A New type of Generalized Separation Axioms

M.LellisThivagar School of Mathematics, M.K.U, Madurai-25021,TamilNadu,India.

M.Anbuchelvi V.V.Vanniaperumal College for Women,Virudhunar,T.N,

ABSTRACT

In this paper we introduce and investigate some weak separation axioms associated with $\hat{\Omega}$ -closed sets and $\hat{\Omega}$ -closure operators. Also we find some of their applications.

Keywords and Phrases:- $\hat{\Omega}$ -closed sets, $\hat{\Omega}$ -closure, $D_{\hat{\Omega}}$ -sets, $\hat{\Omega}$ - D_i -sets i = 0 ,1 ,2; $\hat{\Omega}$ - R_0 -spaces.,

AMS subject classification 2010:57D05

1. INTRODUCTION

In 1943,the separation axioms R_0 and R_1 were introduced and investigated by N.A.Shanin [13]. In 1963,they were developed more by A.S.Davis [3].Also their properties were found by K.K.Dube [4].In recent years,this idea of separation axioms were introduced and investigated through the sets δ -open set, δ -open set, δ -semi open set etc.In this paper we introduce and investigate some weak separation axioms namely $\hat{\Omega}$ - D_i ; $\hat{\Omega}$ - T_i -spaces i = 0 ,1 , 2; $\hat{\Omega}$ - R_0 -spaces and $\hat{\Omega}$ - R_1 -spaces by utilizing $\hat{\Omega}$ -closed sets and it's closure operator and kernel.Also we find some of their applications.

2. PRELIMINARIES

Throughout this paper (X,τ) (or briefly X) represent a topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of X, cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively. The family of all $\hat{\Omega}$ -open (resp. $\hat{\Omega}$ -closed) subsets of X is denoted by $\hat{\Omega}O(X)$. (resp. $\hat{\Omega}C(X)$).

Let us recall the following definitions, which are useful in the sequel.

Definition 2.1 A subset A of a topological space (X, τ) is called

i)Semi-open [9]if $A \subseteq cl(int(A))$.

ii) pre-open [10] if $A \subset int(cl(A))$.

iii) δ -pre open [12] if $A \subseteq \operatorname{int}(\operatorname{\&cl}(A))$.

iv) $\hat{\Omega}$ -open[7] if $\mathscr{E}cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in (X, τ) .

Definition 2.2 A topological space (X, τ) is

i) $pre-T_0$ [[6],[11]] (resp. $(\delta,p)-T_0$ [1], $\delta-T_0$ [5]) if for any distinct pair of points x and y of X, there exists a pre-open (resp. δ -pre-open, δ -open) set U of X containing x but not y (or) containing y but not x. ii) $pre-T_1$ [[6],[11]] (resp. $(\delta,p)-T_1$ [1], $\delta-T_1$ [5]) if for any distinct pair of points x and y of X, there exists a pre-open (resp. δ -pre-open, δ -open) set U of X containing x but not y and a pre-open (resp. δ -pre-open) set V of X containing y but not x.

iii) $pre - T_2$ [[6],[11]] (resp. $(\delta, p) - T_2$ [1], $\delta - T_2$ [5]) if for any distinct pair of points x and y of X, there exists disjoint pre-open (resp. δ -pre open, δ -open) sets U and V of X containing x and y respectively.

Definition 2.3 [14] A subset A of X is called δ -closed in a topological space (X,τ) if $A = \delta cl(A)$, where $\delta cl(A) = \{x \in X : int(cl(U)) \cap A \neq \emptyset, U \in \tau, x \in U\}$. The complement of δ -closed set in (X,τ) is called δ -open set in (X,τ) .

Definition 2.4 [2] A subset A of a space X is said to be δD -set if there are two δ -open sets U and V such that $U \neq X$ and $A = U \setminus V$.

Definition 2.5 [8]A function $f: X \to Y$ is said to be $\hat{\Omega}$ - irresolute if the inverse image of every $\hat{\Omega}$ -open set in Y is $\hat{\Omega}$ -open in X.

3. $\hat{\Omega} - T_i$ -**SPACES**, i = 0,1,2.

Definition 3.1 Let (X,τ) be a space and $A\subseteq X$. Then the $\hat{\Omega}$ -kernel of A, denoted by $Ker_{\hat{\Omega}}(A)$ is defined as $Ker_{\hat{\Omega}}(A)=\bigcap\{G\in \hat{\Omega}O(X): A\subseteq G\}$.

Lemma 3.2 Let A be a subset of (X, τ) , then $Ker_{\hat{\Omega}}(A) = \{x \in X : \hat{\Omega}cl(\{x\}) \cap A \neq \emptyset.\}$

Proof. Let $x\in Ker_{\hat{\Omega}}(A)$ and suppose that $\hat{\Omega}cl(\{x\})\cap A=\varnothing$. Then $A\subseteq X\setminus \hat{\Omega}cl(\{x\})$. If we define $V=X\setminus \hat{\Omega}cl(\{x\})$, then by [7] remark 5.2, V is a $\hat{\Omega}$ -open set such that $A\subseteq V$ and $x\not\in V$. By the definition of $ker_{\hat{\Omega}}(A)$, $x\not\in Ker_{\hat{\Omega}}(A)$, a contradiction. Therefore, $Ker_{\hat{\Omega}}(A)\subseteq \{x\in X:\hat{\Omega}cl(\{x\})\cap A\neq\varnothing\}$. To prove the reversible inclusion, if $x\in X$ such that $\hat{\Omega}cl(\{x\})\cap A\neq\varnothing$ and suppose that $x\not\in Ker_{\hat{\Omega}}(A)$, then there exists a $\hat{\Omega}$ -open set U such that $A\subseteq U$ and $x\not\in U$. Since $\hat{\Omega}cl(\{x\})\cap A\neq\varnothing$, we can choose $y\in \hat{\Omega}cl(\{x\})\cap A$. Then $y\in U$ and hence U is an $\hat{\Omega}$ -open set containing y but not x. By [7] theorem 5.11, $y\not\in \hat{\Omega}cl(\{x\})$, a contradiction. Thus, $x\in ker_{\hat{\Omega}}(A)$.

Lemma 3.3 Let (X, τ) be a space and $x \in X$. Then $y \in Ker_{\hat{\Omega}}(\{x\})$ if and only if $x \in \hat{\Omega}cl(\{y\})$.

Proof. Necessity- Assume that $y \notin Ker_{\hat{\Omega}}(\{x\})$. By the definition of kernel,there exists a $\hat{\Omega}$ -open set U containing x such that $y \notin U$. By [7] theorem 5.11, $x \notin \hat{\Omega}cl(\{y\})$

Sufficiency- Assume that $x \notin \hat{\Omega}cl(\{y\})$. By [7] theorem 5.11,there exists a $\hat{\Omega}$ -open set U containing x such that $y \notin U$. By the definition of kernel, $y \notin Ker_{\hat{\Omega}}(\{x\})$.

Lemma 3.4 For any points x and y in a space (X, τ) the following are equivalent. $Ker_{\hat{\Omega}}(\{x\}) \neq Ker_{\hat{\Omega}}(\{y\})$.

$$\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\})$$

Proof. (i) \Rightarrow (ii) Suppose $Ker_{\hat{\Omega}}(\{x\}) \neq Ker_{\hat{\Omega}}(\{y\})$.

