
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.18, November 2012

6

Artificial Neural Network for Performance Modeling

and Optimization of CMOS Analog Circuits

Mriganka Chakraborty

Assistant Professor
Department Of Computer Science & Engineering, Seacom Engineering College

West Bengal, India.

ABSTRACT

This paper presents an implementation of multilayer feed

forward neural networks (NN) to optimize CMOS analog

circuits. For modeling and design recently neural network

computational modules have got acceptance as an unorthodox

and useful tool. To achieve high performance of active or

passive circuit component neural network can be trained

accordingly. A well trained neural network can produce more

accurate outcome depending on its learning capability. Neural

network model can replace empirical modeling solutions

limited by range and accuracy.[2] Neural network models are

easy to obtain for new circuits or devices which can replace

analytical methods. Numerical modeling methods can also be

replaced by neural network model due to their

computationally expansive behavior.[2][10][20]. The pro-

posed implementation is aimed at reducing resource

requirement, without much compromise on the speed. The NN

ensures proper functioning by assigning the appropriate

inputs, weights, biases, and excitation function of the layer

that is currently being computed. The concept used is shown

to be very effective in reducing resource requirements and

enhancing speed.

Keywords

Artificial Neural Network, CMOS, Analog Circuit

Optimization.

1. INTRODUCTION
Neural networks, are also known as artificial neutral network

(ANN’s), are information processing system with their design

inspired by the studies of the ability of the human brain to

learn from observations and to generalize by abstraction.[2]

The fact that neural network can be trained to learn any

arbitrary nonlinear input/output relationships from

corresponding data and the acquired knowledge has resulted

in their use in a number of areas such as pattern recognition,

speech processing,[2][4] control, bio medical engineering, RF

and microwave etc. recently, (ANNs) have been applied to

CMOS analog circuit design and optimization problems as

well. Neural networks are first trained to model the electrical

behavior of passive and active components/ circuits.[2][7]

These trained neural networks, often referred to as neural-

network models, can then be used in high level simulation and

design, providing first and accurate answers to the task they

have learnt by acquiring the knowledge from their training.

Neural networks are effective and efficient alternatives to

conventional method such as numerical modeling methods,

which could be highly computationally expensive, or

analytical methods which could be difficult to obtain for

newly achived devices, or empirical modeling solutions due to

huge range and limited accuracy.[2][6] Neural network

techniques have been used for a very wide variety of

applications and modeling methods.[5] An analog system is

typically characterized by a set of performance parameters

used to succinctly quantify the properties of the circuit given

fixed topology; circuit synthesis is the process of determining

numerical values for all components in the circuit such that

the circuit conforms to a set of performance constraints. Due

to the high degree of nonlinearity and interdependence among

design variables, manual design of an analog circuit is often

reduced to a process of trial and error in which the solution

space is searched in an ad hoc manner for a circuit satisfying

all constraints.[7] The numerical circuit simulator SPICE is

often used as a bench mark of comparison to determine the

relative accuracy of alternative schemes for evaluating the

performance of analog circuits. However the computational

requirements of running SPICE limit its use when attempting

to evaluate a circuit’s performance parameters during circuit

synthesis. Stochastic combinatorial optimization methods

require the computation of performance parameters for a large

number of circuit sizing alternatives[6]. It is therefore

beneficial to reduce the time associated with generating

performance estimates. Neural network models are used to

provide robust and accurate estimates of performance

parameters for several CMOS analog circuits[18][19][20]. A

neural network of sufficient size can estimate functional

mappings to an arbitrary precision given a finite discrete set of

training data. Hyper dimensional non-linear functions are

readily modeled using neural networks. Neural networks can

also easily incorporate knowledge of system behavior. Course

functional models can be embedded in the network structure

reducing the functional complexity that must be mapped by

the network. These often results in a smaller network size and

reduction in training effort.[9] Once trained with a particular

functional mapping, the evaluation time of a neural model is

very fast. However training algorithms can help reduce the

interaction needed to determine and appropriate network size.

The evaluation time for the neural models is much less than

that required by a full SPICE simulation, the models can be

incorporated into a circuit synthesis algorithm used to

optimize a fitness function based on performance parameter

constraints. Neural networks have recently gained attention as

a fast, accurate and flexible tool to modeling, simulation and

design. Each time a new network is trained, or an old network

is retrained, the shape of the function described by the neural

model changes, complicating the issue of where to place

additional sample points.[15] The neural network models

provide a great deal of time savings in situations where a

fixed topology must be reused and re-synthesized many times

which is the primary target for modeling and synthesis of

analog circuits using neural network models.[10]

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.18, November 2012

7

Fig 1: Multi layer perception neural network with input

layer and multiple hidden layers.

