
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.6, November 2012

9

 BioPCD - A Language for GUI Development Requiring a

Minimal Skill Set

Graham GM Alvare
Dept of Plant Science
University of Manitoba

Winnipeg, MB. Canada. R3T 2N2

Abiel Roche-Lima
Dept of Computer Science

University of Manitoba Winnipeg
MB. Canada. R3T 2N2

Brian Fristensky
Dept of Plant Science
University of Manitoba

Winnipeg, MB. Canada. R3T 2N2

ABSTRACT

BioPCD is a new language whose purpose is to simplify the

creation of Graphical User Interfaces (GUIs) by biologists

with minimal programming skills. The first step in developing

BioPCD was to create a minimal superset of the language

referred to as PCD (Pythonesque Command Description).

PCD defines the core of terminals and high-level non-

terminals required to describe data of almost any type.

BioPCD adds to PCD the constructs necessary to describe

GUI components and the syntax for executing system

commands. BioPCD is implemented using JavaCC to convert

the grammar into code. BioPCD is designed to be terse and

readable and simple enough to be learned by copying and

modifying existing BioPCD files. We demonstrate that

BioPCD can easily be used to generate GUIs for existing

command line programs. Although BioPCD was designed to

make it easier to run bioinformatics programs, it could be

used in any domain in which many useful command line

programs exist that do not have GUI interfaces.

General Terms

Bioinformatics

Keywords

Graphical User Interfaces; Languages; Formal grammar;

Human-Computer Interaction; Computational Biology;

Bioinformatics

1. INTRODUCTION

At a time when a popular slogan is “there’s an app for that”,

we often take for granted the fact that most human interaction

with computers is through Graphical User Interfaces (GUI). It

is easy to forget that extensive knowledge of programming

and software engineering is needed to create applications with

GUIs.

Integrated Development Environments (IDEs) such as

NetBeans http://www.netbeans.org and Eclipse

http://www.eclipse.org contain GUI builders, in which

GUI components are manipulated within a GUI, and the

corresponding code is generated by the IDE. While GUI

builders make it easier to write GUIs, they still require a

substantial knowledge of a programming language and of

software engineering practices.

Because of the skill set required to create a GUI, software in

fields such as biology are often written as command line

programs. At the same time, it is often impossible to find

software engineers with enough appreciation of the biological

domain who could re-write the program with a GUI.

Bioinformaticians often need to assemble data pipelines using

many programs written independently by many authors in

many languages. Because of rapid advancement in the field,

there are always new programs appearing in the literature that

replace the current existing “favorite” of researchers working

in that field. The work required to modify an existing GUI to

handle the new program is also a limiting factor. An

additional problem is that many programs are not written with

extensibility in mind.

The need for easy ways to create GUIs is particularly

important in bioinformatics. Bioinformatics is an

interdisciplinary field, in which computer methodologies are

applied to the analysis of biological data. The most critical

limiting factor in bioinformatics is not computational, but

rather human. The complexity of the data, along with the

enormous datasets generated, often push the limits of

computer resources and algorithmic rigor. However, few

biologists have any formal training in computers. Thus, the

user group with the greatest need for simple GUI interfaces to

complex data pipelines with numerous parameters is not in the

position to create them. At the same time, few computer

scientists have the necessary background to appreciate the

biological subtleties that must be reflected in how the program

is presented to the end user.

There have been a few attempts at addressing this problem in

the past by creating what could be considered to be a

programmable GUI. The EMBOSS package of programs for

molecular biology uses a syntax known as ACD to

automatically generate menus for running programs through a

web browser [1]. JEMBOSS, a Java desktop application, can

also read ACD to create menus for running EMBOSS

programs [2]. Kaptain, http://kaptain.sourceforge.net is
a system for generating graphic interfaces for command line

programs using grammar scripts. Similarly, web-based

interfaces to over 200 applications have been generated using

Pise, which creates HTML interfaces from XML definitions

of program parameters [3]. Finally, the Taverna workbench is

a Java application in which complex data workflows can be

created by linking together icons representing web services

available at both local and remote sites [4].