Then, there exists a point $z \in X$ such that $z \in Ker_{\hat{\Omega}}(\{x\})$ but not in $Ker_{\hat{\Omega}}(\{y\})$. By lemma 3.2, $\{x\} \cap \hat{\Omega}cl(\{z\}) \neq \emptyset$ and hence $x \in \hat{\Omega}cl(\{z\})$

.By[7], $\hat{\Omega}cl(\{x\}) \subseteq \hat{\Omega}cl(\hat{\Omega}cl(\{z\})) = \hat{\Omega}cl(\{z\})$. Again by lemma 3.2, $\{y\} \cap \hat{\Omega}cl(\hat{\Omega}(\{z\})) = \emptyset$ and hence $y \notin \hat{\Omega}cl(\{z\})$. Therefore, $y \notin \hat{\Omega}cl(\{x\})$. Thus, $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\})$. (ii) \Rightarrow (i) Suppose that $\hat{\Omega}cl(\{x\}) \neq \delta\omega cl(\{y\})$. Then there exists a point $z \in X$ such that $z \in \hat{\Omega}cl(\{x\})$ and $z \notin \hat{\Omega}cl(\{y\})$. By[7] theorem 5.11, there exists a $\hat{\Omega}$ -open set U containing z such that $U \cap (\{y\}) = \emptyset$ and $U \cap (\{x\}) \neq \emptyset$. Now U is a $\hat{\Omega}$ -open set containing x but not y. By [7] theorem 5.11, $x \notin \hat{\Omega}cl(\{y\})$. By lemma 3.3, $y \notin ker_{\hat{\Omega}}(\{x\})$. Thus $ker_{\hat{\Omega}}(\{x\}) \neq ker_{\hat{\Omega}}(\{y\})$.

Lemma 3.5 Let A and B be any two subsets in a opological space X . If $A \subseteq B$, then $Ker_{\hat{\Omega}}(A) \subseteq Ker_{\hat{\Omega}}(B)$.

Proof. Suppose that $A\subseteq B$ and if $x\not\in Ker_{\hat{\Omega}}(B)$. By the definition of $Ker_{\hat{\Omega}}$, there exists a $\hat{\Omega}$ -open set U such that $B\subseteq U$ and $x\not\in U$. Since $A\subseteq B\subseteq U$, again by the definition of $Ker_{\hat{\Omega}}$, $x\not\in Ker_{\hat{\Omega}}(A)$. Therefore, $Ker_{\hat{\Omega}}(A)\subseteq Ker_{\hat{\Omega}}(B)$.

Definition 3.6 A space (X, τ) is said to be

i) $\hat{\Omega}$ - T_0 if for any distinct pair of points x and y of X, there exists a $\hat{\Omega}$ -open set U of X containing x but not y (or) containing y but not x.

ii) $\hat{\Omega}$ - T_1 if for any distinct pair of points x and y of X, there exists a $\hat{\Omega}$ -open set U of X containing x but not y and a $\hat{\Omega}$ -open set V of X containing y but not x.

iii) $\hat{\Omega}$ - T_2 if for any distinct pair of points x and y of X, there exists disjoint $\hat{\Omega}$ -open sets U and V of X containing x and y respectively.

Example 3.7

 $X=\{a,b,c\}, \quad \tau=\{\varnothing,\{a\},\{b\},\{a,b\},\{a,c\},X\}.$ Then $\hat{\Omega}O(X)=\tau$. It is $\hat{\Omega}$ - T_0 but not $\hat{\Omega}$ - T_1 because for the pair of distinct points a and c, there is no $\hat{\Omega}$ -open set containing c but not a.

Example 3.8 $X = \{a,b,c\}$ $\tau = \{\emptyset,\{a\},\{b,c\},X\}$. Then, $\hat{\Omega}O(X) = \Pi(X)$. It is $\hat{\Omega} - T_1$ as well as $\hat{\Omega} - T_2$. **Remark 3.9** If (X,τ) is $\hat{\Omega} - T_i$, then it is $\hat{\Omega} - T_i$. $T_i = 1,2$.

Theorem 3.10 Every δ - T_i space is $\hat{\Omega}$ - T_i . (i = 0,1,2.)

Proof. It follows from [7]theorem 3.2, the fact that every δ - open set is $\hat{\Omega}$ -open subset of X.

Theorem 3.11 Every $\hat{\Omega}$ - T_i , space is pre-- T_i . (i=0,1,2)

Proof. It follows from [7] because every $\hat{\Omega}$ -open set in X is pre open in X.

Remark 3.12.The converse of the above is not true in general from the following examples.

Example 3.13 .X = {a,b,c} and $\tau = \{\emptyset, \{a\}, X\}$ then PO(X) = { Φ ,{a},{a,c},X } and

$$\hat{\Omega}$$
 O(X) = {Ø,{a}, X}. It is pre-T₀ but not $\hat{\Omega}$ -T₀.

Example 3.14 $X = \{a,b,c\}$ and $\tau = \{\Phi, \{a,b\}, X\}$ then

 $PO(X) = {\Phi, {a}, {b}, {a,b}, {a,c}, {b,c}, X}$ and

 $\hat{\Omega}$ O(X) = {Ø,{a},{b},{a,b},X} .It is pre-T₁ as well as pre-T₂ but not $\hat{\Omega}$ - T_1 or $\hat{\Omega}$ - T_2 .

4. CHARACTERIZATIONS OF $\hat{\Omega}$ - T_i - SPACES.

Theorem 4.1 A space (X, τ) is $\hat{\Omega}$ -T_o if and only if $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\})$ for every pair of distinct points x y in X

Proof.Necessity- Suppose that X is $\hat{\Omega}$ - T_o -space and x,y are a pair of distinct points in X.By the definition of $\hat{\Omega}$ - T_o -space, there exists $\hat{\Omega}$ -open set U containing any one of these two points, Without loss of generality, take x in U and y not in U.Therefore X\U is a $\hat{\Omega}$ -closed set in X containing y but not x.By [7] remark 5.2, $\hat{\Omega}$ cl({y}) is the smallest $\hat{\Omega}$ -closed set containing {y} and hence $\hat{\Omega}$ cl({y}) \subseteq X\U. Therefore, $x \notin \hat{\Omega}$ cl({y}).

Sufficiency- Let x,y be any two points in X such that $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\})$. Choose z in X such that z is in $\hat{\Omega}$ cl($\{x\}$) and z does not belongs to $\hat{\Omega}$ cl($\{y\}$). If $x \in \hat{\Omega}$ cl($\{y\}$), then by [7] remark 5.2, $\hat{\Omega}$ cl($\{x\}$) $\subseteq \hat{\Omega}$ cl($\{y\}$). Therefore, $z \in \hat{\Omega}$ cl($\{y\}$), a contradiction. Thus $x \notin \hat{\Omega}$ cl($\{y\}$). Then, $X \setminus \hat{\Omega}$ cl($\{y\}$) is a $\hat{\Omega}$ -open set in X such that $x \in X \setminus \hat{\Omega}$ cl($\{y\}$) and $y \notin X \setminus \hat{\Omega}$ cl($\{y\}$). Thus, (X, τ) is $\hat{\Omega}$ -T_o-space.

