
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.1, November 2012

17

Design and Implementation of a Hybrid High Speed Area

Efficient Parallel Prefix Adder in an FPGA

S.V.Padmajarani,

H.O.D., Department of E.C.E,
Jagan’s College of Engineering & Technology,

Nellore- 524 320, Andhra Pradesh, India

M.Muralidhar, PhD.
Principal, S.V.College of Engineering &

Technology,
 Chittor– 517502, Andhra Pradesh, India

ABSTRACT

Parallel prefix adder is the most flexible and widely used for

binary addition. Parallel Prefix adders are best suited for VLSI

implementation. A number of parallel prefix adder structures

have been proposed over the past years intended to optimize

area, fan-out, logic depth and inter connect count. This paper

presents a hybrid high speed and area efficient adder

architecture, based on parallel prefix computation by using

four operators namely black, gray, O3-black and O3-gray

operators. These operators are designed using multiplexers.

The proposed hybrid architecture is implemented with 16-bit

width operands on Xilinx Spartan 3E FPGA. The

experimental results indicate that the proposed architecture is

much faster and area efficient.

1. INTRODUCTION
Binary addition is the most fundamental and frequently used

arithmetic operation. A lot of work on adder design has been

done so far and many architectures have been proposed. When

high operation speed is required, tree structures like parallel-

prefix adders are used [1] - [15]. In [1], Sklansky proposed

one of the earliest tree-prefix is used to compute intermediate

signals. In the Brent-Kung approach [3], designed the

computation graph for area-optimization. The KS architecture

[2] is optimized for timing. The LF architecture [4], is

proposed, where the fan-out of gates increased with the depth

of the prefix computation tree. The HC adder architecture [5],

is based on BK and KS is proposed. In [6], an algorithm for

back-end design is proposed. The area minimization is done

by using bitwise timing constraints [7]. In [8], which is

targeted to minimize the total switching activities under

bitwise timing constraints. The architecture [9], saves one

logic level implementation and reduces the fan-out

requirements of the design. A fast characterization process for

Knowles adders is proposed using matrix representation [10].

In [13], a hybrid architecture is proposed with different

operators. In [12], a new approach is presented to implement

the parallel prefix adders in an FPGA. In [15] a new

architecture is given to reduce the prefix sub-terms.

The Parallel Prefix addition is done in three steps, which is

shown in Fig.1. The first step in parallel prefix addition is to

calculate the generate and propagate signals. Then by using

these generate and propagate signals, carry input signals of

each bit addition are generated using parallel prefix trees. The

generated carry input signals are used for final addition to

produce the sum output. This is further discussed in detail in

section II.

Fig.1. Addition procedure using Parallel Prefix tree

structures

The aim of this paper is to propose new achitecture which

uses four types of operators. In this approach the fundamental

generate and propagate signals are used. By combining these

primary generate and propagate signals properly by using the

four types of operators, the carry input for each adder can be

generated.

The rest of the paper is organized as follows: In section II,

some background information about the parallel-prefix

architecture is given. Proposed architecture is discussed in

section III, Experimental results are presented in section IV.

Conclusions are drawn in section V.

2. PRELIMINARIES
To produce the sum of two operands A and B of n-bit size,

each (i)th bit of A and B are added with the carry input signal

(carryi) to produce sum output (sumi)

The equation to produce the sum output is:

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.1, November 2012

18

 …. (1)

Computation of the carry input signal for each bit addition is

the most critical and time – consuming operation. The carry-

look ahead adders (CLA), gives an idea how to produce the

carry input signals for an individual bit addition. This is

achieved by generating two signals, the generate (gi) and

propagate (pi) using the equations:

 …. (2)

 …. (3)

The carry in signal for any adder block is calculated by using

the formula

) ….(4)

where ci must be expanded to calculate ci+1 at any level of

addition.

Parallel Prefix adders compute carry-in at each level of

addition by combining generate and propagate signals in a

different manner. Two operators namely black and gray are

used in parallel prefix adders[13] are shown in Fig.2(a),

Fig.2(b) respectively.

 (a) black operator (b) gray operator

 Fig.2. Operators used in Parallel Prefix trees

The black operator receives two sets of generate and

propagate signals (gi , pi),(gj ,pj), computes one set of generate

and propagate signals (go , po) by the following equations:

 …. (5)

 …. (6)

The gray operator receives two sets of generate and propagate

signals (gi, pi),(gj ,pj), computes only one generate signal with

the same equation as in equation (5).