2. METHEDOLOGY

2.1 Problem formulation and input data

processing

 2.1.1 Inputs and outputs of Neural Network

The first step for developing a neural network model is the

identification of proper inputs and outputs parameters. The

output parameters are determined based on the purpose and

the functionality of the neural network model. Other factors

influencing the type of outputs parameters are 1) ease of data

generation, 2) ease of incorporation of the neural model into

circuit simulators, etc.. Neural model input parameters are

those device/circuits parameters that affect the output

parameter values accordingly. Input parameters can be

selected depending on various kind of function which can

involve neural network model for achieving more accurate

output at a higher speed.

2.1.2 Range of input data with sample distribution

The next thing is to define the specific range of data to be

used in ANN model development and the distribution of

samples within that specified range. Training data is sampled

slightly beyond the model utilization range as a measure to

ensure reliability of the neural model at the boundaries of

model utilization range. Once the range of input parameters is

defined, a sampling distribution needs to be chosen.

Commonly used sample distributions include uniform grid

distribution, non-uniform grid distribution, design of

experiment methodology, star distribution and random

distribution process. In uniform and non-uniform grid

distribution, each input parameter is sampled at equal and

unequal intervals accordingly. This is useful when the

problem behavior is highly non-linear in certain regions and

sub regions of the space and dense sampling is needed in such

regions and sub regions. Sample distribution base on design of

experiment and star distribution are used in situations where

training data generation is highly expensive.

2.1.3 Generating input data

Sample pairs are then generated using either by simulation

software or by measurement setup. The generated dataset

could be used for training the neural network and testing the

resulting neural network model. In practice, both simulations

and measurements setup could generate small errors. While

errors in simulation could be due to truncation or round off or

non-convergence, errors in measurement could be due to

equipment limitations or tolerance limits. Data generation is

defined as the use of simulation or measurement to obtain

sample pairs.[2][16] The total number of samples is chosen

such that the developed neural network model best represents

the given problem. A general guideline is to generate larger

number of samples for a nonlinear high-dimensional problem

and fewer samples for a relatively smooth low dimensional

problem due to accuracy measure.

 2.1.4 Input data organization and processing

The generated sample pairs could be divided into three sets,

namely, training data set, validation data set and test data set.

Training data is used to guide the training process i.e. to

update the neural network weight parameters during training

and to acquire required knowledge for the provided problem.

Validation data is used to monitor the quality of the neural

network model during training and to determine stop criteria

for the training process of the neural network model.[2][22]

Test data is used to independently examine the final quality of

the trained neural network model in terms of accuracy and

generalization capability and processing speed. Contrary to

binary data in pattern recognition applications, the orders of

magnitude of various inputs and outputs parameter values can

be very much different from one another.[2] As such, a

systematic preprocessing and biasness removal of training

data called scaling is mostly desirable for efficient neural

network training program.

2.2 Training of Neural Network

2.2.1 Initialization of weight parameters

Preparing the neural network for training process. The neural

network weight parameters are initialized so as to provide a

good starting point for training process. The widely used

strategy for MLP weight initialization is to initialize the

weights with small range of random values. Another method

suggest that the range of random weights be in aversely

proportional to the square root of number of stimuli a neuron

receives on average rate.[2] To improve the convergence of

training method, one can use a variety of distributions and/or

different ranges and different variance for the random number

generators used in initialization process of the ANN weights.

2.2.2 Creation of training process

The most important step in neural model development is the

neural network training process as it provides the knowledge

for future performance of the neural network model for

specific applications. The training data consists of sample

pairs and some vectors representing the inputs and expected

outputs of the neural network model. The neural network

training process can be categorized into batch mode training

and sample by sample training. In sample by sample training,

also called online training. In batch mode training, also known

as offline training, weight and epoch is define as a stage of the

training process that involves presentation of all the training

data to the neural network once.[2][9][21]

2.2.3 Error computation

The error of the neural network can be determined after

training and simulation with the provided data set. The

difference between actual data and simulated test data is

divided by the total number of dataset to get the error margin

of the network. Mean square error can also be calculated for

the neural network model. The desired type of error for

different type of function can be easily achived from the

neural network model.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.18, November 2012

8

2.3 Implementation of Neural Network

Model
First it is needed to select a development environment where

the neural model should be developed and implemented.