Corollary 4.2 A space X is $\hat{\Omega}$ -T_o if and only if each pair of distinct points x,y of X,either $y \notin \hat{\Omega}$ cl({x}) or $x \notin \hat{\Omega}$ cl({y}).

Theorem 4.3 A space (X, τ) is $\hat{\Omega} - T_0$ if and only if for each pair of distinct points x, y in X, $ker_{\hat{\Omega}}(\{x\}) \neq ker_{\hat{\Omega}}(\{y\})$.

Proof. Necessity- Suppose that X is $\hat{\Omega} - T_0$ -space and x, y are two distinct points in X. By theorem 3.16, $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\})$. By lemma 3.4, $ker_{\hat{\Omega}}(\{x\}) \neq ker_{\hat{\Omega}}(\{y\})$.

Sufficiency- Let x, y be two distinct points in X such that $ker_{\hat{\Omega}}(\{x\}) \neq ker_{\hat{\Omega}}(\{y\})$. By lemma 3.4, $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\})$. By theorem 3.16, (X, τ) is a $\hat{\Omega}$ -T₀-space.

Theorem 4.4 The following are equivalent in in a topological space (X, τ) .

- i) (X, τ) is $\hat{\Omega}$ -T₁-space.
- ii) For every $x \in X, \{x\} = \hat{\Omega} \operatorname{cl}(\{x\}).$
- iii) $\{x\} = \bigcap \{U : U \in \hat{\Omega}O(X,x)\} = \ker_{\hat{\Omega}}(\{x\})$ for each x in X.

Proof.

i) \Rightarrow ii) Suppose that X is $\hat{\Omega}$ -T₁-space and x is any point of X.Assume that $y \in \hat{\Omega}$ cl({x}) and $y \neq x$.Since X is $\hat{\Omega}$ -T₁-space,there exists a $\hat{\Omega}$ -open set U in X such that $y \in U$ and $x \notin U$.By [7]theorem 5.11, $U \cap \{x\} \neq \Phi$. Therefore, $x \in U$, a contradiction. Thus, {x} = $\hat{\Omega}$ cl({x}).

ii) \Rightarrow i) Suppose that $\{x\} = \hat{\Omega} \operatorname{cl}(\{x\})$ for every $x \in X$.Let x,y be any two distinct points in X.By hypothesis, $y \notin Ker_{\hat{\Omega}}$ ($\{x\}$).By the definition of $\hat{\Omega}$ -kernal, there exists a $\hat{\Omega}$ -open set U containing x but noy y. Similarly if $x \notin Ker_{\hat{\Omega}}$ ($\{y\}$), then there exists a $\hat{\Omega}$ -open set V containing y but noy y. Thus, (X,τ) is $\hat{\Omega}$ - T_1 -space.

Theorem 4.5 (X,τ) is $\hat{\Omega}$ - T_1 , if and only if $\{x\}$ is $\hat{\Omega}$ -closed for each $x \in X$.

Proof. By theorem 3.19, is $\hat{\Omega} - T_1$, if and only if $\{x\} = \hat{\Omega}cl(\{x\})$ for every $x \in X$. By[?] remark 5.2, $\mathcal{E}\omega cl(\{x\})$ is a $\hat{\Omega}$ closed set and hence $\{x\}$ is $\hat{\Omega}$ closed set for every $x \in X$.

Theorem 4.6 The following statements are equivalent in a topological space (X, τ)

(i)
$$(X, \tau)$$
 is $\hat{\Omega} - T_2$ -space.

(ii) If $x \in X$, then for each $y \neq x$, there exists a $\hat{\Omega}$ -open set U containing x such that $y \notin \hat{\Omega}cl(U)$.

(iii)
$$\{x\} = \bigcap \{\hat{\Omega}cl(U) : U \in \hat{\Omega}O(X,x)\}$$
 for every .

Proof. i) \Rightarrow ii) Suppose that X is $\hat{\Omega}$ - T_2 -space and x,y are any two distinct points of X.Then there exists disjoint $\hat{\Omega}$ -open sets U and V such that $x \in U, y \in V$. If $F = X \setminus V$, then F is $\hat{\Omega}$ -closed set such that $U \subseteq F$ and $y \notin F$.By the definition of $\hat{\Omega}$ -closure, $y \notin \hat{\Omega}$ cl(U).

.(ii) \Rightarrow (iii). Suppose that $x \in X$. By hypothesis, for any distinct point $y \in X$, there exists a $\hat{\Omega}$ -open set U containing x such that $y \notin \hat{\Omega}cl(U)$. Therefore, $y \notin \bigcap \{\hat{\Omega}cl(U): U \in \hat{\Omega}O(X,x)\}$. Thus, $\{x\} = \bigcap \{\hat{\Omega}cl(U): U \in \hat{\Omega}O(X,x)\}$.

 $iii) \implies$ i) Suppose that x and y are any two distinct points in X. By hypothesis, there exists $U \in \hat{\Omega}O(X,x)$ such that y $\notin \hat{\Omega}$ cl(U). Therefore, U and X\ $\hat{\Omega}$ cl(U) are two distict $\hat{\Omega}$ -open sets containing x and y respectively.

5. $D_{\hat{\Omega}}$ -SET AND $\hat{\Omega}$ -D_I – SPACES I= 0,1,2.

Definition 5.1 A subset A in a space X is said to be $D_{\hat{\Omega}}$ -set if there are two $\hat{\Omega}$ -open sets U and V such that $U \neq X$ and $A = U \setminus V$ such that $U \neq X$ and $A \cup V$.

Theorem 5.2 Every δD set is $D_{\hat{O}}$ set.

Proof. By [7] theorem 3.2, every δ -open set is $\widehat{\Omega}$ -open set and hence it follows.

Remark 5.3 Every proper $\hat{\Omega}$ -open set U is $D_{\hat{\Omega}}$ -set because A = U and $V = \Phi$. But the converse is not true in general from the following example.

Example 5.4

$$\begin{split} & X = \{a,b,c,d\}, \ \tau = \big\{\Phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, X\big\} \\ & \text{,then } \hat{\Omega}O(X) = \tau \text{ .By taking two } \hat{\Omega} \text{ -open sets } U = \{a,b,c\} \\ & \neq X \text{ and } V - \{a,b\} \text{ it is known that } A = U \backslash V = \{c\} \text{ which is } \\ & D_{\hat{\Omega}} \text{ -set but not } \hat{\Omega} \text{ -open set in } X. \end{split}$$

Definition 5.5 A space X is said to be

i) $\hat{\Omega}$ - D_o if for any distinct pair of points x and y of X, there exists a $D_{\hat{\Omega}}$ -set of X containing x but not y or a $D_{\hat{\Omega}}$ -set of X containing y but not x.

ii) $\hat{\Omega}$ -D₁ if for any distinct pair of points x and y of X,

there exists a $D_{\hat{\Omega}}$ -set of X containing x but not y and a $D_{\hat{\Omega}}$ -set of X containing y but not x.

iii) $\hat{\Omega}$ -D₂ if for any distinct pair of points x and y of X,

there exists disjoint pair of $D_{\hat{\Omega}}$ -sets U and V of X containing x y and respectively.