The black and gray operators are designed by using

multiplexers [12] is shown in Fig.3.

(a)

(b)

Fig.3. Design of a black operator using multiplexers

(a) for calculation of g0 (b) for calculation of p0

The black operator computes go value by using the inputs

gi , pi and gj , as shown in Fig.3(a), is as per the Table 1(a)

and the po value is computed by using the inputs pi , pj as

shown in Fig.3(b), is as per the Table 1(b).

Table 1(a)Truth Table to compute go of black operator

gi gj go

0 0 0

0 1 pi

1 0 1

1 1 1

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.1, November 2012

19

Table 1(b)Truth Table to compute po of black operator

pi po

0 0

1 pj

The gray operator computes only go by receiving the inputs

gi , pi and gj and it is similar to the computation of go as in

black operator, therefore Fig. 3(a) is used to implement gray

operator.

O3-operator [14] which takes three pairs of generate and

propagate values and produces the generate and propagate

output values is further developed as O3-black, O3-gray

operators are presented in section III.

3. PROPOSED ARCHITECTURE
A new architecture is developed by using four operators

black, gray, O3-black, O3-gray operators. The black and gray

operators are already given in section III, shown in Fig.3(a),

Fig.3(b) respectively. The O3-black, O3-gray operators are

shown in Fig. 4(a), Fig.4(b) respectively.

(a) O3-black operator (b) O3-gray operator

Fig.4. Operators used in hybrid Parallel Prefix trees

The O3-black operator, which takes three pairs of generate and

propagate values (gi , pi),(gj , pj), (gk , pk) as inputs and

produces the generate and propagate output values (go , po)

as follows:

 …. (7)

 …. (8)

The O3-gray operator, which takes three pairs of generate and

propagate values (gi , pi),(gj , pj), (gk , pk) as inputs and

produces only one generate signal output as per equation (7).

(a)

(b)

Fig.5. Design of a O3-black operator using multiplexers

(a) for calculation of g0 (b) for calculation of p0

Table 2(a)Truth Table to compute go of O3-black operator

gi gj gk go

0 0 0 0

0 0 1 pi . pj

0 1 0 pi

0 1 1 pi

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.1, November 2012

20

Table 2(b)Truth Table to compute po of O3-black operator

pi pj po

0 0 0

0 1 0

1 0 0

1 1 pk

The O3-black operator computes go value by using the inputs

gi , gj , gk , pi and pj , as shown in Fig.5(a), is as per the table

2(a) and the po value is computed by using the inputs pi , pj ,

pk as shown in Fig 5(b), is as per the table 2(b).

The block diagram of 16-bit proposed parallel prefix adder

using black, gray, O3-black, O3-gray operators is shown in

Fig.6.

4. EXPERIMENTAL RESULTS
The proposed 16-bit hybrid parallel prefix adder is simulated

using Xilinx 9.1 version by writing a VHDL code and

choosing the device number XC3S500E. The results are

tabulated in table 3. These results are compared with the other

prefix adders results[12] and are tabulated in Table (4) - (7)

respectively.

The comparison is done for two factors, speed and area. The

speed performance can be evaluated with respect to delay and

the area requirement can be estimated from the utilization of

lookup tables, slices and over all gate count.

Table 4 compares the delay produced by various adders, table

5 compares the utilization of lookup tables, number of slices

are compared in table 6, overall gate count is given in table 7.

Table 3 Hybrid Parallel Prefix adder Results

Delay

(ns)

Look up

tables

Slices Over all

gate count

12.764

47

28

294

Fig.6. Proposed hybrid 16-bit parallel prefix adder

Table 4 Delay comparison (in nsec)

