
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.13, November 2012

38

Critical Analysis of Traditional Size Estimation Metrics

for Object Oriented Programming

Meenakshi Kandpal

M.Tech (Computer Science)
Uttarakhand Technical University, India

Anmol Kandpal
 Assistant Manager

Projects & Technical Department, NALCO, India

ABSTRACT

The accuracy of an estimate is always questionable. Lots of

efforts have been put to make an estimate more accurate. In

case of a software project, the accuracy of estimate is

dependent on the correctness of size estimation. Size is a

critical factor in determining cost, schedule, and effort. Poor

size estimation may lead to budget overruns and late

deliveries, which decreases the confidence of customer and

erodes the image of developer. Traditional size estimation

methods generally used are source lines-of-code, function

point, object points etc. However, traditional size metrics have

limitations and are not compatible with newer rapid

prototyping and object-oriented approaches of software

development. This paper critically analyzes the lacunas of

traditional methods and introduces Object oriented metrics for

effective size estimation for Object Oriented Software.

General Terms

Traditional Software Metric, Object Oriented Metric, size,

attributes.

1. INTRODUCTION
Estimation is one of the most important activities that is done

in the preliminary stages of software development. Software

size plays a crucial role in this process as it forms the base for

deriving number of metrics used to measure various aspects of

the software, throughout the development cycle of a software

product. Properties of any software product can be quantified

in terms of internal and external attributes [14]. The properties

which can be measured in terms of the product itself, i.e.

independent from its behavior are defined as internal

attributes. Examples of internal attributes are structural

properties like size, complexity, cohesion, and coupling.

Whereas, the properties which can be measured with respect

to how the product relates to its environment are termed as

external attributes. Examples of external attributes are

reliability, understandability, and maintainability.

Measuring external attributes directly requires additional

information about the environment, besides the product itself.

Hence, they are hard to quantify and also can be measured

directly only after some time the product is created. Due to

above reason, models has been established for correlating

external attribute measures with the internal attribute ones.

Software size is a type of internal attributes, and has been

used in computing the effort and cost in various cost models

[2, 12]. Thus, size evaluation is one of the main tasks for

planning software project development with reliable cost and

effort estimations.

 Cost associated with developing proposed software

application

 Efforts required of programmers in terms of units of

software produced per unit of project time.

 Time required for the project completion & delivery.

There are various traditional software size metrics like

heuristics based on experience, Line of Code, Function point,

software size, object point etc. used for size estimation.

However, these metrics have major drawbacks when used for

object-oriented approaches of software development. Object-

oriented programming has many useful features, such as

information hiding, encapsulation, inheritance, polymorphism

and dynamic binding. These object-oriented features facilitate

software reuse and component-based development. This paper

analyzes the popular traditional software metrics to identify

the limitations of traditional software size metrics in terms of

various attributes of Software product development and

proposes the OO metrics as an effective alternative measure.

2. TRADITIONAL SIZE METRICS
Various Traditional software size metrics like Line of code,

Function point analysis, Software size, Extension of function

point, Object point etc are used. Among all the methods Line

of Code and function point are the most popular metrics. A

brief description of both the metrics along with their

limitations are as follows:

2.1 Line of Code:
The Line of code is the oldest, simplest and most widely used

metrics for calculation of program size. It counts the ‘Number

of Instructions’ of a program excluding comments and blank

lines in terms of SLOC (Source Lines Of Code). SLOC is a

key input for estimating project effort and is also used to

calculate productivity and other measurements.

Lines of code are programming language dependent. In order

to estimate the LOC, the problem is divided into modules and

these modules are then further into sub modules, this process

continues till the size of leaf- level module is estimated. This

requires a lot of past experience in similar projects. Another

alternative measures for SLOC are KLOC (Thousands of

Lines of Code), KDSI (Thousands of Delivered Source

Instructions), NCLOC (Non-Comment Lines of Code), and

Number of Characters or Number of Bytes.

2.1.1 Limitations of Line of Code

a) Lack of Accountability: The accuracy of Line of code

is very less as it measures the productivity of a

development project with the outcome of only one of

the phases i.e the coding phase.

b) Advent of GUI Tools: With the help of GUI based

languages/tools, which are prominent in the present

software development arena, much of development

work is done by drag-and-drops and a few mouse clicks.