Example 5.6 X = {a,b,c,} , $\tau = {\Phi,{a},{b},{a,b},{a,c},X}$.

Then, $\hat{\Omega}O(X) = \tau$. It is $\hat{\Omega} - D_1$ as well as $\hat{\Omega} - D_2$.

Remark 5.8. i) If X is $\hat{\Omega} - T_i$, then it is $\hat{\Omega} - D_i$, i = 0,1,2.

ii) If X is $\hat{\Omega}$ -D_i,then it is $\hat{\Omega}$ -D_{i-1} ,i = 0,1,2.

Theorem 5.9 Let X be a topological space. Then,

i) X is $\hat{\Omega}$ -D₁if and only if $\hat{\Omega}$ -D₂.

ii) X is $\hat{\Omega}$ -T_o if and only if $\hat{\Omega}$ -D_o.

proof i) Necessity-Suppose that X is $\hat{\Omega}$ -D₁. Then for every pair of distinct points x, y in X, there exists $D_{\hat{\Omega}}$ sets U and V

such that $x \in U$ and $y \notin U$ and $y \in V, x \notin V$. By the definition of $D_{\hat{\Omega}}$ set $U = U_1 \setminus U_2$, $V = V_1 \setminus V_2$, where $U_i \setminus V_i \in \hat{\Omega}$ O(X) is i = 1,2 and i = 1,2 and i = 1,2 and i = 1,3 and

Case i) $\mathbf{x} \notin \mathbf{V_1}.\mathbf{Since} \ \mathbf{y} \notin \mathbf{U}, \text{either } \mathbf{y} \notin \mathbf{U_1} \text{ or } \mathbf{y} \in \mathbf{U_1} \text{ and } \mathbf{y} \in \mathbf{U_2}.\mathbf{Subcase(a)} \ \mathbf{Suppose} \ \ \mathbf{y} \notin U_1.\mathbf{Since} \ \ \mathbf{x} \in U = U_1 \setminus U_2,$ and $\mathbf{y} \in V = V_1 \setminus V_2$, we have $\mathbf{x} \in U_1 \setminus (U_2 \cup V_1)$ and $\mathbf{y} \in V_1 \setminus (U_1 \cup V_2).$ Also, $(U_1 \setminus (U_2 \cup V_1)) \cap V_1 \setminus (U_1 \cup V_2) = \emptyset.$ BY[7] theorem $4.16, U_2 \cup V_1$ and $U_1 \cup V_2$ are $\hat{\Omega}$ -open sets.

Sub case (b). Suppose $y\in U_1$ and $y\in U_2$. In this case,the disjoint pair of $D_{\hat{\Omega}}$ sets $U_1\setminus U_2$ and U_2 satisfy our requirement.

Case(ii).Suppose $x\in V_1$ and $x\in V_2$. Here,our required sets are $V_1\setminus V_2$ and V_2 because $y\in V_1\setminus V_2$ and $x\in V_2$ and $(V_1\setminus V_2)\cap V_2=\varnothing$. Therefore, (X,τ) is $\hat{\Omega}$ - D_2 in the above all cases.

Sufficiency- Follows from the remark 4.8.

(ii) Necessity: Follows from the remark 4.8.

Sufficiency: Let (X,τ) be a $\hat{\Omega}$ - D_0 . Then for each pair of distinct points $x,y\in X$, there exists D $\hat{\Omega}$ set U of X containing x but not y. Suppose $U=U_1\setminus U_2$ and

 $U_1 \neq X$ and $U_1, U_2 \in \hat{\Omega}O(X)$. Then we have either $y \notin U_1$ or $y \in U_1$ and $y \in U_2$. Therefore, we have the following two cases.

Case (i).Suppose $y \notin U_1$. Since $x \in U_1$ and $y \notin U_1, U_1$ is our required $\hat{\Omega}$ -open set.

Case (ii). Suppose $y \in U_1$ and $y \in U_2$. Then, U_2 is a $\hat{\Omega}$ -open set which contains y but not x. Thus in both cases, (X, τ) is $\hat{\Omega} - T_0$.

Definition 5.10 A point X of a topological space (X, τ) which has X as the only $\hat{\Omega}$ -open set containing X is known as $\hat{\Omega}$ -neat point.

Example5.11 $X=\{a,b,c,d\}$ $\tau=\{\varnothing,\{a\}\{a,b\},X\}$.Then $\hat{\Omega}O(X)=\{\varnothing,\{a\},X\}$. Here the points b,c and d are $\hat{\Omega}$ -neat points.

Theorem 5.12 In a $\hat{\Omega}$ - T_0 space, the following are equivalent.

i)
$$(X,\tau)$$
 is $\hat{\Omega} - D_1$.

ii) (X, τ) has no $\hat{\Omega}$ -neat point.

Proof. $(i) \Rightarrow (ii)$ Since it is $\hat{\Omega} \cdot D_1$, every $x \in X$ is contained in some $D_{\hat{\Omega}}$ -set $U \setminus V, U \neq X, U$ and V are $\hat{\Omega}$ -open sets in X. Since $U \neq X$ and U is $\hat{\Omega}$ -open set containing x and since $x \in X$ is arbitrary, every point of X belongs to some $\hat{\Omega}$ -open set other than X. Therefore, any $x \in X$ is not a $\hat{\Omega}$ -neat point. $(ii) \Rightarrow (i)$ Since X is $\hat{\Omega} \cdot T_0$, for every disjoint pair of points $x, y \in X$, there exists a $\hat{\Omega}$ -open set U containing x but not y. Since every proper $\hat{\Omega}$ -open set is $D_{\hat{\Omega}}$ -set, we have U is $D_{\hat{\Omega}}$ -set. By hypothesis, y is not a $\hat{\Omega}$ -neat point. Therefore, there exists $\hat{\Omega}$ -open set V containing Y such that $V \neq X$. Hence $V \setminus U$ is a $D_{\hat{\Omega}}$ -set containing Y but not X. Therefore, (X, τ) is $\delta \omega - D_1$.

Theorem 5.13 If $f:(X,\tau) \to (Y,\sigma)$ is $\hat{\Omega}$ -irresolute and surjective,then $f^{-1}(A)$ is $D_{\hat{\Omega}}$ -set in X whenever A is $D_{\hat{\Omega}}$ -set in Y.

Proof. If A is $D_{\hat{\Omega}}$ -set in Y ,then by the definition of $D_{\hat{\Omega}}$ -set,there exists $\hat{\Omega}$ -open sets U and V in Y such that

 $A=U\setminus V$ and $U\neq Y$. Since f is $\hat{\Omega}$ -irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are $\hat{\Omega}$ -open sets in X. Since $U\neq Y$ and f is surjective, $X=f^{-1}(Y)\neq f^{-1}(U)$. Also, $f^{-1}(A)=f^{-1}(U)\setminus f^{-1}(V)$. Therefore, $f^{-1}(A)$ is $D_{\hat{\Omega}}$ -set in X.

