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ABSTRACT 

Interesting antifractals are involved in the dynamics of 

antipolynomials 
mz z c  , for    m ≥ 2. The purpose of this 

paper is to visualize antifractals in Noor orbit and study the 

pattern among them. 
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1. INTRODUCTION 

The dynamics of antiholomorphic complex polynomials 
mz z c  , for m ≥ 2, leads to interesting tricorns and 

multicorns antifractals with respect to one-step feedback 

process [4], two step-feedback process [9, 10] and three-step 

feedback process [2]. Tricorn prints are being used for 

commercial purpose, e.g. tricorn mugs and tricorn T shirts 

[13].  

The polynomials mz z c  , for m ≥ 2, have been studied 

mathematically using one-step feedback process. In 1989, 

Crowe et. al. [3] considered it as an formal analogy with 

Mandelbrot sets and named it as Mandelbar set and also 

brought their bifurcation features along arcs rather than at 

points. Multicorns have been found in a real slice of the cubic 

connectedness locus (cf. [6]). Winter showed that the 

boundary of the tricorn contains arc [12]. The symmetries of 

tricorn and multicorns have been analyzed by Lau and 

Schleicher [5], and Nakane and Schleicher [6] presented their 

various properties along with beautiful figures and quoted that 

multicorns are the generalized tricorns or the tricorns of 

higher order.  

The purpose of this paper is to visualize tricorns and 

multicorns using four-step feedback process via Noor orbit 

and analyze them. 

2. PRELIMINARIES 

Definition 1 (Multicorn). The multicorns cA for the 

quadratic function ( ) m

cA z z c  is defined as the 

collection of all cC for which the orbit of the point 0 is 

bounded, that is   

},)0(:{  totendnotdoACcA n

cc
                 

where C is a complex space, n

cA  is the nth iterate of the 

function ( )cA z . An equivalent formulation is that the 

connectedness of loci for higher degree antiholomorphic 

polynomials ( ) m

cA z z c 
 
are called multicorns [4].  

Notice that at m = 2, multicorns reduce to tricorn. Moreover, 

the tricorns naturally lives in the real slice d c in the two-

dimensional parameter space of maps cdzz  22 )( . 

They have (m+1)-fold rotational symmetries. Also, by 

dividing these symmetries, the resulting multicorns are called 

unicorns [6]. 

Definition 2 (Julia Sets). The filled in Julia set of the 

function Q is defined as  

K(Q) = {z  C : Qk(z) does not tend to }, 

where C is a complex space, Qk(z) is k’th iterate of function Q 

and K(Q) denotes the filled in Julia set. The Julia set of the 

function Q is defined to be the boundary of K(Q) i.e. J(Q) = 

K(Q), where J(Q) denotes the Julia set. The set of points in 

Q(z)whose orbits are bounded under the Picard orbit is called 

the Julia set [8, p. 225]. 

         Now, we give definition of Noor orbit, which will be 

used in the paper to implement four-step feedback process in 

the dynamics of 
mz z c  . 

Definition 3 (Noor Orbit). Let us consider a sequence {xn} of 

iterates for initial point x0X such that,  

{xn+1 : xn+1= (1 αn)xn + αnTyn ; 

yn =  (1 βn)xn + βnTzn ; 

                  zn =  (1n)xn + nTxn ; n = 0, 1 ...}, 

where αn, βn, n[0, 1] and {αn}, {βn}, {n} are the sequences 

convergent away from 0. The above sequence of iterates is 

called as Noor orbit, denoted by NO, which is a function of 

five tuples (T, x0, αn, βn, γn) [7]. 

Notice that at n = 0, NO reduces to Ishikawa orbit [2]; at βn, = 

n = 0, NO reduces to Mann orbit (cf. [9, 10]); and at   βn = n 

= 0 and αn = 1, it behaves as Picard orbit. In our further 

sections, we have chosen    αn = α, βn = β and n =   to make 

the analysis simpler. 

To visualize antifractals in NO for 
mz z c  , we shall 

require escape criterion with respect to NO. Escape criterion 

for 
mz z c   in NO is 

})/2(,)/2(,)/2(,max{ 111  mmmc   [1]. 

