punctual changes that provide data on the classes are 

grouped according to the changes in specific versions, and 

classes implementing the same changes should be identified. 

A new set of coupling measures for classes based on 

information retrieval techniques was proposed by Poshyvanyk 
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et al. [26]. Their goal was to overcome the limitations of static 

coupling measures. They proposed that different dimensions 

must be covered by a reliable coupling measure in impact 

analysis. To detect similarities among code entities, 

overlapping identifiers, such as names and comments, are 

used in a method called latent semantic indexing (LSI).  

Through LSI, a document matrix that captures the distribution 

of words in methods is built.  Each document is denoted as a 

vector in the LSI subspace. After constructing the matrix, the 

cosine among vectors is computed to measure the conceptual 

coupling between methods. The classes are then ranked using 

coupling measures for impact analysis. 

3.1.2 Dynamic Dependency Analysis (DDA) 
The numerous dependencies in program executions can 

be addressed by DDA. DDAobserves the accesses performed 

by a program to detect all data dependencies. Dynamic 

slicing and control dependency are proposed methods for 

dynamic data dependency analysis[11].  

Dynamic slicing was introduced by Korel and Laski [27]. 

Computing dynamic slices can be achieved using an iterative 

algorithm based on data flow equations. Unlike static slicing, 

dynamic slicing identifies only the statements that affect on a 

particular execution trace.  

Law and Rothermel[28]developed PathImpact and 

EvolveImpact, which are dynamic impact algorithms that are 

based on dynamic slicing. PathImpact collects “method entry” 

and “method exit” events as execution traces. However, this 

process could result in duplicate entries because the methods 

can be called more than once. Traces were compressed to 

directed acyclic graphs (DAGs) using the SEQUITUR 

compression algorithm to address this issue. Nevertheless, 

PathImpact encountered other problems, such as the challenge 

to rebuild the entire DAG for larger programs. EvolveImpact 

was proposed to meet this need. To update the DAG 

incrementally, EvolveImpact observes any changes to the test 

suites and system components. A unique identifier that 

appears at the beginning of each trace and is supplemented by 

special ending symbols marks each test case. If any changed 

method is present in the DAG or if the DAG must be 

refreshed, these keys and ending symbols are used to remove 

the traces. To handle the new symbols and keys, Law and 

Rothermel developed a modified version of the SEQUITUR 

compression algorithm called ModSEQUITUR. 

A. Orso et al.[1] developed another approach for dynamic 

slicing, gathering field data from real users under real-world 

conditions to be used in evaluating software and in performing 

impact analysis is necessary for dynamic slicing. Remote 

analysis and  field data gathering can be accomplished by the 

Gamma approach. In this approach, developers use their 

programs tocollect dynamic data, such as execution traces. 

The users then execute the programs and then send the 

execution data back (“coverage data at block and method 

levels”). This step is followed by the computation of the 

dynamic slices based on the execution data of entities 

traversing a changed entity. They compared this approach 

with static slicing and call graphs and found that real field 

data differ from synthetically computed data. 

Execute-After (EA)sequences were later introduced by 

Apiwattanapong et al. [29]. EA sequences attempted to 

address the performance and precision limitations of Path 

Impact and Coverage Impact and achieved this goal by 

simplifying the recorded traces. Only the first and last events 

of each method were recorded. Each EA sequence had 

timestamps to determine which methods were impacted and 

also to see if the possibly impacted methods have timestamps 

that are equal to or higher than the first timestamp of the 

changed method.  

In 2006, Huang and Song proposed a dynamic slicing 

technique that sought to address the cost issues and time 

limitations of both the EA sequence and PathImpact. This 

technique focused on collecting method return into events. 

This technique utilized an algorithm that retrieves the 

execution instruction of methods and then associates method 

events with the methods executed after the event. The 

recorded information is later applied to reduce redundancy. 

Methods are only listedin the impact set if and only if they are 

executed after a changed method was executed. 

Online impact analysis is another technique that facilitates 

dynamicslicing. This method was introduced by [30]. In this 

technique, execution traces are gathered during runtime, using 

a complier to add callbacks to each function. After completing 

the data collection, the call stack was investigated to 

determine if a function has been affected by any changes in 

the other functions. All the direct and indirect functions are 

impacted if they were called by a changed function.  