Theorem 5.14 Let $f:(X,\tau)\to (Y,\sigma)$ be a $\hat{\Omega}$ -irresolute and bijective mapping. If (Y,σ) is $\hat{\Omega}\cdot D_1$, then (X,τ) is $\hat{\Omega}\cdot D_1$.

Proof. Assume that Y is $\hat{\Omega} \cdot D_1$ space and f is a $\hat{\Omega}$ -irresolute and bijective mapping. Suppose that x and y are any pair of distinct points in X. Since f is injective, $f(x) \neq f(y)$ in a $\hat{\Omega} \cdot D_1$ space Y. Therefore, there exists $\hat{\Omega}$ -open sets U and V in Y such that $f(x) \in U$, $f(y) \not\in U$ and $f(y) \in V$, $f(x) \not\in V$. By theorem 5.13, $f^{-1}(U)$ and $f^{-1}(V)$ are $D_{\hat{\Omega}}$ -set in X such that $x \in f^{-1}(U)$, $y \notin f^{-1}(U)$ and $y \in f^{-1}(V)$, $x \notin f^{-1}(V)$. Therefore, X is $\hat{\Omega} \cdot D_1$ space.

Definition 5.15 A topological space (X,τ) is said to be $D_{\hat{\Omega}}$ compact if every cover of X by $D_{\hat{\Omega}}$ sets has finite sub cover.

Theorem 5.16 Let $f:(X,\tau) \to (Y,\sigma)$ be a $\hat{\Omega}$ irresolute and surjective function. If (X,τ) is $D_{\hat{\Omega}}$ compact, then (Y,σ) is $D_{\hat{\Omega}}$ compact.

Proof. Suppose that $\{G_{\alpha}: \alpha \in J\}$ is any indexed family of $D_{\hat{\Omega}}$ sets in X such that $X=\cup_{\alpha \in J}G_{\alpha}$. By theorem 5.13,each $f^{-1}(G_{\alpha})$ is $D_{\hat{\Omega}}$ set in X. Since f is surjective, $X=f^{-1}(Y)=\cup_{\alpha \in J}f^{-1}(G_{\alpha})$. Since X is $D_{\hat{\Omega}}$ compact, there exist a finite set J_0 such that $X=\cup_{\alpha \in J_0}f^{-1}(G_{\alpha})$. Then

$$Y=f(f^{^{-1}}(Y))=\cup_{\alpha\in J_0}f(f^{^{-1}}(G_\alpha))=\cup_{\alpha\in J_0}G_\alpha$$
 . Therefore, Y is $D_{\hat{\mathbf{O}}}$ compact.

Definition 5.17 A topological space (X,τ) is said to be $D_{\hat{\Omega}}$ connected it can not be expressed as the union of two disjoint non empty $D_{\hat{\Omega}}$ sets in X.

Theorem 5.18 Let $f:(X,\tau) \to (Y,\sigma)$ be a $\hat{\Omega}$ -irresolute and surjective function. If (X,τ) is $D_{\hat{\Omega}}$ connected, then (Y,σ) is $D_{\hat{\Omega}}$ connected.

Proof. If $Y=U\cup V$ where U and V are disjoint non empty $D_{\hat{\Omega}}$ sets in Y, then by theorem 5.13, $f^{-1}(U)$ and $f^{-1}(V)$ are $D_{\hat{\Omega}}$ sets in X. Since f is surjective, $f^{-1}(U)$ and $f^{-1}(V)$ are two non empty disjoint $D_{\hat{\Omega}}$ sets whose union is X, a contradiction. Therefore, Y is $D_{\hat{\Omega}}$ connected.

6. $\hat{\Omega}$ - R_0 **AND** $\hat{\Omega}$ - R_1 **SPACES.**

Definition 6.1 A topological space (X,τ) is $\hat{\Omega} - R_0$ if every $\hat{\Omega}$ -open set contains the $\hat{\Omega}cl$ of each of its singletons. That is, for any $\hat{\Omega}$ -open set U in X we have $\hat{\Omega}cl(\{x\}) \subseteq U$ for every $x \in U$.

Definition 6.2 A topological space (X,τ) is $\hat{\Omega} - R_1$ if for any $x,y \in X$ such that $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\})$, there exists disjoint $\hat{\Omega}$ -open sets U and V such that $\hat{\Omega}cl(\{x\}) \subseteq U$ and $\hat{\Omega}cl(\{y\}) \subseteq V$.

Example 6.3 $X = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{b, c, d\}, X\}$

Then $\hat{\Omega}$ -open sets are P(X) Therefore it is $\hat{\Omega}$ - R_0 as well as $\hat{\Omega}$ - R_1 .

Theorem 6.4 A topological space (X, τ) is $\hat{\Omega} - R_0$ if and only if for any $x, y \in X$,

 $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\}) \Rightarrow \hat{\Omega}cl(\{x\}) \cap \hat{\Omega}cl(\{y\}) = \emptyset$ **Proof. Necessity**-Suppose that (X,τ) is $\hat{\Omega} \cdot R_0$ and $x,y \in X$ are such that $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\})$. Then there exists some $z \in \hat{\Omega}cl(\{x\})$ and $z \notin \hat{\Omega}cl(\{y\})$ By[7] theorem 5.11,there exists $\hat{\Omega}$ -open set U containing z but not y. Since $z \in \hat{\Omega}cl(\{x\})$, by [7] theorem 5.11, $x \in U$ and $x \notin \hat{\Omega}cl(\{y\})$. Therefore, $X \setminus \hat{\Omega}cl(\{y\})$ is a $\hat{\Omega}$ -open set containing x. By hypothesis, $\hat{\Omega}cl(\{x\}) \subseteq X \setminus \hat{\Omega}cl(\{y\})$ and hence $\hat{\Omega}cl(\{x\}) \cap \hat{\Omega}cl(\{y\}) = \emptyset$.

Sufficiency- Suppose that U is any $\hat{\Omega}$ -open subset of X and let $x \in U$ be arbitrary point. If $y \notin U$, then

 $y\in X\setminus U$ and hence $x\neq y$.By[7] theorem 5.11, $x\notin \hat{\Omega}cl(\{y\})$. Then $\hat{\Omega}cl(\{x\})\neq \hat{\Omega}cl(\{y\})$. By hypothesis, $\hat{\Omega}cl(\{x\})\cap \hat{\Omega}cl(\{y\})=\varnothing$. Therefore, $y\notin \hat{\Omega}cl(\{x\})$ and hence $\hat{\Omega}cl(\{x\})\subseteq U$. Therefore, every $\hat{\Omega}$ -open set contains $\hat{\Omega}$ -closure of it's every singletons.

Theorem 6.5 A topological space (X, τ) is a $\hat{\Omega} - R_0$ iff $ker_{\hat{\Omega}}(\{x\}) \neq ker_{\hat{\Omega}}(\{y\}) \Longrightarrow ker_{\hat{\Omega}}(\{x\}) \cap ker_{\hat{\Omega}}(\{y\}) = \emptyset$ for every $x, y \in X$.