The most flexible programmable GUI in bioinformatics is

GDE [5,6], which has a simple syntax for writing menus that

does not require formal training in programming. It worked

well for what it did, but had limited functionality. While GDE

is an open source application which could, in principle, be

revised, the parsing logic was written in C in the early 1990s,

within an X11 program that depended upon what are now

obsolete libraries. No formal grammar exists to describe the

menus.

In the spirit of GDE, we have created a formal grammar to

describe the means by which GUI menus are created from

panels, labels and widgets, which correspond to parameters

that are passed to shell commands. This language is referred

http://www.netbeans.org/
http://www.eclipse.org/
http://kaptain.sourceforge.net/

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.6, November 2012

10

to as BioPCD. Because it is described in a formal grammar

and compiled into Java by JavaCC, BioPCD is platform

independent. We will first introduce a simple example,

showing how BioPCD can be used to specify a GUI that runs

a program, and then go on to describe BioPCD in a more

formal way. We have used BioPCD to create BioLegato, a

programmable GUI for molecular biology. BioLegato is

written in Java and distributed as part of the BIRCH system

for bioinformatics [7]. The details of BioLegato will be

described in a separate publication.

2. A SIMPLE EXAMPLE

Suppose we need a GUI to run a program called blrevcomp.

blrevcomp reads a single stranded DNA sequence from an

input file, and creates the inverse complement using the base-

pairing rules of Watson and Crick, which is then written to an

output file. In double-stranded DNA molecules, A pairs with

T, and G pairs with C , which represent, respectively, the

nucleotide bases Adenine, Thymine, Guanine and Cytosine.

Thus, if the input strand is 5’ATTCGGGC3’, then the

complementary strand is written as 3’TAAGCCCG5’. (5’ and

3’ refer to the locations of the 5’ and 3’ phosphates, which are

used to determine the orientation of nucleotides in a DNA

strand). We further add the condition that blrevcomp has a

number of command line options that may be included in the

command string. Thus, the command we would like the

program to run might be

blrevcomp -c infile outfile

where the -c option tells blrevcomp to create a strand

complementary to the input strand.

For the purposes of this paper, we describe BioPCD within

the context of a programmable GUI that we have developed

called BioLegato. Briefly, BioLegato is Java application in

which BioPCD menus are chosen from a pulldown list. Figure

1A shows an example of a GUI that could be used for running

blrevcomp. The corresponding BioPCD code is given in

Figure 1B. In essence, the task of the menu is to build a

command to be executed by the shell, by substituting strings

from the var blocks into the “shell” command. The Strand

buttons in the GUI are specified in a “var” block, which sends

a choice of any of three command line options to the

command string. Another “var” block labeled “gdeoutput”

gives the user a choice of two output options. The

“gdeoutput” block illustrates the fact that even complex

statements can be substituted into the shell command line. In

this case, the default value of “No” would substitute into the

command string code to rename the output file to “out1”. In

this case, “out1” is defined as a tempfile whose direction is

“out”, meaning that it is output that can be read directly into

the current BioLegato window. In the example, the user has

clicked on “Yes”, which launches a new BioLegato window.

Since the output is DNA, the ‘bldna’ script is called, which

launches BioLegato using DNA-appropriate BioPCD menus.

Figure 1. A. Example of PCD menus implemented in the BioLegato application. Top: The BioLegato window at top can run

tasks specific for DNA sequences. The tasks are organized into categories (eg. Similarity, Database, Patterns) using pull-down

menus. In the example, the blrevcomp program has been chosen from the DNARNA pull down menu, causing the blrevcomp

menu to be displayed (center). The contents of menus such as blrevcomp are read at runtime from BioPCD files, an example of

which is shown in B. In this example, the Run button tells BioLegato to run blrevcomp using the selected DNA sequence as

input, and send output (the complementary DNA sequence) to a new BioLegato window (bottom). In effect, the user is

performing data pipelining using a point and click interface, a process we refer to as ad hoc data pipelining.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.6, November 2012

11

name "blrevcomp - reverse and complement"

var "in1"

 type tempfile

 direction in

 format flat

var "strand"

 type chooser

 label "Strand"

 default 0

 choices

 "reverse complement" "-r"

 "complement only" "-c"

 "flip (reverse only)" "-f"

var "out1"

 type tempfile

 direction out

 format flat

var "gdeoutput"

 type chooser

 label "Output to new bldna window?"