Research by Breech et al. [31]combined the precision of static 

techniques and the analysis speed of dynamic techniques. In 

their method, they built an influence graph of the program 

because changes can only ripple through return values, 

parameters, and global variables. The graph includes methods 

and their relations, which are represented by nodes and edges, 

respectively. Dynamic slicing is then performed, merging the 

results with information from the influence graph. Only the 

impacted methods that are located in the influence graph with 

the same type of relation,as inferred by the dynamic slices, are 

counted. 

Mohammad [32] attempted to improve understanding of 

CIAs. Program slicing and traceability links assist in 

obtaining the impacts within a system. The CATIA tool 

developed by [33] served as the basis for her work. To support 

impact analysis, her work involved visualizing program 

dependencies and traceability links, which are used to track 

the changes across different entities of the program. A graph 

view for impacted elements was used by the author to enhance 

the tool. 

According to [34],the executed statements have a control 

dependency. [35]later identified the control flow analysis as 

calling dependencies, logical decisions, and complexity of 

structure.  

Dynamic function coupling (DFC) was introduced by 

(Besz´edes, Gergely et al. 2007). This method involves 

studying the relations of two functions to determine whether 

one affects the other. To find these relations, the distance 

between the call levels is computed. The approach uses 

forward and backward EA relations. The DFC values are 

derived from a dynamic call tree, which includes method 

entry and method exit proceedings. Function pairs that were 

selected according to the DFC measure are considered to be 

impacted by a change in one of the functions. 

To compute the impact of a method change, Gupta et al. 

[36]proposed a new dynamic algorithm to trace the impact of 

a change on other program variables. Tracing impacts relies 

on the dependencies among program entities. The type, usage, 

and scope of the data dependency help in distinguishing 

among dependencies. A control flow graph (CFG) of the 

program, which consists of nodes and edges, is built. Given 
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that different types of dependencies exist between the nodes, 

the directly and indirectly impacted entities can be identified. 

Direct impacts can be computed when all the usage traces of 

the changed node are collected, whereas indirect impacts can 

be computed when the collected direct sets are analyzed and 

inspected according to their dependency. 

Gupta et al. expanded their work one year later, classifying 

changes into functional, logical, structural, and behavioral to 

improve impact detection. Functional changes are the 

statements that affect functions, whereas logical changes refer 

to control-flow changes. Structural changes focus mainly on 

adding or deleting code entities, and behavioral changes focus 

on changes in execution order, such as changes in program 

entry and exit. In the proposed algorithm, the original and 

modified versions of the program are analyzed to verify 

whether any difference exists. Such differences are then stored 

in a database. Functional impacts are calculated using a 

classification algorithm. Furthermore, to calculate all logical 

changes, the statements in the CFG are analyzed. The changes 

that are dependent on the statements are printed out and added 

to the impact set. Finally, the structural changes are 

determined when all added or removed statements of the 

original code have been classified. To calculate the behavioral 

changes, the statements that cause the behavioral changes in 

the original program are added to the impact set. 

4.J-via AND CASE STUDIES   
Regarding given related works, dynamic change 

impact analysis (CIA) is a great leverage to identify the 

potential consequences of software evolution, as well as the 

impacted modules or functions. In order to do so, a prototype 

named J-via is implemented. The implemented prototype is in 

java language and is able to dynamically record all trace trails 

on runtime from statement level, and finally visualize the 

logged files. Structure for J-via is given into Figure 3.  
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Figure 3: J-via Structure  

The recorded trace trails among an execution are categorized 

into six groups (e.g., method call, method execution, 

constructor call, constructor execution, field get, and field set. 

(Note: since the focus for this study is following the 

consequence of change. Therefore, from defining of syntax 

and semantic for each function is waived). 

4.1 case studies  
From section 2, success in selective regression 

testing requires knowing the potential consequences of 

software evolution, as well as the impacted modules/ 

functions. In order to do so, results from running two versions 

of abbot (i.e., abbot 1.0.1. and abbot 1.2.0) integrated with J-

via were studied. Abbot versions(1.0.1) and (1.2.0) are pure 

Java applications, each consisting of more than 18 classes, and 

nine packages. Abbot is originally designed for GUI–

component testing in java. In order to do following the 

consequence of changes, both versions of abbot were 

examined using similar test cases (i.e,, 

ArrowButtonTest.java).  J-via recorded all the interactions and 

reported all the consequences of the changes in both versions, 

as well as the impacted modules/functions. 