The programmer virtually writes no piece of code, most

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.13, November 2012

39

of the time. Hence, it is impossible to account for the

codes that are automatically generated in this case. This

difference invites huge variations in productivity and

thereby making the Lines of Code more and more

irrelevant in the context of GUI-based languages/tools

c) Lack of Cohesion with Functionality: LOC does not

depend upon the various functions or features of a

software, that means functionality is less correlated with

LOC i.e same functionality may be developed by a

skilled developer with lesser codes, which implies that

more functionality may be exhibited by a program

having less LOC than another similar program. Hence,

LOC is a poor productivity measure of individuals.

d) Early stage development is not possible: It’s very

difficult to estimate LOC at the beginning of a project,

due to lack of information and requirements.

e) Developer’s Experience: Implementation of a specific

logic varies based on the level of experience of the

developer. Hence, number of lines of code differs from

person to person. A certain functionality may be

implemented by an experienced developer in fewer lines

of code than the other having relatively less experience,

though they use the same language.

f) Problem with multiple Languages: The platform of

programming languages is Very vast. Different

languages are used based on the various complexity and

requirements. As a result of this, tracking and reporting

of productivity and defect rates poses a serious problem.

For e.g if we are developing the two applications that

provide the same functionality. One of the applications

is written in C and the other application is written in

java. The LOC required to develop the application

would entirely be different. As well as, the amount of

effort required to develop the application would also

vary to a large extent.

g) Far from Object Oriented Development: In the case

of Object-Oriented development, Line of Code is of no

use as everything is treated in terms of Objects and

classes.

h) Lack of Counting Standards: There is no standard

defined for counting the declarations, statements and

compiler directives of a language in LOC. Different

languages are introduced every year in the software

industry. So it becomes very difficult to calculate LOC

without standardisation.

2.2 Function Point Size Estimates

Function Point Analysis is one of the best methods in

traditional metrics for measuring the size of a software. The

conceptual idea behind the function point metric is that the

size of a software product is directly dependent on the number

of different functions or features it supports. A software

product supporting many features would certainly be of larger

size than a product with less number of features. Function

points represent logical size, as opposed to physical size (like

SLOC or objects).

A graphical representation of functional point analysis is

shown in the figure 1.0.

Figure 1.0 – Graphical Representation of Function Point

Analysis

For calculation of Function point, Unadjusted Function point

and Value Adjustment Factor need to be calculated.

In order to count Total Number of Unadjusted Function Point,

following five categories of functions are proposed by

Albrecht:

i) External Inputs: It consists of all the data entering the

system from external sources and triggering the

processing of data. Individual data items input by the

user are not considered in the calculation of the number

of inputs, but a group of related inputs are considered as

a single input.

ii) External Outputs: It consists of all the data processed

by the system and sent outside the system. Data that is

printed on a screen or sent to a printer including a report,

an error message, and a data file is counted as an external

output. While outputting the number of outputs the

individual data items within a report are not considered,

but a set of related data items is counted as one input

iii) External Inquiries: Number of inquiries is the number

of distinct interactive queries which can be made by the

users. These inquiries are the user commands which

require specific action by the system

iv) External Interfaces: Here the interfaces considered are

the interfaces used to exchange information with other

systems.

v) Internal Files: Each logical file is counted. A logical file

means groups of logically related data. Thus, logical files

can be data structures or physical files.

All the above components are rated as High, Low or Average.

Another most important aspect for calculating the Total

Adjusted Function Points is the value adjustment factor

(VAF). The value adjustment factor (VAF) is based on 14

general system characteristics (GSC's) that rate the general

functionality of the application being counted. Each

characteristic has associated descriptions that help determine

the degrees of influence of the characteristics. The degree of

influence of each of the characteristics can range from zero

(meaning, not present, or has no effect) to five (meaning, a

strong influence throughout) (Table 1.0).

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.13, November 2012

40

Table 1.0 – Degree of Influence

Rating Influence Degree of Influence

0 Not present, or no influence 0

1 Insignificant influence 1

2 Moderate influence 2

3 Average influence 3

4 Significant influence 4

5 Strong influence throughout 5

Total degrees of influence (DI), is sum of the fourteen

General Application characteristics, i.e

Degree of Influence =


14

1i

General Application

Characteristics[i]

Then Value adjustment factor is calculated by following

formula

VAF = 0.65 + 0.01* DI

The VAF is now used to modify the size of the system to give

the overall size in function points by using equation:

Total Adjusted Function Point = UFP* VAF

The above process of calculation is summarized in Table 2.0.