 default 1

 choices

 "Yes" "(echo '' > %out1%; bldna %in1%.blrevcomp; $RM_CMD -f %in1%.blrevcomp)&"

 "No" "mv %in1%.blrevcomp %out1%"

panel

 var "Run"

 type button

 label "Run"

 shell "blrevcomp %STRAND% %in1% %in1%.blrevcomp; $RM_CMD %in1%; %GDEOUTPUT%"

 close true

 var "Help"

 type button

 label "Help"

 shell "$BIRCH/script/gde_help_viewer.csh $BIRCH/doc/bioLegato/blrevcomp.html"

 close false

Figure 1. B. PCD code used to implement the blrevcomp menu. Note that while the default value for Strand is “reverse

complement” “-r”, the window above shows that the user has checked “complement only”, which would cause the “-c” option

to be substituted into the command line.

This aspect of BioPCD illustrates an important capability

inherent in BioPCD, which we refer to as ad hoc pipelining.

Simply put, ad hoc pipelining is the use of output from one

GUI program as input to another GUI program. The pipe ‘|’ is

one of the most powerful aspects of the Unix shell, because in

principal, any number of commands on the system could be

piped to any other command. In typical end user applications,

exporting and importing between applications is awkward.

BioPCD makes it easy to send data to any other program. In

Figure 1, the DNA output generated from one instance of

BioLegato is used as input to launch another instance of

BioLegato, meaning that all of BioLegato’s DNA functions

are now available for use on the output. If the output had been

text, it could have been sent to a text editor. If the output was

HTML, it could be viewed in a web browser.

3. PCD FORMAL SYNTAX

The first step in creating BioPCD was to create a superset of

the language referred to as PCD (Pythonesque Command

Description). Much as XML is a superset of a large family of

markup languages including HTML, PCD is a superset of

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.6, November 2012

BioPCD. PCD defines the core of terminals and high-level

non-terminals required to describe a data of almost any type.

BioPCD is adds to PCD the constructs necessary to describe

GUI components and the syntax for executing system

commands. A “skeleton” PCD parser program is found at the

URL listed in Appendix 1.

3.1. Terminals (as regular expressions)

All of the below types in PCD are written as regular

expressions. The format of these expressions are the same as

they would be specified in Perl (see

http://perldoc.perl.org/perlre.html).

<bool> ::= true

 ::= false

<text> ::= ”([^”]|””)*"

<id> ::= [^”]+

<number> ::= [0-9]+\.?[0-9]*

<comment> ::= #[^\n]*

3.2. Non-terminal productions

PCD code is defined in blocks as follows:

<block> ::= <field> <indent+1>

 <block> <indent-1>

 ::= <field> <value>

 ::= <block> <indent> <block>

<field> ::= <data>

<value> ::= <data>

<data> ::= <bool>

 ::= <text>

 ::= <id>

 ::= <number>

The above tags work similarly to Python, in that indentation

defines the scope of parameters. Where this differs from

Python is that the indentation is fixed at four spaces per indent

level. This prevents the mixing of tabs and spaces for

indentation, which is a common problem in Python.

<indent> means to add a new line character and maintain the

same indentation level, while <indent+1> indicates that the

indentation of the line should be increased by one indentation

unit, and <indent-1> indicates that the indentation of the line

should be decreased by one indentation unit. Terminal

symbols are separated by whitespace, and the only whitespace

that is specified in the grammar below are newlines and their

indentation effect. Comments may be interspersed at the end

of any line.

4. APPLICATION OF BIOPCD – THE

BIOLEGATO MENU LANGUAGE

4.1 Working assumptions

BioPCD is designed around two working assumptions to

allow for flexibility. The source of the data is unspecified, but

is assumed to be data selected elsewhere within an

application. This makes BioPCD fit within a range of possible

applications. It would even allow BioPCD to be implemented

in the context of a web browser. The menu could be

implemented as an application with a single standalone

window, is assumed to be a file exported by the parent

application, given a temporary name (eg. "in1" in Figure 1B.)

or as a panel within a larger application, such as BioLegato.