Proof. Necessity- Suppose that (X,τ) is $\hat{\Omega} - R_0$ and $x,y \in X$ are such that $ker_{\hat{\Omega}}(\{x\}) \neq ker_{\hat{\Omega}}(\{y\})$. Then by lemma 3.4, $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\})$. Assume that $ker_{\hat{\Omega}}(\{x\}) \cap ker_{\hat{\Omega}}(\{y\}) \neq \emptyset$. Then there exists $z \in X$ such that $z \in ker_{\hat{\Omega}}(\{x\})$ and $z \in ker_{\hat{\Omega}}(\{y\})$. Then by lemma 3.3, $z \in ker_{\hat{\Omega}}(\{x\})$ implies that $x \in \hat{\Omega}cl(\{z\})$. Therefore, $x \in \hat{\Omega}cl(\{x\}) \cap \hat{\Omega}cl(\{z\})$ and hence by theorem 6.4, $\hat{\Omega}cl(\{x\}) = \hat{\Omega}cl(\{z\})$. Similarly by lemma 3.3, $z \in ker_{\hat{\Omega}}(\{y\})$ implies that $y \in \hat{\Omega}cl\{z\}$ Therefore $y \in \hat{\Omega}cl(\{y\}) \cap \hat{\Omega}cl(\{z\})$ and hence by 6.4, $\hat{\Omega}cl(\{y\}) = \hat{\Omega}cl(\{z\})$. Therefore, $\hat{\Omega}cl(\{x\}) = \hat{\Omega}cl(\{z\})$ and hence by $\hat{\Omega}cl(\{y\}) = \hat{\Omega}cl(\{z\})$, a contradiction. Hence, $ker_{\hat{\Omega}}(\{x\}) \cap ker_{\hat{\Omega}}(\{y\}) = \emptyset$.

Sufficiency-Let $x, y \in X$ be $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\})$. By lemma 3.4, $ker_{\hat{\Omega}}(\{x\}) \neq ker_{\hat{\Omega}(\{y\})}$.

By hypothesis, $ker_{\hat{O}}(\{x\}) \cap ker_{\hat{O}}(\{y\}) = \emptyset$.

If $\hat{\Omega}cl(\{x\}) \cap \hat{\Omega}cl(\{y\}) \neq \emptyset$, then there exists $z \in X$ such that $z \in \hat{\Omega}cl(\{x\})$ and $z \in \hat{\Omega}cl(\{y\})$. By lemma 3.3, $x \in ker_{\hat{\Omega}}(\{z\})$ and $y \in ker_{\hat{\Omega}}(\{z\})$. Therefore, $x \in ker_{\hat{\Omega}}(\{x\}) \cap ker_{\hat{\Omega}}(\{z\})$ and $y \in ker_{\hat{\Omega}}(\{y\}) \cap ker_{\hat{\Omega}}(\{z\})$. By hypothesis, $ker_{\hat{\Omega}}(\{x\}) = ker_{\hat{\Omega}}(\{y\}) = ker_{\hat{\Omega}}(\{z\})$, a contradiction. Therefore $\hat{\Omega}cl(\{x\}) \cap \hat{\Omega}cl(\{y\}) = \emptyset$. By theorem 6.4, (X, τ) is a $\hat{\Omega} - R_0$.

Theorem 6.6 In a topological space (X, τ) , the following statements are equivalent.

i) (X, τ) is a $\hat{\Omega}$ - R_0 space.

ii)For any non-empty set A and $U\in \hat{\Omega}O(X)$ such that $A\cap U\neq \emptyset$, there exists $F\in \hat{\Omega}C(X)$ such that $A\cap F\neq \emptyset$. and $F\subseteq U$. iii) $U=\bigcup\{F\in \hat{\Omega}C(X): F\subseteq U\}$ for every $U\in \hat{\Omega}O(X)$. iv) $F=\bigcap\{U\in \hat{\Omega}O(X): F\subseteq U.\}=ker_{\hat{\Omega}}(F)$ for every $F\in \hat{\Omega}C(X)$.

v) $\hat{\Omega}cl(\{x\}) \subseteq ker_{\hat{\Omega}}(\{x\})$ for any $x \in X$.

Proof. $(i) \Rightarrow (ii)$ Let A be any non-empty set and $U \in \hat{\Omega}O(X)$ be such that $A \cap U \neq \emptyset$. Choose $x \in A \cap U$, by hypothesis, $\hat{\Omega}cl(\{x\}) \subseteq U$. If $F = \hat{\Omega}cl(\{x\})$, then by [7] remark 5.2, $F \in \hat{\Omega}C(X)$ such that $A \cap F \neq \emptyset$ and $F \subseteq U$.

 $(ii)\Longrightarrow (iii)$ Suppose that $U\in \hat{\Omega}O(X)$. Then for every $x\in F\in \hat{\Omega}C(X), F\subseteq U, x\in U$ and hence $\bigcup\{F\in \hat{\Omega}C(X): F\subseteq U.\}\subseteq U.$ On the other hand, suppose that x is an arbitrary point of U. If we define $A=\{x\}$, then by hypothesis, there exists $F\in \hat{\Omega}C(X)$, such that $x\in F$ and $F\subseteq U.$ Therefore, $U\subseteq \bigcup\{F\in \hat{\Omega}C(X): F\subseteq U.\}$

arbitrary

 $x \in X$

(iii) ⇒ (iv) It is obvious

 $(iv) \Rightarrow (v)$ Let

 $y \notin ker_{\hat{\Omega}}(\{x\})$. Then there exists $U \in \hat{\Omega}O(X)$ containing $\{x\}$ but not y. Therefore $\{y\} \subseteq U^c$ and U^c is a $\hat{\Omega}$ -closed set in X.By[7] theorem 5.3, $\hat{\Omega}cl(\{y\}) \subseteq \hat{\Omega}cl(U^c) = U^c$ and hence $\hat{\Omega}cl(\{y\}) \cap U = \emptyset$. By hypothesis, $\hat{\Omega}cl(\{y\}) = ker_{\hat{\Omega}}(\hat{\Omega}cl(\{y\}))$ hence $ker_{\hat{\Omega}}(\hat{\Omega}cl(\{y\})) \cap U = \emptyset$. Since $x \in U, x \notin ker_{\hat{\Omega}}(\hat{\Omega}cl(\{y\}))$. Therefore, there exists $G \in \hat{\Omega}O(X)$ containing $\hat{\Omega}cl(\{y\})$ but not X. Hence $\{x\} \subset G^c$ and G^c is a $\hat{\Omega}$ -closed set in X.By[7] remark $5.2, \hat{\Omega}cl(\lbrace x \rbrace) \subset \hat{\Omega}cl(G^c) = G^c.$ That $\hat{\Omega}cl(\{x\}) \cap G = \emptyset$. By[7] theorem 5.11, $y \notin \hat{\Omega}cl(\hat{\Omega}cl(\{x\})) = \hat{\Omega}cl(\{x\}).$ $\hat{\Omega}cl(\{x\}) \subseteq ker_{\hat{\Omega}}(\{x\}).$

 $(v)\Longrightarrow (i)$ Let U be any $\hat{\Omega}$ -open set and $x\in U$ be arbitrary point.By v), $\hat{\Omega}cl(\{x\})\subseteq ker_{\hat{\Omega}}(\{x\})$ and hence $\hat{\Omega}cl(\{x\})\subseteq U$. Thus, U contains $\hat{\Omega}$ -closure of each of it's singletons. Therefore, (X,τ) is a $\hat{\Omega}$ - R_0 space.