Therefore MATLAB is being selected to design and develop

the required neural network model. The neural network is

developed by generating proper program code it the

MATLAB console and then decorated with proper algorithms

and required problem definitions. Multi layer perception

Neural Network model has been created for more accuracy

with more numbers of hidden layers for quality measure.

Fig 2: Pictorial view of neural network training and

testing.

2.3.1 Working with general function

The next step is to supplying proper data to the neural

network in order to a particular problem set. First the problem

definition is inserted in the program code for formulation of

learning process. Here a simple a general equation is used as

the problem set i.e. [out=a.*(x).^2+b.*(x).*(y)+c.*(y).^2].

This equation can be described as follows :

S = ax2 + 2bxy + cy2

Where S is the calculated sum of the equation and a, b, c are

the constant terms. Here the neural network input layer is

having two inputs x and y which is a collection of data set

randomly created by the program code. But it is necessary to

map the proper index of those input data sets with one another

after properly shuffling the data set in a coherent orderly

manner to remove the complete biasness of the data set. Here

input sets x and y are randomly shuffled maintaining proper

index mapping and to remove the data redundancy [21].

The next approach is to select the training and testing data sets

from the given data sets. The 80 percent of the total data set is

taken as the training dataset and rest of it as the test data set

by trimming the whole data set into two different portion

maintaining the proper index mapping. With the training data

set the neural network is trained and with the test data set the

performance evaluation of the neural network is being

processed.

The next step was to train the developed neural network with

the provided training data set. The minimum and the

maximum value is processed from the provided training

dataset for defining the minimum and maximum value of the

neural network while training for better performance. Next the

training process is processed by providing proper training

function and parameters for the particular problem set and the

parameters of the neural network is also processed with some

particular parameters i.e. proper algorithm, number of

neurons, number of layers, number of hidden layers etc.. Then

the neural network is initialized with those provided

parameters for iterative estimation and better performance. It

is possible to check the out comes of the neural network

training for reducing the error factor of the network. Choosing

proper algorithm for training optimizes the time of neural

network training which is a crucial factor. Feed Forward Back

Propagation Network is created with Levenberg-Marquardt

algorithm to minimize the training latency. The calculated

CPU time is achieved to identify the performance of the

neural network.

Hence the neural network learned to compute the given

problem with some particular data set and acquired the

knowledge of solving that particular problem using other data

set provided. Next simulation of the neural network with test

data set is processed.

Lastly the calculated error of the neural network is achieved

after neural network simulation. The error E is calculated as:

E = {1/n [
 atdv −stdv

atdv
]} × 100n

i=1

where, atdv is actual test data value and stdv is simulated test

data value, n is the total number of data and i is the number of

iterations. More and more training with training data sets will

improve the accuracy level of the neural network and will

optimize the error.

2.3.2 Working with other standard functions

We have also simulated the neural network with some of the

standard unconstrained test problem functions i.e. Beale

function, Booth function, Bohachevsky function, Easom

function, Hump function.

2.3.2.1 Working with Bohachevsky function-1

First the problem definition is inserted in the program code for

formulation of learning process i.e.

𝐵1 𝑋1 , 𝑋2 = 𝑋1
2 + 2𝑋2

2 − 0.3 cos 3𝜋𝑋1 − 0.4 cos 4𝜋𝑋2 +

0.7 Where B1 is the calculated sum of the equation. Here

the neural network input layer is having two inputs X1 and X2

which is a collection of data set randomly created by the

program code within a given domain i.e. -50≤Xi≤100, where

i=1,2…. But it is necessary to map the proper index of those

input data sets with one another after properly shuffling the

data set in a coherent orderly manner to remove the complete

biasness of the data set. Here input sets X1 and X2 are

randomly shuffled maintaining proper index mapping and to

remove the data redundancy.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.18, November 2012

9

2.3.2.2 Working with Bohachevsky function-2

First the problem definition is inserted in the program code for

formulation of learning process i.e.

𝐵2 𝑋1, 𝑋2 = 𝑋1
2 + 2𝑋2

2 − 0.3 cos 3𝜋𝑋1 0.4 cos 4𝜋𝑋2

+ 0.3

 Where B2 is the calculated sum of the equation. Here the

neural network input layer is having two inputs X1 and X2

which is a collection of data set randomly created by the

program code within a given domain i.e. -50≤Xi≤100, where

i=1,2…. But it is necessary to map the proper index of those

input data sets with one another after properly shuffling the

data set in a coherent orderly manner to remove the complete

biasness of the data set. Here input sets X1 and X2 are

randomly shuffled maintaining proper index mapping and to

remove the data redundancy.