Method BK adder Skalansky

adder

KS adder HC adder LF adder Knowles

adder

Proposed

Hybrid adder

Delay 15.357 13.452 12.339 16.793 13.561 12.340 12.764

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.1, November 2012

21

Table 5 Look up table utilization comparison

Method BK adder Skalansky

adder

KS adder HC adder LF adder Knowles

adder

Proposed

Hybrid adder

Look up

tables

47 50 82 51 48 80 47

Table 6 Slices utilization comparison

Method BK adder Skalansky

adder

KS adder HC adder LF adder Knowles

adder

Proposed

Hybrid adder

Slices 26 27 45 28 26 42 28

Table 7 Over all gate count comparison

Method BK adder Skalansky

adder

KS adder HC adder LF adder Knowles

adder

Proposed

Hybrid adder

No.of

gates

297 315 501 324 309 486 294

5. CONCLUSIONS

This paper presents a hybrid architecture for parallel prefix

addition. The experimental results shows that the proposed

architecture is faster than the BK adder, Skalansky adder, HC

adder, LF adder. The area requirement for the proposed adder

is very less compared to KS adder and Knowles adder,

occupies less area when compared to Skalansky adder and HC

adder, and it is comparable to BK adder and LF adder. Even

the KS adder and Knowles adders are slightly faster than

proposed adder, they occupy very large area in an FPGA.

Hence the proposed hybrid parallel prefix adder provides high

speed and area efficient characteristics.

The performance of these adders can be estimated for high

bit-widths. This can be further used in Cryptographic

applications, where the addition of more number of bits is

necessary. The new approach for the parallel prefix adders can

also be used to speed up the addition process in FIR filter and

arithmetic operations like multipliers, etc.

6. REFERENCES

[1] Skalansky “conditional sum additions logic” IRE

Transactions, Electronic Computers, vol, EC – 9, pp, 226 -

231, June 1960.

[2] Kogge P, Stone H, “A parallel algorithm for the efficient

solution of a general class Recurrence relations”, IEEE

Trans. Computers, vol.C-22, No.8, pp 786-793, Aug.1973.

[3] Brent R, Kung H, “A regular layout for parallel adders”.

IEEE Trans, computers, Vol.C-31, no.3, pp 260-264,

March1982.

[4] Ladner R, Fischer M,”Parallel prefix computation “,

J.ACM, vol.27, no. 4, pp 831-838, Oct.1980.

[5] Han T, Carlson D, “Fast area-efficient VLSI adders”,

Proc.8th.symp.Comp.Arit.pp.49-56, Sep.1987.

[6] Jianhua LiuZhu, Haikun, Chung-Kuan Cheng, John Lillis,

“Optimum prefix Adders in a Comprehensive Area,Timing

and power Design Space”., Proceeding of the 2007 Asia and

South pacific Design Automation conference.Washington,

pp.609-615,jan 2007.

[7] Taeko Matsunaga and Yusuka Matsunaga., “Timing-

Constrained Area minimization Algorithm for parallel prefix

adders”, IEICE TRANS, Fundamentals, vol.E90-A, No.12

Dec, 2007.

[8] Taeko Matsunaga and Shinji Kimura, Yusuka Matsunaga,

“Synthesis of parallel prefix adders considering switching

activities”,IEEE International Conference on computer

design, , pp.404-409, 2008

[9] Giorgos Dimitrakopoulos and Dimitric Nikolos, “High

Speed Parallel –Prefix VLSI Ling Adders”, IEEE Trans on

computers, Vol.54, No.2, Feb 2005

[10] V.Choi and E.E.Swartz lander, Ir, “Parallel Prefix adder

design with matrix representation”,, in Proc.17th IEEE

symp, comput.Arithmatic (ARITH), PP 90-98,2005

[11] John F.Wakerly, Digital Design Principles and Practices,

4th Edition, Pearson Education, 2009.

[12] S.V.Padmajarani and M.Muralidhar, “A New Approach to

implement Parallel Prefix Adders in an FPGA”,

IJERA,Vol.2, No.4, pp. 1524-1528, July-August,2012.

[13] S.V.Padmajarani and M.Muralidhar, “Comparison of

Parallel Prefix Adders Performance in an FPGA”, IJERD,

Vol.3, No6, pp.62-67 , September 2012.

[14] S.V.Padmajarani and M.Muralidhar, “A Hybrid Parallel

Prefix Adder for high speed computing”, Proc.7
th

 National

Conference on Advances in Electronics and

Communications(ADELCOs, National Engineering College,

Kovilpatti, India, 2011.

[15] P.Ramanathan,P.T.Vanathi,”A Novel Power Dealy

Optimized 32-bit Parallel Prefix Adder for High Speed

Computing”, International Journal of Recent Rrends in

Engineering, Vol2, No.6,pp58-62, November2009.