4.2 The Elements of BioPCD

BioLegato is implemented in JavaCC, which allows semantics

checking in its parser. In BioPCD every block is distinct in

what it can contain. The only identifiers currently supported

are predefined keywords, and the only fields that are not

keywords are those in the choices subsection, most of the

fields must be specified in a specific order (with the exception

of panel, var, and table). In the root scope (level zero),

the following declarations are allowed (all are optional):

name, icon, tip, exec, system. These tags

correspond to the name of the menu item, the icon for the

menu item, the tooltip text for the menu item, and the

execution command for the menu item, respectively. The exec

tag is used only for BioPCD commands which do not require

the user to enter any parameters. These commands are

launched immediately when the user clicks on the menu item

(the user is not prompted for any input). Additionally, var,

panel, tabset may be specified in the root scope

multiple times in any order after the other tags.

The tabset tag is used to indicate that a tabbed pane be

created, and a tab created for each child tab tag. Each tab

tag, may in turn contain multiple var tags (widgets). See

Figure 2A and 2B for an example.

The panel tag is used to create a panel for housing widgets.

Panels are used to place more than one widget on the same

line.

The system tag is accompanied by a list of computing

platforms on which the menu should appear. This tag is useful

if a program to be called from the shell command is only

available on some platforms but not others. By default the

menu item should appear on all platforms. If a system tag is

provided, then the menu will only appear on the specified

platform(s). An example of its usage is:

system

 solaris

 linux x86_64,x86

 osx x86

The set of tags corresponding to valid platform choices are

implementation dependent. In the current version of

BioLegato, the following operating system tags are allowed:

solaris, linux, osx, windows; and the following

architecture tags can be paired with a system tag: sparc,

x86_64, amd64, intel, x86.

The var tag is the most versatile of all of the tags presented

thus far. The var tag is used to specify program parameters

(aka. Variables, or widgets) for the most part. The only

exception to this is program buttons, which use the var tag,

but are not parameters. Rather, program buttons are used to

run commands using the program parameters specified by

other var tags. The var field is specified as follows:

var "source"

 type chooser

http://perldoc.perl.org/perlre.html

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.6, November 2012

 label "Source"

 default 1

 choices

 "Commercial" "C"

 "All" "A"

Note that each var tag has a name associated with it. The

name for a var tag is specified on the same line as the var

tag. In the case above, the name of the var tag is source.

This means that whenever %source% is encountered in an

exec field or a shell field, it is replaced with whatever

choice is selected in the variable. In the above example, the

variable is a drop-down box with two options

(“Commercial” and “All”). Therefore, if the user were to

select “Commercial” and click a button to perform a

command, each instance of %source% in the button’s

command would be replaced with “C” (the value associated

with "Commercial").

Each var tag must have a defined set of parameters in

BioLegato, depending on what type of variable the var tag

represents. For instance, using the chooser example above,

each chooser variable must have the fields type and

choices; type specifies what type of variable “Source” is,

and choices specifies which choices should be available

to the user. The fields default and label are optional

fields, which specify the default value to select in the

chooser (the first value the user will see selected before he

or she changes it), and the text to display to the left of the

chooser (this is so the user can understand what parameter

the chooser is selecting for the program defined by the

BioPCD menu).

The following list contains all of the var tag types currently

supported in BioLegato, with examples of possible values.

The parameters each var tag supports are listed below each

type. Each parameter below must be specified in the exact

order that they are listed within each var type description (e.g.

for buttons - type then label, then shell, then close). The tags

are in bold, explanations are italicized, and optional

parameters are enclosed in brackets []:

Buttons:

 type button

 [label “the text for the button”]

 shell “the command to execute”

 [close false]

whether to close the parameter

window when the button is clicked

Chooser, Comboboxes, or Lists:

 type chooser or list or combobox

 [label “what to call the choser”]

 [default 0] the default selection

 choices

 “abc” “1”

each choice should be specified

as “name” “value” - i.e., the

name specifies what the user

will see, whereas the value

specifies the string

substituted into the shell

command.