Table 2.0 – Calculation of Function point

Type of Components Complexity of Components

 Low Average High Total

External Inputs _ X 3 = _ X 4 = _ X 6 =

External Outputs _ X 4 = _ X 5 = _ X 7 =

External Inquiries _ X 3 = _ X 4 = _ X 6 =

External Logical Files _ X 7 = _ X 10 = _ X 15 =

External Interface Files _ X 5 = _ X 7 = _ X 10 =

Total Number of Unadjusted Function Points

Multiple Value Adjustment Factor

Total Adjusted Function Points

2.2.1 Limitations of Function Point Analysis

a) Requires Manual Work: Counting process can’t be

automated as Function Points have to be counted

manually.

b) Necessitates Significant Level of Detail: In function

point analysis, lots of details are required to estimate size

of the software. In order to perform FPA accurately,

information on inputs, outputs, screens, database tables,

and even records and fields will be required. Typically

this is not the case with any development project where

the requirements are not clear to this level of detail, in the

beginning.

c) Requires Experience: A fairly well experience is

required for Function Point Analysis. Also it requires

sufficient knowledge of the counting rules, which are

difficult to understand

3 WHY OBJECT ORIENTED METRICS

INTRODUCED?
The recent trend of using Object Oriented practices tend to

rethink the way developers have been estimating the size of

their development projects. Traditional software measurement

techniques have proven unsatisfactory for measuring

productivity and predicting effort. There are many aspects that

an Object Oriented metric must have if it has to provide

accurate effort prediction. Also, it is important to include

information about communication between objects and reuse

through inheritance in the ‘size’ as well.

Unlike traditional metrics, which are based on the data and

procedure model of structured analysis, Object Oriented

metrics are based on the objects and their characteristics. The

limitations of traditional methods, when applied to Object

Oriented solution are that, they tend to measure only one

aspect of the software i.e the functionality. Functionality is

required when effort is need to be predicted. However,

considering only this aspect, particularly in a well-designed

OO solution is not sufficient, as in addition to functionality, a

level of complexity is also added to the software that depends

on the amount of communication between the objects in the

system. Another important aspect of object-oriented size is

reuse through inheritance. A good object-oriented analysis

involves identifying groups of objects (actors) whose

behaviors are similar, number of classes and number of

methods.

The primary objectives for Object Oriented metrics are no

different than those for metrics derived for conventional

software and aims at:

• To better understand the quality of the product

• To assess the effectiveness of the process

• To improve the quality of work performed at a project level

Various object oriented metrics have been proposed in

literature. Out of these, the metrics proposed by Abreau [3, 4],

J. Bansiya et al. [5], Briand et al. [6], Chidamber and Kemerer

[7], Lorenz et al.[8], W. Li et al. [18, 19] are mostly referred.

The metrics which is mostly referenced by researchers is

proposed by Chidamber and Kemerer (CK) [7]. They had

defined six metrics which are as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.13, November 2012

41

a) Weighted Methods per Class (WMC),

b) Response sets for Class (RFC),

c) Lack of Cohesion in Methods (LCOM),

d) Coupling Between Object Classes (CBO),

e) Depth of Inheritance Tree of a class (DIT) and

f) Number of Children of a class (NOC).

The theoretical validation of CK metrics is given by [20].

Also CK metrics have been validated by several experimental

studies for e.g. (12, 15 and 16).

The metrics defined by Lorenz et al. [8] is to measure the

static characteristics of software design. These metrics are

divided in the categories of class size, class inheritance and

class internal. Counts of attributes & operations are the main

focus of Size-oriented metrics for the object-oriented classes.

Inheritance-oriented metrics focus on the manner in which

operations are reused in hierarchy class and the internal class-

oriented metrics look at cohesion and code-oriented issues.