2.3.2.3 Working with Beale function

First the problem definition is inserted in the program code for

formulation of learning process i.e.

𝐵𝐿 𝑋 =

 1.5 − 𝑋1 + 𝑋1𝑋2
2+ 2.25 − 𝑋1 + 𝑋1𝑋2

2 2+ 2.625 − 𝑋1 +

𝑋1𝑋2
3 2

 Where BL is the calculated sum of the equation. Here the

neural network input layer is having two inputs X1 and X2

which is a collection of data set randomly created by the

program code within a given domain i.e. -4.5≤Xi≤4.5, where

i=1,2…. But it is necessary to map the proper index of those

input data sets with one another after properly shuffling the

data set in a coherent orderly manner to remove the complete

biasness of the data set. Here input sets X1 and X2 are

randomly shuffled maintaining proper index mapping and to

remove the data redundancy.

2.3.2.4 Working with Booth function

First the problem definition is inserted in the program code for

formulation of learning process i.e

𝐵𝑂 𝑋 = 𝑋1 + 2𝑋2 − 7 2+ 2𝑋1 + 𝑋2 − 5 2

 Where BO is the calculated sum of the equation. Here the

neural network input layer is having two inputs X1 and X2

which is a collection of data set randomly created by the

program code within a given domain i.e. -4.5≤Xi≤4.5, where

i=1,2…. But it is necessary to map the proper index of those

input data sets with one another after properly shuffling the

data set in a coherent orderly manner to remove the complete

biasness of the data set. Here input sets X1 and X2 are

randomly shuffled maintaining proper index mapping and to

remove the data redundancy.

2.3.2.5 Working with Easom function

First the problem definition is inserted in the program code for

formulation of learning process i.e.

𝐸𝑆 𝑋1, 𝑋2 = 𝑋1
2 + 𝑋2

2 − cos 18𝑋1 − cos 18𝑋2

 Where ES is the calculated sum of the equation. Here the

neural network input layer is having two inputs X1 and X2

which is a collection of data set randomly created by the

program code within a given domain i.e. -1≤Xi≤1, where

i=1,2…. But it is necessary to map the proper index of those

input data sets with one another after properly shuffling the

data set in a coherent orderly manner to remove the complete

biasness of the data set. Here input sets X1 and X2 are

randomly shuffled maintaining proper index mapping and to

remove the data redundancy.

2.3.2.6 Working with Hump function

First the problem definition is inserted in the program code for

formulation of learning process i.e.

𝐻𝑀 𝑋 = 4𝑋1
2 − 2.1𝑋1

4 + 0.33𝑋1
6 + 𝑋1𝑋2 − 4𝑋2

2 + 4𝑋2
4

Where HM is the calculated sum of the equation. Here the

neural network input layer is having two inputs X1 and X2

which is a collection of data set randomly created by the

program code within a given domain i.e. -5≤Xi≤5, where

i=1,2…. But it is necessary to map the proper index of those

input data sets with one another after properly shuffling the

data set in a coherent orderly manner to remove the complete

biasness of the data set. Here input sets X1 and X2 are

randomly shuffled maintaining proper index mapping and to

remove the data redundancy.

2.3.3 Working with analog circuit function

An analog circuit is developed in spice circuit editor having

the equation

𝐼𝐷 = 𝛫 `𝜔/2𝐿 𝑉𝐺𝑆 − 𝑉𝑇𝐻 2 1 + 𝜆𝑉𝐷𝑆

Where ID Drain Current, ω is the effective channel width, L is

the effective channel length, K’ is the trans conductance

parameter, VGS is the gate to source voltage, VTH is the

threshold voltage, VDS is the drain to source voltage and λ is

the channel length modulation parameter of a MOS device.

Here in linear region for different values of VGS and VDS there

will be various values of ID .So for different values of VGS i.e.

when VGS =0,1,2,3 there will be different values of VGS and ID

which are retrieved from a spice synthesis report. Then the

data chart is inserted into the code for training of neural

network. After the training of the neural model it is then

simulated with some data and it generated some value which

is then compared with the actual spice data report and error is

hence calculated.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.18, November 2012

10

First the problem definition is inserted in the program code for

formulation of learning process.