Text (textboxes):

 type text

 [label “what to call the text box”]

 [default “the default text”]

Number:

 type number

 [label “what to call the text box”]

 min 0

 max 10000

the minimum and maximum numbers

selectable by the number widget

 [default 0]

External Files/Directories specified by the user:

 type file or dir for directories

 [default “the default filename”]

Temporary files containing data exported from BioLegato’s

main canvas:

 type tempfile

 direction out (or in)

specifies whether the file will be

read as input for the program (in),

or for BioLegato (out).

 format fasta

the file format used – e.g. csv,

tsv, fasta, flat, gde, genbank

 [save true]

whether the file should be “saved”

after program execution

 [overwrite true]

whether the selection in the canvas

should be overwritten by the file

content - out only.

 [content canvas] or selection.

whether the data written to the file

comes from the canvas's entire

contents (canvas) or current

selection (selection) – in only.

BioPCD is case-insensitive for two reasons. First, we felt that

the flexibility gained by case-sensitivity was outweighed by

the frequency with which it results in errors. For example,

even experienced Python programmers will often have

difficulty recalling that ‘True’ is a boolean value, whereas

‘true’ is not. Also, case-sensitivity adds the potential for

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.6, November 2012

generating errors when identical words, which only differ

only in their case, are defined differently multiple times.

4.3 JavaCC grammar for BioPCD

A JavaCC grammar contains both the semantic and the

syntactic definition for a language. JavaCC compiles the

grammar into Java code, which parses the language. In order

to change the grammar, one only needs to modify the JavaCC

code. The current grammar for BioPCD is available at the

URL listed in Appendix 2.

4.4. Examples

The BLASTP [8] program has a large number of parameters,

which we have visually organized into categories by splitting

the BLASTP menu into several panes using the “tab” tag

(Figure 2). Only two of the five panes are shown. In the

“General search options” pane (Figure 2A), holding the most

commonly-used parameters, the first four parameters are

implemented as comboboxes, while the “Word size”

parameter is implemented as a chooser. The “Output” pane

(Figure 2B) holds parameters relevant to the output format

and the destination of output. This pane illustrates the choices

in a combobox, as well as “Output file name”, implemented as

a text box. A BioPCD code fragment for the BLASTP menu is

shown in Figure 2C. Only a fragment of the full BioPCD file

is shown, to illustrate how “tab” corresponds to the final

menu.

Figure 2A. An example of menus created using BioPCD.

Figure 2B. Another tab selected in the same menu

tabset

 tab "General search options"

 var "dbase"

 type combobox

 label "Database"

 default 0

 choices

 "UniProtKB/SwissProt" "swissprot"

 "GenBank NonRedundant (Protein)" "nr"

 "Reference proteins" "refseq_protein"

 "Protein Structure Data Bank (PDB)" "pdb"

 "GenBank Patented” “pat”

Figure 2C: Excerpt from BioPCD code for the above menu

The BioLegato menu that runs PROML from the Phylip [9]

package is shown in Figure 3. The “User tree filename”

parameter illustrates use of the “file” tag, which adds a file

chooser widget to the menu. Of particular interest is the

“number” tag, that adds a slider to the menu. Sliders solve

the problem of allowing the user to set a precise numerical

value over a wide numerical range in three different ways.

First the slider can be dragged left and right, as a sort of

coarse adjustment. Where precision is required, the up and

down arrows can be used to increment of decrement the

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.6, November 2012

number, rapidly by holding down the arrow, or slowly by

clicking. Finally, a text box accompanies the slider, allowing

the user to type or paste in the number if they prefer.

Figure 3. Menu for PROML.

5. DISCUSSION

While PCD has been created primarily to make it easier for

non-programmers to create GUIs, it could be useful even to

programmers in general. By analogy, we all benefit from

having accessibility features in buildings, such as wider

hallways, automatic doors, ramps and lifts. By allowing a very

rapid develop/test/revise cycle, programmers can bring

frequent updates, converging upon an optimal interface suited

to the client’s needs.

We considered using existing languages such as JSON

(http://json.org) or XML (http://www.xml.org), but

found that they did not meet our needs. XML is inherently not

human readable, especially for non-programmers. In XML,

there are no specific rules enforcing visual formatting, and

end tags are not always easy to find. When an end tag in XML

is incorrectly indented, it can result in confusion about the

scope of code blocks. Like Python, PCD scope is determined

by indentation, resulting in cleaner code with no need for end

tags.