3. MULTICORN IN NO 

In this section, we programmed the polynomial 
mz z c   

in the software Mathematica 8.0 and tricorns and multicorns 

were generated in NO (see Figs. 1-12). Following are the 

observations made from generated multicorns: 

 The number of branches in the tricorns and multicorns is 

m+1, where m is the power of z . Also, few branches 

have m subranches (see Figs. 2-6). 

 Multicorns exhibit (m+1)-fold rotational symmetries. 
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 For an m, there exist many multicorns. 

 Higher degree multicorns become circular saw (Figs.      

10-12). Rani [9, 10] had also given the similar 

conclusion while generating multicorns using two-step 

feedback process. The name circular saw was, first, 

given by Rani and Kumar to Mandelbrot sets [11].  

 

 

 
Fig. 1: Tricorn for m = 2, α = 0.01, 

                       β =  = 0.1 

 

 
Fig. 2: Tricorn for m = 2, α = 0.1, 

                        β = 0.01,  = 0.1 

 
Fig. 3: Tricorn for m = 2, α = 0.1, 

                        β = 0.1,  = 0.01 

 
Fig. 4: Multicorn for m = 3, α = 0.1, 

                      β =  = 0.1 

 
Fig. 5: Multicorn for m = 3, α = 0.05, 

                      β = 0.05,  = 0.1 

 
Fig. 6: Multicorn for m = 5, α = 0.01, 

                       β = 0.01,  = 0.1 

 
Fig.7: Multicorn for m = 5, α=0.01, 

                       β=0.1, =0.03 
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Fig. 8: Multicorn for m = 5, α=0.2, 

                       β=0.09, =0.1 

 
Fig. 9: Multicorn for m = 10, α = 0.01, 

β = 0.01,  = 0.1 

 

Fig. 10: Circular saw multicorn for 

                       m = 30, α = β = 0.01,  = 0.1 

 

 

Fig. 11: Circular saw multicorn for 

                       m = 70, α = β = 0.01,  = 0.1 

 

Fig. 12: Circular saw multicorn for 

                       m = 100, α = β = 0.01,  = 0.1 

4. ANTIJULIA SETS IN NO 

Anti Julia sets have been generated for 
mz z c   in NO 

(see Figs. 13-21). Figs. 13-15 show that at m = 2, the anti Julia 

sets take the shape of tricorns. Further, it has been observed 

that the higher degree anti Julia sets become circular saw 

(Figs. 20 and 21). 

 

Fig. 13: AntiJulia set for m = 2, 

α = 0.4,  β = = 0.1, c = 0.2+0.2I 

 

 

                       Fig. 14: AntiJulia set for m = 2, 

α = β = 0.05,  = 0.3, c = 0.05+0.05I 
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                       Fig. 15: AntiJulia set for m = 2, 

α =  β = 0.9,  = 0.2, c = 0.31+0 .55I 

 

 

                         Fig. 16: AntiJulia set for m = 3, 

β = α = 0.05,  = 0.1, c = 0.2+0.2I 

 

 

                          Fig. 17: AntiJulia set for m = 3, 

α = 0.015,  β==0.1, c=0.2+0.2I 

 

 

                        Fig. 18: AntiJulia set for m = 4, 

α = β = 0.1,  = 0.3, c = 0.05+0.05I 

 

 

                         Fig. 19: AntiJulia set for m  =7, 

α = 0.05, β =  = 0.01, c = 0.1+1I 

 

 

Fig. 20: Circular saw AntiJulia set fo 

     m = 50, α = β = 0.05,  = 0.3, 

     c = 0.05+0.05I 
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Fig. 21: Circular saw AntiJulia for 

       m = 200, α = β =.05,  =.3, 

               c =.05+.05I 

5. CONCLUSION 

In the dynamics of antipolynomials 
mz z c  , where         

m ≥ 2, there exist many multicorns for the same value of m in 

Noor orbit. AntiJulia sets have also been generated in Noor 

orbit. Further, it was found that for higher degrees of the 

polynomial, all the antifractals become circular saw.  
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