The MOOD metric, proposed by Abreu [3], is used to

measure the various features of object-oriented design

methods such as Inheritance- MIF (Method Inheritance

Factor), AIF (Attribute Inheritance Factor)) information

hiding- MHF (Method Hiding Factor), AHF (Attribute Hiding

Factor)\polymorphism-POF (Polymorphism Factor)Coupling-

COF (Coupling Factor))

W. Li et al. [18] proposed a new metric suite which include

Number of Ancestor Classes (NAC), Number of Local

Methods (NLM), Class Method Complexity (CMC), Number

of Descendent Classes (NDC), Coupling Through Abstract

data type (CTA), and Coupling Through Message passing

(CTM). These metrics measure different internal attributes

such as coupling, complexity and size.

Table 3.0, summarizes the popular metrics proposed by above

researchers and indicate their use for measuring the features of

OO software.

Table 3.0 - Metrics with respect to their use

S.

No.
METRIC

USED FOR

MEASURING

A.
Chidamber & Kemerer (CK)

Metrics

1
Weighted Methods per Class

(WMC)

Size ,Class,

Complexity

2 Response sets for Class (RFC)
Class,

Complexity

3
Lack of Cohesion in Methods

(LCOM)
Cohesion

4
Coupling Between Object Classes

(CBO)
Coupling

5
Depth of Inheritance Tree of a

class (DIT)

Inheritance, size,

complexity

6
Number of Children of a class

(NOC)
size, complexity

B. Lorentz & Kidd Metrics

1 Class Size (CS) Size

2
Number of Operation Overridden

by Sub Class (NOO)

Quality of Sub

Class

3
Number of Operations added by

Sub Class (NOO)

Quality of Sub

Class

4 Specialization Index (SI) Quality of Class

C MOOD Metric Set Model

1 MIF (Method Inheritance Factor) Inheritance

2 AIF (Attribute Inheritance Factor) Inheritance

3 MHF (Method Hiding Factor)

Encapsulation,

Information

hiding

4 AHF (Attribute Hiding Factor)

Encapsulation,

Information

hiding

5 POF (Polymorphism Factor) Polymorphism

6 COF (Coupling Factor)
Coupling,

Message Passing

D Li Metrics

1
Number of Ancestor Classes

(NAC)

Inheritance, size,

complexity

2 Number of Local Methods (NLM) Size, complexity

3 Class Method Complexity (CMC) Complexity

4
Number of Descendent Classes

(NDC)

Inheritance, Size,

complexity

5
Coupling Through Abstract data

type (CTA)
Coupling

6
Coupling Through Message

passing (CTM)

Coupling,

Message passing

As illustrated from the above table, Object Oriented Metrics

specifically measures all the features of Object Oriented

Programming, e.g.

 DIT, NOC, NDC and NAC measures Inheritance,

 MHF & AHF measures Encapsulation,

 POF measure Polymorphism,

 CBO, COF, CTM & CTA measures Coupling,

 LCOM measures Cohesion,

 CTM & COF measures Message Passing.

Size of Object Oriented Project can be easily determined with

the number of classes, number of objects & number of

methods. Hence, for size estimation WMC, DIT, NOC, CS,

NAC, NLM and NDC metrics are used. Other than above, use

case method developed by Gustav Karner is also considered

for Object Oriented size estimation. A brief description of the

various size estimation metrics are given below:

3.1 Use Cases
In object-oriented projects, Use Case models describe the

functional requirements of a software system. Sizing the

system can be done by measuring the size or complexity of

the use cases in the use case model. Deriving a reliable

estimate of the size and effort an application need, is possible

by examining the actors and scenarios of a use case. The size

can then serve as input to a cost estimation method or model,

in order to compute an early estimate of cost and effort.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.13, November 2012

42

Figure 2.0 - Size Estimation through Use Case

The Use Case Points Method for Size estimation Use Case

Points (UCP) is an estimation method that provides the ability

to estimate an application’s size and effort from its use cases.

The Use Case model used for estimation of size requires:

a) Unadjusted Actor Weight (UAW)

b) Unadjusted Use Case Weight (UUCW)

c) Technical Complexity Factor (TCF)

a) Unadjusted Actor Weight (UAW) - The UAW is one of

factor that contributes to the size of the software being

developed. It is calculated based on the number and

complexity of the actors for the system, Actors are

identified and classified as Simple, Average or Complex.

Table 4.0 shows the different classifications of actors and

the weightages assigned.

Table 4.0: Classification of Actors with Weightage

assigned.