Corollary 6.7 In a topological space (X,τ) , the following statements are equivalent.

i) (X, τ) is a $\hat{\Omega}$ - R_0 space.

ii)
$$\hat{\Omega}cl(\{x\}) = ker_{\hat{\Omega}}(\{x\})$$
 for all $x \in X$.

Proof. $(i) \Rightarrow (ii)$ Suppose that (X, τ) is a $\hat{\Omega} - R_0$ space. By theorem 6.6, $\hat{\Omega}cl(\{x\}) \subseteq ker_{\hat{\Omega}}(\{x\})$ for all $x \in X$. On the other hand, let $y \in ker_{\hat{\Omega}}(\{x\})$, then by lemma 3.3, $x \in \hat{\Omega}cl(\{y\})$. Therefore,

 $x \in \hat{\Omega}cl(\{x\}) \cap \hat{\Omega}cl(\{y\})$. By theorem 6.4, $\hat{\Omega}cl(\{x\}) = \hat{\Omega}cl(\{y\})$ and hence $y \in \hat{\Omega}cl(\{x\})$. Therefore, $ker_{\hat{\Omega}}(\{x\}) \subseteq \hat{\Omega}cl(\{x\})$. (ii) \Rightarrow (i) It follows from theorem 6.6.

Definition 6.8 A topological space (X, τ) is $\hat{\Omega}$ -symmetric if for each $x, y \in X, x \in \hat{\Omega}cl(\{y\})$ implies that $y \in \hat{\Omega}cl(\{x\})$.

Theorem 4.9 A topological space (X,τ) is $\hat{\Omega}$ - R_0 if and only if it is $\hat{\Omega}$ -symmetric.

Proof. Necessity- Suppose that (X, τ) is $\hat{\Omega} - R_0$ and $x \in \hat{\Omega}cl(\{y\})$. Let U be any $\hat{\Omega}$ -open set such that $y \in U$. By hypothesis, $\hat{\Omega}cl(\{y\} \subseteq U)$ and hence $x \in U$. By[7] theorem 5.11, $y \in \hat{\Omega}cl(\{x\})$.

Sufficiency-Let U be any $\hat{\Omega}$ -open set and $x \in U$ be arbitrary point.If $y \notin U$, then by[7] theorem 5.11, $x \notin \hat{\Omega}cl(\{y\})$. By hypothesis, $y \notin \hat{\Omega}cl(\{x\})$. Therefore, $\hat{\Omega}cl(\{x\} \subseteq U)$ and hence (X,τ) is $\hat{\Omega} \cdot R_0$.

Theorem 6.10 In a topological space (X, τ) , the following statements are equivalent.

i) (X, τ) is a $\hat{\Omega}$ - R_0 space.

ii)For any $F \in \hat{\Omega}C(X)$ and $x \in F$, $ker_{\hat{\Omega}}(\{x\} \subseteq F)$.

iii) For $x \in X$, $ker_{\hat{\Omega}}(\{x\}) \subseteq \hat{\Omega}cl(\{x\})$.

Proof. $(i) \Rightarrow (ii)$ Let $F \in \hat{\Omega}C(X)$ and $x \in F$. By lemma 3.5, and by theorem 6.6 (iv), $ker_{\hat{\Omega}}(\{x\}) \subseteq ker_{\hat{\Omega}}(F) = F$. So, $ker_{\hat{\Omega}}(\{x\} \subseteq F)$.

 $(ii) \Rightarrow (iii)$ By [7] remark 5.2, $\hat{\Omega}cl(\{x\})$ is $\hat{\Omega}$ -closed set containing x. By hypothesis, $ker_{\hat{\Omega}}(\{x\} \subseteq \hat{\Omega}cl(\{x\}))$.

(iii)
$$\Rightarrow$$
 (i)Let $\mathbf{x} \in \hat{\Omega}$ cl({y}).By 3.3 $y \in ker_{\hat{\Omega}}(\{x\})$

.Therefore,X is $\,\hat{\Omega}$ -symmetric.By theorem 6.9,X is $\,\hat{\Omega}$ - R_0 .

Theorem 6.11 (X, τ) is $\hat{\Omega}$ - T_1 if and only is it is $\hat{\Omega}$ - T_0 and $\hat{\Omega}$ - R_0

Proof.Necessity- Suppose that X is $\hat{\Omega}$ - T_I .By remark 3.9,X is $\hat{\Omega}$ - T_0 -space.By theorem 4.4, $\{x\} = \hat{\Omega} \operatorname{cl}(\{x\}) = \ker_{\hat{\Omega}}(\{x\})$ for all x in X. Therefore by theorem 6.10,X is $\hat{\Omega}$ - R_0 .

Sufficiency-Let x and y be any two distinct points in X. Since X is $\hat{\Omega}$ -T_o,there exists $U \in \hat{\Omega}O(X)$ such that $x \in U$ but not y.By [7] theorem 5.11, $x \notin \hat{\Omega}cl(\{y\})$.By theorem 6.9, $y \notin \hat{\Omega}cl(\{x\})$. Agai [7] by theorem 5.11,there exists $\hat{\Omega}$ -open set V containing y which does not intersect $\{x\}$. Therefore, X is $\hat{\Omega}$ -T₁.

Theorem 6.12 Every $\hat{\Omega}$ - R_1 -space is $\hat{\Omega}$ - R_0 .

Proof. Suppose that X is $\hat{\Omega}$ - R_1 and G is any

 $\hat{\Omega}$ -open set in X.Let x be any point of X.Then for each $y \in X \backslash G$, $x \neq y$. By hypothesis, there exists disjoint $\hat{\Omega}$ -open sets U_x and V_y such that $\hat{\Omega}cl(\{x\}) \subset U_x$ and $\hat{\Omega}cl(\{y\}) \subset U_y$. If $V = \{V_y : y \in X \backslash G\}$, then V is a $\hat{\Omega}$ -open set in X and hence X\V is $\hat{\Omega}$ -cloed set in X containing x ecause $x \notin V_y$ for every y in X\G.By [7] remark 5.2, $\hat{\Omega}cl(\{x\})$ is the smallest $\hat{\Omega}$ -closed set containing x.Therefore, $\hat{\Omega}cl(\{x\}) \subseteq X \backslash V \subseteq G$. Thus, X is $\hat{\Omega}$ -R_o-space.

Theorem 6.13.If $\hat{\Omega}$ -R_o space is such that for each pair of points x and y with $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\})$, then there exists $\hat{\Omega}$ -open sets U and V containing x and y respectively.

The next theorem states the characterization of $\hat{\Omega}$ - R_1 - space.

Theorem 6.14 A topological space X is $\hat{\Omega} - R_1$ if and only if for each pair of x and y with $\ker_{\hat{\Omega}}(\{x\}) \neq \ker_{\hat{\Omega}}(\{y\})$, there

exists $\hat{\Omega}$ -open sets U and V such that $\hat{\Omega}cl(\{x\}) \subseteq U$ and $\hat{\Omega}cl(\{y\}) \subseteq V$.

