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Power Summation- A Computer Dimension 

 

ABSTRACT 

Series which can be quite enigmatic and mesmerizing is dealt 

with a different prospective in this paper. Power summation of 

a series will be encountered in a different light with a touch of 

computer. A computer program is made and discussed 

through series power summation.  

1. INTRODUCTION 
A series is a summation of the terms of a sequence, which is 

an ordered set of numbers that most often follows some rule 

or pattern to determine next term in the order. The Greek 

letter sigma ∑ is used to represent the summation of terms of 

a sequence of numbers. Series are typically written in the 

following form : 
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Where index of summation, i takes consecutive integer values 

from the lower limit, 1 to upper limit ,n. 

A finite series is a summation of a finite number of terms. An 

infinite series has an infinite number of terms and an upper 

limit of infinity. 

There are two main types of sequences. An arithmetic 

sequence is one in which successive terms differ by same 

amount, as (3, 6 , 9, 12,… ). A geometric series is one in 

which quotient of any two successive terms is a constant, as 

(3, 9, 27, 81, ……). Similarly, there are also arithmetic and 

geometric series, which are simply summations of arithmetic 

and geometric sequences, respectively. 

Sum of first natural numbers is  
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Sum of squares of first n natural number is   
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And similarly with powers 3, 4, 5………….up to 10 is 

summarized in the table.  

Table 1. Summation [2] 
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Summation Expansion Equivalent Value 
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It’s very difficult to predict the equivalent value as summation 

is not following some pattern. To overcome this difficulty we 

are writing the summation in a different way. 
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 Similarly           
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-------------------------------------------------------------------------

------------------------------------------------------------------------ 

Generalizing 
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 To find    rn  one has to know   1rn     

So one cannot directly calculate power summation of a series, 

to do this we need to apply a computer program to execute the 

required series.  

    Algorithm  

                Sum-series: 

1. Begin 

2. sum=0, sign =1 

3. Read n, r 

4. for i = 1 to n do step  5,6 

5. sum = sum + sign * pow(i,r) 

6. sign= sign * -1 

7. Print  sum 

8. End submission 

FLOWCHART 
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PROGAM 

 

#include <stdio.h> 

#include <conio.h> 

#include <math.h> 

 

Void main () 

{ 

int n, r; 

int sum = 0; 

int i; 

int sign=1; 

READ n,r 

   Sum = 0 
   Sign =1  
    i=1 
 

 

 

 

Sum = sum + sign*pow (i, r ) 

Sign=sign*-1 

       Is     
   i <= n 

Print sum 

          END  

START 

i= i+1 

yes 
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printf(“Enter the value of n:”); 

scanf(“%d”, &n); 

printf(“Enter the value of r:”); 

scanf(“%d”, & r); 

for(i+1;i< =n;i++) 

{ 

Sum=sum+ sign* pow (i,r); 

sign = sign * -1; 

} 

printf(“\n Required sum of the series is %d”,sum); 

getch(); 

} 

 

Since general equation is 
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Putting r = 5 

Program generates 
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And for r= 9 than 

Program generates                     
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Similarly putting r = 1 to 10 we can easily generate above 

table. 

2. Conclusion 
As we can see from above table and general equation, to find 

summation of cubes of n, one need to know summation of 

squares of n. But with the help of computer program it 

become easy for us to calculate the required result. Computer 

method is quite simple, effective and finally less time 

consuming.  Further work can be done where one does not 

need help of system to find the required result. Power 

Summation becomes easy and understandable as one uses 

computer. This study will be very helpful for researchers and 

intellectuals to easy understanding and practicing of power 

summation in the field of computer science and technology. 
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