𝐼𝐷 = 𝛫 `𝜔/2𝐿 𝑉𝐺𝑆 − 𝑉𝑇𝐻 2 1 + 𝜆𝑉𝐷𝑆

 Where ID is the calculated sum of the equation. Here the

neural network input layer is having two inputs VGS and VTH

which is a collection of data set randomly selected from the

spice output sheet. But it is necessary to map the proper index

of those input data sets with one another after properly

shuffling the data set in a coherent orderly manner to remove

the complete biasness of the data set. Here input sets VGS and

VTH are randomly shuffled maintaining proper index mapping

and to remove the data redundancy.

3. EXPERIMENT RESULTS

Table-1: Error and Time Calculation of ANN model For

different functions.

Function Type Neural Network

Error

Time Taken

(Seconds)

General Function

(Lower number of neurons)

0.59167% 15.67

General Function

(Higher number of neurons)

0.52124% 1050.90

Bohachevsky Function-1 4.6018% 134.82

Bohachevsky Function-2 0.67286% 144.92

Hump Function 5.0895% 177.56

Beale Function

2.2085%

179.28

Booth Function 0.65626% 171.67

Analog Circuit Funcion-1 0.19039% 9.56

Analog Circuit Funcion-2 0.33277% 4.06

Analog Circuit Funcion-3 0.060012% 3.76

The data generation process for different functions are

considered for 500 sample set. Each sample set containing

400 training data set and 100 test date set. Analog circuit

function is considered for 3 times with different

configurations of voltage and current with different range

basically extracted from spice circuit synthesis.

Fig 3: Neural network output for Bohachevsky function-1.

Fig 4: Neural network output for Bohachevsky function-2.

Fig 5: Neural network output for Easom function.

Fig 6: Neural network output for Hump function.

Fig 7: Neural network output for Beale function.

Fig 8: Neural network output for Booth function.

-1.5

-1

-0.5

0

0.5

1

1.5

1 6 11 16 21 26 31 36

Actual

Simulated

-2

-1

0

1

2

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Actual Simulated

-2

-1

0

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Actual value Simulated Value

-2

-1

0

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Actual Simulated

-2

-1

0

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Actual Simulatd

-1.5

-1

-0.5

0

0.5

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Actual Simulated

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.18, November 2012

11

Fig 9: Neural network output for Analog circuit function.

Fig 10: Spice circuit diagram of an inverter

Fig 11: Current voltage characteristics curve of a typical

inverter circuit extracted from spice synthesis.

Fig 12: Regression plot of ANN over analog circuit

function.

Fig 13: Performance plot of ANN over analog circuit

function.

4. CONCLUSION
Increasing the number of hidden layers of neurons without

effecting the speed factor can better the performance of the

neural network. Reducing the mean square error can optimize

the error. Synchronizing the network with much more

learning rate can lead to more better performance. Handling

the network with more data set, speed up and efficiency for

much better performance.

Neural network modeling of analog circuit performance

parameters proved to be an effective methodology for first

and accurate performance estimation. Generating layout-

aware models is one of the challenging tasks of analog macro

modeling. Layout aware models are based on training data

generated from simulations of circuit models extracted from

layout. The use of better sampling methods to reduce a

number of sample points can removed the drawback of

accurately mapping the behavior of a circuit. Although a large

number of simulations are required to capture the behavior of

the performance characteristic of a circuit, the effort is

justifiable when considering the reusability of the models.

Performing on a particular experiment using SPICE would

require much more timing evaluations where as the execution

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10

actual value simulated value

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.18, November 2012

12

time of the same experiment using neural network provides a

great deal of time savings in situations where a fixed topology

must be reused and re-synthesized many times. The neural

network models are also robust. Numerical stability in SPICE

and other circuit simulators can prohibit the acquisition of

performance parameters for some of the circuit configurations

in the sample space. The ANN model can give estimate of

values that the simulator failed to provide. However there are

never any guarantees of absolute accuracy when

approximating unknown functions. Use of a sufficiently large

validation data set helps insure accuracy for most of the points

in the input space. So neural networks have currently gained

attention as a fast, accurate, reusable and flexible tool for

analog circuit modeling simulation and design.

5. ACKNOWLEDGMENT
The author thanks Dr. Rajib Chakraborty of the Department of

Applied Optics and Photonics, University of Calcutta,

Kolkata, West Bengal, India and Dr. Soumya Pandit of the

department of Radio Physics and Electronics, University of

Calcutta, Kolkata, West Bengal, India for their continuous

support throughout the research work.

6. REFERENCES
[1] Neural Networks – A Comprehensive Foundation Simon

Haykin.

[2] ANN for RF and Microwave Design-From theory to

practice Q.J. Ziang and K.C. Gupta.