Actors

Classification

Type of Actor Weight

Simple External system that must

interact with the system using

a well-defined API

1

Average External system that must

interact with the system using

standard communication

protocols (e.g. TCP/IP, FTP,

HTTP, database)

10

Complex Human actor using a GUI

application interface

15

The Unadjusted Weightage can be calculated by using

following formula:

UAW = (Total No. of Simple actors x 1) + (Total No.

Average actors x 2) + (Total No. Complex actors

x 3)

b) Unadjusted Use Case Weight (UUCW) - The

UUCW is another factors that contribute to the size of the

software being developed. It is calculated based on the

number and complexity of the use cases for the system.

To find the UUCW for a system, each of the use cases

must be identified and classified as Simple, Average or

Complex based on the number of transactions the use case

contains. Table 5.0 shows the different classifications of

use cases based on the number of transactions and the

weightage assigned.

Table 5.0 -Classification of Use Case with Weightage

assigned

Use Case

Classification

No. of Transactions Weights

Simple 1 to 3 transactions 5

Average 4 to 7 transactions 10

Complex 8 or more transactions 15

Following formula can be used for calculating Unadjusted

Use Case Weight,

 UUCW = (Total No. of Simple Use Cases x 5) + (Total No.

Average Use Case x 10) + (Total No. Complex

Use Cases x 15)

c) Technical Complexity Factor (TCF): The TCF

is one of the factors applied to the estimate size of the

software in order to account for technical considerations

of the system. It is determined by assigning a score

between 0 (factor is irrelevant) and 5 (factor is essential)

to each of the 13 technical factors listed (Table 6.0). This

score is then multiplied by the defined weighted value for

each factor. The total of all calculated values is the

technical factor (TF). The TF is then used to compute the

TCF with the following formula:

TCF = 0.6 + (TF/100)

Table 6.0: Technical Factor with Weightage assigned

Factor Description Weight

T1 Distributed system 2

T2 Response time/performance objectives 1

T3 End-user efficiency 1

T4 Internal processing complexity 1

T5 Code reusability 1

T6 Easy to install 0.5

T7 Easy to use 0.5

T8 Portability to other platform 2

T9 System maintenance 1

T10 Concurrent/parallel processing 1

T11 Security features 1

T12 Access for third parties 1

T13 End user training 1

Finally the Size of use case model can be calculated once the

unadjusted project size (UUCW and UAW), technical

complexity factor (TCF) have been determined. The size of

use case can be calculated by following formula,

Size = (UUCW + UAW) x TCF

Size

Use Case

Method

Unadjusted

Actor Weight

Unadjusted Use

Case Weight

Weight
+

Unadjusted

Use case

points

Unadjusted Use

Case Weight

Weight

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.13, November 2012

43

3.2 Average Number of Children per Class

(NOC)
Each super class has zero or more sub-classes (derived

classes). The NOC is a count of these derived classes.

NOC = Number of immediate sub-classes subordinated to a

class in the class hierarchy

3.3 Weighted Methods Per Class (WMC)
In WMC, each method is weighted by a complexity based on

the type of method used. It is an average number of methods

per class. Weighted methods per class consist of both the

functionality and the inter-object communication in the Object

Oriented count. The number of methods is, therefore, a

measure of class definition as well as being attributes of a

class, and attributes correspond to properties. The number of

methods and the complexity of methods involved is a

predictor of how much time and effort is required to develop

and maintain the class.

 WMC = 


n

i 1

 Cn

Where a Class C1 has M1, …Mn, methods with c1, …, cn

complexity respectively

3.4 Average Depth of Class in Hierarchy Tree

(DIT)
Each class described can be characterized as either a base

class or a derived class. Those classes that are derived classes,

fall somewhere in the class hierarchy other than the root. The

DIT for a class indicates it’s depth in the inheritance tree i.e. it

is the length (in number of levels) from the root of the tree to

that particular class. The average DIT, along with TLC and

NOC, is used to help establish the reuse through inheritance

dimension and the overall system size.

3.5 Number of Ancestor Classes (NAC)
The Number of Ancestor classes (NAC) metric measures the

total number of ancestor classes from which a sub class

inherits in the class inheritance hierarchy. NAC is similar to

DIT as (Depth of Inheritance Tree) measures the number of

ancestors of a class. Li [18] justified that the unit for the NAC

metric is “class” because the attribute that the NAC metric

captures is the number of other classes.