5. RESULTS  
The results were obtained from running both 

versions of abbot integrated with J-via in Eclipse (3.2) 

environment using Windows 7 Ultimate (32 bit) operating 

system on an AMD processor (1.3 GHz). The summary of the 

results from running both versions of abbot with same test 

case (e.g., ArrowButtonTest.java) are given in below figures.   
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(f) 

Figure 4: Consequential Images for affected parts by change on Run the ArrowButtonTest.java Integrated with J-via on Both 

Versions of Abbot; (a) Comparing Nodes With Number 50; (b) Comparing Node with Number 70; (c) Comparing Node 

Number 342; (d) Comparing Nodes with Number 349; (e) Comparing Nodes with Number 536; (f) Comparing Nodes with 

Number 615 

The above given figures are some random chosen modules out 

of 616 interactions of Abbot 1.0.1 and 1313 recorded 

interactions from Abbot 1.2.0. Figure 4(a) shows the 

comparison of nodes with number  50 in both versions of 

abbot on run ArrowButtonTest.java, given figure indicates 

that the desire function (e.g., String. equals())  didn’t affect by 

change. Furthermore, along with execution Figure 4(b) 

specifies that any function didn’t affect by change. However, 

unlike previous nodes, the node with number 342 is different 

(see Figure 4(c)). The left picture shows that in  Abbot 1.0.1 

the node 342 is a “method-cal”  named “MousEvent.getID” 

while right figure is indicating that the node 342 in Abbot 

1.2.0 is a “method-execution” named 

“ArrowButton.ArrowRoller.run()”.Figure 4(d) shows that the 

path of execution is back to normal and nodes with number 

349 in both Abbot versions are not affected by change. Right 

and left figures of Figure 4(d) show that the node number 349 

in both versions of Abbot  (i.e., 1.0.1, and 1.2.0) are “mthod-

call” named “ArrowButton.getRoller()”. Furthermore, Figure 

4(e)(f), are showing another parts in both versions of abbot 

that are affected by change.  Left figure from Figure 4(e) 

shows the node number 536 from Abbot 1.0.1 is a 

“constructor-call” named “ActionEvent()”, while right figure 

indicating  that node number 536 in Abbot 1.2.0 is “method-
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execution” named “ArrowButton.ProcessMouseEvent()”. In 

end, comparison of Figures 4(a) to 4(f) shows the ability of 

following the consequence of change visually in J-via. This 

property of J-via can be considered a good option to address 

the issue of selective retest in regression testing. Furthermore, 

the summarized results for affected classes, and number of 

interactions in both versions of abbot on run 

ArrowButtonTest.java is given into Table 1.  

 

Table 1. The Summarized J-via Results for  RunningArrowButtonTest.java in Both Versions of Abbot 

Abbot Version 1.0.1 1.2.0 

Affected Classes ArrowButtonTest.java 

ArrowButton.java 

abbot.tester.ComponentTester 

ArrowButton.java 

ArrowButtonTest.java 

abbot.tester.ComponentTester 

ArrowButton$ArrowRoller 

ArrowButtonTest$1 

Number of Test Cases 

 

2 2 

Number of Interactions 616 1133 

 

Table 1 illustrates the summarized results of J-via from 

running ArrowButtonTester.java into both version of abbot 

(e.g., 1.0.1, and 1.2.0). In given table the results for affected 

classes are given. These results can be used in selective testing 

to show which parts needed to be re-test.    

6. CONCLUSION AND FUTURE 

WORK 
This research was aimed at define a new approach 

for dynamic change impact analysis (CIA) and visualization 

support for selective regression testing. As regards the argued 

problem definition in section 2.0, the identification of the 

consequences of change to find the impacted 

modules/functions provides good leverage for supporting the 

selective-retest approach over the retest-all approach to 

address some issues (i.e., rework and expensiveness).  In order 

to do so, a prototype named J-via to support for selective 

regression testing by browsing among the consequences of 

changes to identify the affected functions/modules is 

developed and evaluated.  

6.1 Future Work 
J-via was shown to have the capacity to support 

selective re-testing, which is a type of regression testing. In 

the given example for regression testing, each version of the 

program must be separately run before comparisons of the 

obtained results are made. However, the implementation of an 

additional functionality for J-via can help in rendering a 

differentiation of two versions of a program and in returning 

the impacted parts for same execution path automatically. 
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