Like XML, JSON does not contain any rules to enforce good

formatting practices. Additionally, like XML, JSON also

relies on the explicit closing of scope, with the problems

already mentioned that accompany end tags. While it could be

argued that IDEs such as Eclipse or Netbeans highlight

corresponding start and end tags, IDEs also have a high

learning curve, which would again undermine the goal of

PCD to minimize the learning curve.

BioPCD was specifically designed to facilitate quick addition

of menus to a BioLegato instance. In fact, we have found

that the hardest part of creating new menus is becoming

familiar enough with the program you wish to add to

BioLegato. Generally this entails reading the documentation

to understand what the program does, what the command line

options do, and what the input and output file formats are. At

that point, it is easy to make a copy of an existing PCD menu

and modify it to run the new program. That is the point of

BioPCD. Once those things have been done once, a GUI then

exists that saves every end user from having to repeat the

learning curve for each new program.

This underscores one way in which menus written in BioPCD

make work easier for the end user, compared to previous

approaches to programmable GUIs. Pise [3], ACD [1,2] and

Kaptain all require the user to prepare input files in the format

required for each program to be run, or to be pasted into a text

box. BioPCD is designed to be used within the context of an

end-user application such as BioLegato. BioLegato, like its

predecessor GDE [5,6], hides the implementation of exporting

input files and importing output files, giving the end user

more of sense of working directly with the data, rather than

working with files. As importantly, BioPCD makes it

straghtforward to send output to a new BioLegato instance,

termed ad hoc pipelining, giving the end user numerous

choices for what to do next, at each step in the process.

Backward compatibility with other forms of menu

specification is easily attained by translators. For BioLegato,

we wrote a program called gde2pcd to translate our existing

GDE menu files into BioPCD menus for BioLegato. Similar

translators could easily be written to create PCD code from

formats such as ACD for EMBOSS, or the grammar used in

Kaptain.

Both PCD and BioPCD were designed to lend themselves to

further development in a number of directions. The ability for

PCD to evolve is inherent in the fact that it is an abstract

language, where terminals are primitive types eg. Boolean.

PCD leaves a lot of room for programmers to modify and

create their own dialects of PCD. The formal grammar for

PCD can be compiled by any compiler compiler. Thus, the

fundamentals of PCD are platform-independent and are not

wedded to BioLegato. Rather, different dialects for different

applications are possible. Like XML and JSON, PCD could

be used as a data interchange language.

The open design of PCD allows a programmer to embed a

PCD parser in his or her code (e.g. by using the skeleton PCD

parser, Appendix 2). For example, PCD could be used to

store DNA sequences and sequence metadata. Additionally,

PCD could be used to store non-biological information, such

as customer information for a business, database output (as a

tree), a specification for a non-bioinformatics GUI, saved data

for a game, molecular information for chemistry, or storage of

mass spectrometry reads.

http://json.org/
http://www.xml.org/

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.6, November 2012

16

BioPCD is intended to be a general purpose and platform-

independent language for specification of GUIs. Although it

was implemented specifically for bioinformatics, the

BioLegato implementation could easily be used without

change in any field in which there exists a large body of

command line programs that would benefit from being unified

within a single GUI.

Currently, we are working to further automate the process of

adding 3rd party programs to BioLegato. The first step will be

a graphical BioPCD editor in which the user creates new

menus by dagging and dropping widgets. Because BioPCD is

a formal language, it will be straightforward to directly

generate syntactically-validated BioPCD from the editor. The

editor would put together definitions of input and output files,

parameters, and documentation files associated with the

program, and automatically add these to the local copy of

BioLegato on the user's computer. The editor would make it

even easier for the biologist to seamlessly integrate 3rd party

programs of their choice into BioLegato, in a way that is

tailored to their specific needs. A logical extension of this

process would be to provide a mechanism for submitting these

locally-created Add-Ons to a community of BioLegato users.

6. AVAILABILITY

The BioLegato implementation of BioPCD is freely available

under the Creative Commons License 2.0. It can be obtained

as part of the BIRCH system for bioinformatics at

http://home.cc.umanitoba.ca/~psgendb. A wiki for

PCD containing all information for developers is located at:

http://www.bioinformatics.org/wiki/BioLegato/P

CD.