3.6 Number of local methods (NLM)
The Number of Local Methods (NLM) is defined as the

number of the local methods defined in a class which are

accessible outside the class. It measures the attributes of a

class that WMC metric intends to capture. Li [18] stated three

viewpoints for NLM metric as following:

a) The NLM metric is directly linked to a programmer’s

effort when a class is reused in an OO design. More the

local methods in a class, the more effort is required to

comprehend the class behavior.

b) The larger the local interface of a class, the more effort is

needed to design, implement, test, and maintain the class.

c) The larger the local interface of a class, the more

influence the class has on its descendent classes.

3.7 Number of descendent classes (NDC)
The Number of Descendent Classes (NDC) metric is defined

as the total number of descendent classes (subclass) of a class.

It is an alternative to NOC. The NOC metric measures the

scope of influence of the class on its sub classes because of

inheritance. Li [18] claimed that the NDC metric captures the

classes attribute better than NOC.

4 COMPARATIVE ANALYSIS BETWEEN

OBJECT ORIENTED METRICS AND

TRADITIONAL METRICS:

A comparative analysis has been done between the Traditional

methods and Object oriented Metrics used for Size estimation,

with respect of various attributes and dependency of above

methods on these attribute. The dependency has been rated

from Null to very high.

Table 7.0 – Comparative Analysis between Traditional &

Object Oriented Metrics

S.

No.

Attribute Traditional

Methods

Object Oriented

Metrics

SLOC Function

point

Use

Case

(WMC, NOC,

DIT, NAC,

NLM, NDC)

1 Early Stage

Development
Null Low High Very High

2 Programming

Language

Dependent

Very

High
Null Null Null

3 Effort Required

For Cost

Estimation

Very

High
High Low Null

4 Graphical

Notation with

UML

Null Null
Very

High
Null

5
Complexity Null Low High Very High

6 Functionality Null Low High Very High

7 Reuse Through

Inheritance
Null Low High Very High

8 Class +Objects Null Low High Very High

9 High

Modularity
Null Low High Very High

10 Cohesion Null Low High Very High

11 Encapsulation Null Low High Very High

12 Coupling Null Low High Very High

13 Message

Passing
Null Low High Very High

14 Abstraction Null Low High Very High

15 Polymorphism Null Low High Very High

16 Information

Hiding
Null Low High Very High

17 Localization Null Low High Very High

Traditional methods when used for Object oriented Software

development have limitations that they do not support the

features of Object Oriented Programming. Also, while

measuring the size using Traditional methods, complexity is

not being considered. Use of Object Oriented Metrics for size

estimation helps in standardizing the results and less effort is

required and size estimations results are more accurate than

traditional methods.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.13, November 2012

44

5. Conclusion:
Traditional Methods used for size estimation requires lot of

efforts and do not give accurate results. Also they do not

support the features of newer and rapid technologies like

Object Oriented technologies.

In an Object Oriented Paradigm, several metrics are suggested

by various researchers for size estimation. These metrics gives

accurate results with less effort than traditional methods. Also

these metrics take care of complexity, which is a crucial

aspect for size estimation.

Size being an important factor for the effort/cost/duration

estimation. However, manual efforts are required for

estimating the same. Further studies are required for

proposing new metrics which can automate the process of size

estimation.

6. REFERENCES
[1] Vincenzo Giliberti, Michele Gorgoglione, Raffaele

Vitulli, “An innovative model for object-oriented costs

estimating”, Proceedings of the LMO'97 Conference,

Brest (France), 22-24 October 1997

[2] M. G. Bocco, M. Piattini and C. Calero, “A Survey of

Metrics for UML Class Diagrams”, Journal of Object

Technology, Vol. 4, 2005,

[3] F. B. Abreu and R. Carapua, “Candidate Metric for OOS

within taxonomy framework, Journal of System &

Softwrae, Vol. 26, No. 1, July 1994.

[4] F. B. Abreu, “The MOOD Metrics Set”, In Proc.

ECOOP’95, Workshop on Metrics, 1995.

[5] J. Bansiya and C.G. Davis, “A Hierarchical Model for

Object-Oriented Design Quality Assessment”, IEEE

Transactions on Software Engineering, Vol. 28, No. 1,

2002.