[3] B. Hassinbi, D. G. Stork, and G. J. Wolff, “Optimal brain

surgeon and general network pruning,” in Proc. IEEE Int.

Joint Conf. Neural Netw., 1992, vol. 2, pp. 441–444.

[4] B. Widrow and R. Winter, “Neural nets for adaptive

filtering and adap¬tive pattern recognition,” Computer,

vol. 21, no. 3, pp. 25–39, Mar. 1988

[5] K. Fukushima, S. Miyake, and T. Ito, “Neocognitron: A

neural network model for a mechanism of visual pattern

recognition,” IEEE Trans. Syst., Man, Cybern. , vol.

SMC-13, no. 5, pp. 826–834, 1983

[6] S. Grossberg, E. Mingolla, and D. Todorovic, “A neural

network archi¬tecture for preattentive vision,” IEEE

Trans. Biomed. Eng., vol. 36, no. 1, pp. 65–84, Jan. 1989

[7] L. M. Reyneri, “Implementation issues of neuro-fuzzy

hardware: Going towards HW/SW codesign,” IEEE

Trans. Neural Netw., vol. 14, no. 1, pp. 176–194, Jan.

2003.

[8] M. Cristea and A. Dinu, “A new neural network

approach to induction motor speed control,” in Proc.

IEEE Power Electron. Specialist Conf., 2001, vol. 2, pp.

784–788.

[9] Y. J. Chen and D. Plessis, “Neural network

implementation on a FPGA,” in Proc. IEEE Africon

Conf., 2002, vol. 1, pp. 337–342

[10] M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini, “Fast

neural net-works without multipliers,” IEEE Trans.

Neural Netw., vol. 4, no. 1, pp. 53–62, Jan. 1993

[11] B. Noory and V. Groza, “A reconfigurable approach to

hardware im-plementation of neural networks,” in Can.

Conf. Electr. Comput. Eng., 2003, pp. 1861–1863

[12] J. Zhu, G. J. Milne, and B. K. Gunther, “Towards an

FPGA based re-configurable computing environment for

neural network implementa-tions,” Inst. Elect. Eng. Proc.

Artif. Neural Netw., vol. 2, no. 470, pp. 661–666, Sep.

1999.

[13] R. H. Turner and R. F. Woods, “Highly efficient limited

range mul-tipliers for LUT-based FPGA architectures,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.

15, no. 10, pp. 1113–1117, Oct. 2004.

[14] K. M. Hornick, M. Stinchcombe, and H. white,

“Multilayer feedfor-ward neural networks are universal

approximators,” Neural Netw., vol. 2, no. 5, pp. 141–

154, 1985

[15] P. Vas, Sensorless Vector and Direct Torque Control.

Oxford, U.K.: Oxford Univ. Press, 1998.

[16] V. Vapnik, Statistical Learning Theory. New York:

Wiley, 1998.

[17] C. Bishop, Neural Networks for Pattern Recognition.

Oxford, U.K.: Oxford Univ. Press, 1995

[18] F. L. P. Na, F. Bellas, R. Duro, and M. S. Simon, “Using

adaptive artificial neural networks for reconstructing

irregularly sampled laser doppler velocimetry signals,”

IEEE Trans. Instrum. Meas., vol. 55, no. 3, pp. 916–922,

Jun. 2006

[19] C. Lin, “Training nu-support vector regression: Theory

and algo-rithms,” Neural Computation, vol. 14, pp.

1959–1977, 2002.

[20] M. Sorensen, “Functional consequences of model

complexity in hy-brid neural-microelectronic systems,”

Ph.D. dissertation, Georgia Inst. Technol., Atlanta, 2005.

[21] M. L. Hines and N. T. Carnevale, “The NEURON

simulation environ-ment,” Neural Comp., vol. 9, no. 6,

pp. 1179–1209, 1997.

[22] CMOS Analog Circuit Design – Phillip E. Allen,

Douglas R. Holberg.

7. AUTHORS PROFILE

Mriganka Chakraborty was born on 11th October 1984 in

Kolkata, West Bengal, India. He has received the B.Tech

degree in computer science & engineering and M.Tech degree

in vlsi & microelectronics from West Bengal University of

Technology, Kolkata, West Bengal, India in 2006 and 2009

respectively. He is currently an Asst. Professor with the

department of Computer Science & Engineering in Seacom

Engineering College, Howrah, West Bengal, India. His

research interests includes ANN, VLSI circuit design,

Network On Chip, Physical VLSI Design techniques.