7. ACKNOWLEDGMENTS

This work was funded in part by the following Genome

Canada Programs: Competition III, Science and Technology

Innovation Centres, and Applied Genomics Research in

Bioproducts or Crops. Cofunding was also provided by

Manitoba Innovation, Energy and Mines. We would also like

to thank Natalie Bjorklund for editorial help with the

manuscript and for useful comments.

7. REFERENCES

[1] Rice,P. Longden,I. and Bleasby,A. “EMBOSS The

European molecular biology open software suite”.

Trends in Genetics. 2000. Vol 16. Issue 6. pp 276-277.

[2] “The design of Jemboss: a graphical user interface to

EMBOSS. Bioinformatics”. 2003. Vol 19. Issue 14. pp

1837-1843.

[3] C. Letondal (2001), A Web interface generator for

molecular biology programs in Unix, Bioinformatics,

Oxford University Press, 17(1), 2001, pp 73-82.

[4] Hull, Duncan; Wolstencroft, Katy; Stevens, Robert;

Goble, Carole A.; Pocock, Matthew R.; Li, Peter; Oinn,

Tom (2006). "Taverna: A tool for building and running

workflows of services". Nucleic Acids Research 34 (Web

Server issue): W729–W732. DOI:10.1093/nar/gkl320.

PMC 1538887. PMID 1684510.8

[5] Smith SW, Overbeek R, Woese CR, Gilbert W, Gillevet

PM (1994)The genetic data environment: an expandable

GUI for multiple sequence analysis. Computer Appl. in

the Biosciences 10 671-675

[6] Linton E (2006) MacGDE: Genetic Data Environment

for MacOSX. http://www.msu.edu/~lintone/macgde/

[7] Fristensky B (2007) BIRCH: A user-oriented, locally-

customizable, bioinformatics system. BMC

Bioinformatics , 8:54

[8] Stephen F. Altschul, Thomas L. Madden, Alejandro A.

Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and

David J. Lipman (1997), "Gapped BLAST and PSI-

BLAST: a new generation of protein database search

programs", Nucleic Acids Res. 25:3389-3402.

[9] Felsenstein, J. (1989) PHYLIP Phylogeny Inference

Package. Cladistics 5:164-166.

APPENDICES
Appendix 1 - BioLegato 0.7.9 BioPCD JavaCC grammar

http://home.cc.umanitoba.ca/~psgendb/local/ijca_pcd_paper/p

cd.jj

Appendix 2 - Skeleton PCD parser

http://home.cc.umanitoba.ca/~psgendb/local/ijca_pcd_paper/P

CD.java

http://home.cc.umanitoba.ca/~psgendb
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://www.google.com/url?q=http%3A%2F%2Fwww.bioinformatics.org%2Fwiki%2FBioLegato%2FPCD&sa=D&sntz=1&usg=AFQjCNHQ2nX-lnNbsCZV_EWlaJjVBT11Dw
http://bioinformatics.oupjournals.org/cgi/content/abstract/17/1/73
http://bioinformatics.oupjournals.org/cgi/content/abstract/17/1/73
http://bioinformatics.oupjournals.org/
http://en.wikipedia.org/wiki/Robert_David_Stevens
http://en.wikipedia.org/wiki/Carole_Goble
http://en.wikipedia.org/wiki/Carole_Goble
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1538887
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1538887
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1093%2Fnar%2Fgkl320
http://en.wikipedia.org/wiki/PubMed_Central
http://en.wikipedia.org/wiki/PubMed_Central
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538887/?tool=pmcentrez
http://en.wikipedia.org/wiki/PubMed_Identifier
http://www.ncbi.nlm.nih.gov/pubmed/16845108
http://www.ncbi.nlm.nih.gov/pubmed/16845108
http://www.msu.edu/~lintone/macgde/
http://www.biomedcentral.com/1471-2105/8/54/
http://www.biomedcentral.com/1471-2105/8/54/
http://home.cc.umanitoba.ca/~psgendb/local/ijca_pcd_paper/pcd.jj
http://home.cc.umanitoba.ca/~psgendb/local/ijca_pcd_paper/pcd.jj
http://home.cc.umanitoba.ca/~psgendb/local/ijca_pcd_paper/PCD.java
http://home.cc.umanitoba.ca/~psgendb/local/ijca_pcd_paper/PCD.java