[6] L. C. Briand, J. W. Daly and J. Wust, “A Unified

Framework for Coupling Measurement in Object-

Oriented Systems”, IEEE Transactions on Software

Engineering, Vol. 25, No. 1, 1999.

[7] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for

Object Oriented Design,” IEEE Transactions on

Software Engineering, Vol. 20, No. 6, 1994.

[8] M. Lorenz and J. Kidd, Object-Oriented Software

Metrics, Prentice Hall, 1994.

[9] J.B. Dreger, Function Point Analysis. Prentice Hall,

1989.

[10] B. Unger and L. Prechelt, “The impact of inheritance

depth on maintenance tasks – Detailed description and

evaluation of two experimental replications”, Technical

Report, Karlsruhe University: Karlsruhe, Germany,

1998.

[11] G. Poelsand and G. Dedene, “Evaluating the Effect of

Inheritance on the Modifiability of Object-Oriented

Business Domain Models”, 5th European Conference on

Software Maintenance and Reengineering (CSMR 2001),

Lisbon, Portugal, 2001.

[12] J. Daly, A. Brooks, J. Miller, M. Roper and M. Wood,

“An Empirical Study Evaluating Depth of Inheritance on

Maintainability of ObjectOriented Software”, Empirical

Software Engineering, Vol. 1, No. 2, 1996.

[13] L. C. Briand, J. W. Daly, V. Porter, and J. Wust, A

Comprehensive Empirical Validation of Product

Measures for Object-Oriented Systems. Technical

Report, ISERN-98-07, 1998.

[14] Gennaro Costagliola and Genoveffa Tortora, “Class

Point: An Approach for the Size Estimation of Object-

Oriented Systems IEEE Transactions on Software

Engineering,

[15] M. Alshayeb, and M. Li, “An Empirical Validation of

Object-Oriented Metrics in Two Different Iterative

Software Processes”, IEEE Transactions on Software

Engineering archive, Vol. 29, 2003.

[16] M. Tang, M. Kao and M. Chen, An Empirical Study on

Object-Oriented Metrics, 6th IEEE International

Symposium on Software Metrics, 1998.

[17] R. Harrison, S. Counsell and V. Reuben, “An Evaluation

of the MOOD Set of Object-Oriented Software Metrics”,

IEEE Transactions on Software Engineering, Vol. 24,

No. 6, 1998.

[18] W. Li, and S. Henry, “Object-Oriented Metrics that

Predict Maintainability”. Journal of Systems and

Software, Vol. 23, 1993.

[19] W. Li, “Another Metric Suite for Object Oriented

Programming”, The Journal of Systems and Software,

Vol. 44, 1998.

[20] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer,

“Managerial Use of Metrics for Object-Oriented

Software: An Exploratory Analysis”, IEEE Transactions

on Software Engineering, Vol. 24, No. 8, 1998.

[21] L. C. Briand, S. Morasca and V. Basili, “Property-Based

Software Engineering Measurement”, IEEE Transactions

on Software Engineering, Vol. 22, No. 6, 1996.

[22] N. E. Fenton, “Software measurement: a necessary

scientific basis,” IEEE Transactions on Software

Engineering, vol. 20, no. 3, 1994.

[23] Norman E. Fenton, Shari Lawrence Pfleeger. Software

Metrics. A rigorous & Practical Approach. 2nd Edition.

ITP, International Thomson Computer Press,1997

[24] W. Li, and S. Henry, “Object-Oriented Metrics that

Predict Maintainability”. Journal ofSystems and

Software, Vol. 23, No. 2, 1993.

[25] Dr. M.P. Thapaliyal and Garima Verma, “Software

Defects and Object Oriented Metrics – An Empirical

Analysis”, International Journal of Computer

Applications, Volume 9– No.5, November 2010

[26] Daniel Rodriguez and Rachel Harrison, “An Overview of

Object-Oriented Design Metrics”, RUCS/2001/TR/A

March 2001

[27] Dr. Rakesh Kumar and Gurvinder Kaur, “Comparing

Complexity in Accordance with Object Oriented Metrics,

International Journal of Computer Applications, Volume

15– No.8, February 2011

[28] Seyyed Mohsen Jamali, “Object Oriented Metrics (A

Survey Approach), Department of Computer Engineering

Sharif University of Technology, Iran January 2006.