Proof.Necessity-Suppose that X is $\hat{\Omega} - R_1$ and x and y are any two points suchthat $\ker_{\hat{\Omega}}(\{x\}) \neq \ker_{\hat{\Omega}}(\{y\})$. By lemma 3.4, $\hat{\Omega} \operatorname{cl}(\{x\}) \neq \hat{\Omega} \operatorname{cl}(\{y\})$. By the definition of $\hat{\Omega} - R_1$ space, there exists disjoint $\hat{\Omega}$ -open sets U and V such that $\hat{\Omega} \operatorname{cl}(\{x\}) \subseteq U$ and $\hat{\Omega} \operatorname{cl}(\{y\}) \subseteq V$.

Sufficiency-Let x and y be any two points of X such that $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\})$. By lemma 3.4, $\ker_{\hat{\Omega}}(\{x\}) \neq \ker_{\hat{\Omega}}(\{y\})$. By hypothesis, there exists disjoint $\hat{\Omega}$ -open sets U and V such that $\hat{\Omega}cl(\{x\}) \subseteq U$ and $\hat{\Omega}cl(\{y\}) \subseteq V$.

Theorem 6.15 The following statements are equivalent in a topological space X.

- i) X is $\hat{\Omega}$ -T₂-space.
- ii) X is $\hat{\Omega}$ R_1 and $\hat{\Omega}$ -T1.
- iii) X is $\hat{\Omega}$ R_1 and $\hat{\Omega}$ -T_o.

proof. i) \Rightarrow ii) Suppose that X is $\hat{\Omega}$ -T₂-space.By remark 3.9,it is $\hat{\Omega}$ -T₁-space.Therefore,it is enough to show that $\hat{\Omega}$ -R₁ space.Let x and y are any two distinct p[oints in X such that $\hat{\Omega}$ cl({x}) $\neq \hat{\Omega}$ cl({y}) .By theorem 4.4, $\{x\} = \hat{\Omega}$ cl({x}) $\neq \hat{\Omega}$ cl({y}) = {y} .Since X is $\hat{\Omega}$ -T₂, there

exists disjoint $\hat{\Omega}$ -open sets U and V such that $\hat{\Omega}cl(\{x\}) \subseteq U$ and $\hat{\Omega}cl(\{y\}) \subseteq V$. Hence, X is $\hat{\Omega}$ - \mathbb{R}_1 -space.

- ii) \Rightarrow iii) It follows from definition.
- iii) \Rightarrow i) Suppose that X is $\, \hat{\Omega}$ $R_{1}^{}$ and $\, \hat{\Omega}$ $T_{o}^{}.$

Let x and y be any two distinct points in X.By theorem 4.1, $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\}) \text{ .Since X is } \hat{\Omega} - R_1,$

there exists disjoint $\hat{\Omega}$ -open sets U and V *such that* $\hat{\Omega}cl(\{x\}) \subseteq U$ and $\hat{\Omega}cl(\{y\}) \subseteq V$. By theorem 6.11,X is

 $\hat{\Omega}$ -T₁.By theorem 4.4, $x = \hat{\Omega}cl(\{x\})$ and $y = \hat{\Omega}cl(\{y\})$. Therefore, $\hat{\Omega}$ -T₂ axiom is satisfied and hence X is $\hat{\Omega}$ -T₂.

Theorem 6.16 A topological space (X, τ) is $\hat{\Omega} - R_1$ if and only if for each pair of points x and y with $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{x\})$, there exists two $\hat{\Omega}$ -closed sets P and Q such that $x \in P, y \notin P$ and $y \in Q, x \notin Q$ and $X = P \cup Q$.

Proof. Necessity- Suppose that (X,τ) is $\hat{\Omega} - R_1$ -space. Let x and y be any two points such that $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{x\})$. By hypothesis, there exists two disjoint $\hat{\Omega}$ -open sets U and V such that $\hat{\Omega}cl(\{x\}) \subseteq U$ and $\hat{\Omega}cl(\{y\}) \subseteq V$. If $P = X \setminus V$ and $Q = X \setminus U$, then P and Q are $\hat{\Omega}$ -closed sets such that $x \in P, y \notin P$ and $y \in Q, x \notin Q$. Since every $x \in X$ belongs to either P or $Q, X = P \cup Q$.

Sufficiency- Let x,y be any two points in X such that $\hat{\Omega}cl(\{x\}) \neq \hat{\Omega}cl(\{y\})$. By hypothesis,there exists two $\hat{\Omega}$ -closed sets P and Q such that $x \in P, y \notin P$ and $y \in Q, x \notin Q$ and $X = P \cup Q$. If $U = X \setminus Q$ and $V = X \setminus P$, then U and V are disjoint $\hat{\Omega}$ -open sets such that $x \in U$ and $y \in V$. Therefore, (X,τ) is $\hat{\Omega}$ - T_2 -space.By theorem 6.15 it is $\hat{\Omega} - R_1$.

7. CONCLUSION

In this paper some properties of weaker seperation axioms for $\hat{\Omega}$ -closed set are derived and their characterizations are proved.

8. REFERENCES

- [1] Caldas,M.,Fukutake,T.,Jafari,S.,Noiri,T."Some applications of δ -pre open sets in topological spaces," Bull.Inst.Math.Aca.Sinica,33,(3),2005, 267-276.
- [2] Caldas,M.,Jafari,S. "On δ D-sets and Associated weak Separation Axioms," Bulletin of the Malaysian

- Mathematical Sciences Society(second series) 25, (2002) 173-185.
- [3] Davis, A..S. "Indexed systems of neighbourhoods for general Topological Spaces," American Mathematical Monthly, 68 (1961).
- [4] Dube, K.K."A note on R_0 Topological Spaces," Math.Vesnik,11,(1974) 203-208.
- [5] Jain ,R.C."The role of regularity open sets in general topology," Ph.D.Thesis, Meerut University, Institute os Advaced Studies, Meerut, India.
- [6] Kar ,A.,Bhattacharyya, P."Some weak separation axioms" Bull. Calcutta Math.Soc,82,1990,415-422.
- [7] Lellis Thivagar, M., Anbuchelvi ,M."Note on $\hat{\Omega}$ sets in topological spaces" (Accepted).
- [8] Lellis Thivagar, M.Anbuchelvi,M. " New spaces and continuity via $\hat{\Omega}$ -closed sets,"(Communicated).
- [9] Levin ,N. "Semi open stets and semi continuity in topological spaces",Amer.math.monthly ,70,1963,36-41.
- [10] Mashhour, AS.ME Abd El-Monsef and SN El-Deep .(1982) "On pre continuous and weak pre continuous functions," Proc.Math.Phys.Soc.Egypt, 53,47-53.
- [11] Nour ,T.M.J. "Contributions to the theory of bitopological spaces ," Ph.D.thesis University of Delhi.1989.
- [12] Raychaudhuri ,S.,Mukherjee ,M.N."On δ -pre open sets," Bull.Inst.Math.Aca.Sinica-21,1993, 357-366.
- [13] Shanin ,N.A. "On Separation in Topological Spaces," Dokl.Akad.Nbd SSSR 38,(1943),110-113.
- [14] Velico,N,V." H closed topological spaces," Amer.math.soc.Trans,78,1968,103-18.