
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

42

Developing Cross Platform Secured Mobile Widgets
using Subject-Role based Access Control Mechanism

Asha Kokil

Department of Computer Science & Engineering,
University of Mauritius,

Reduit, Mauritius.

Leckraj Nagowah
Department of Computer Science & Engineering,

University of Mauritius,
Reduit, Mauritius.

ABSTRACT

Widgets are simple, self-contained applications, typically with

a single purpose. For years, they've existed on desktop

computers to provide information in a user-friendly manner,

like offering weather reports and newsfeeds but now that's old

news. Widgets are rapidly moving to mobile phones, and

business people are salivating at every opportunity to develop

these mobile applications either as a new business venture or

to increase value of their products. However current situation

demonstrates that fast rising demand of mobile widgets is

causing the widget market to become fragmented. Thus,

vendors are providing widgets which are not interoperable

across platforms; resulting in duplication of work, increased

time and cost of development to make them run everywhere.

To alleviate the situation, several standardizing bodies are

working towards write-once-run-everywhere widgets. This

paper drills down to different standardization approaches, and

shows how widgets can be made interoperable across mobile

platforms using W3C standards. An important contribution is

also brought to the subject by introducing a subject-role based

access control mechanism, which makes the interoperable

widgets more secure, thereby improving user confidence

along with user experience.

General Terms

Mobile Computing

Keywords

Cross Platform Development, Mobile Widgets, World Wide

Web Consortium (W3C), OMTP BONDI, Joint Innovative

Lab (JIL)

1. INTRODUCTION
The mobile industry started its journey in year 1973 and

witnessed 39 years of drastic transformations which have

revolutionized the world. Though the journey of mobile

phones started with the mere idea of communication device,

today it has transcended all barriers to become a widely used

mobile computing platform that can provide users with

unlimited information and services at the right place and the

right time. Nowadays the mobile market is developing

swiftly, and widgets are creating a hype wave in the industry.

The concept has made its own way – single purpose, mini

applications, while nice-to-have on PCs, but must-have on

mobiles. There is plenty of demand for widget-driven

solutions on mobile devices. In order to respond to these

rising demands, the market of mobile platforms is becoming

fragmented mainly due to the number of mobile operating

systems and programming languages that can be used for

mobile development. As a result, mobile developers are using

platform specific tools to program applications that run on

specific mobile platforms [1]. However this practice is

leading to increased costs for supporting applications on

different platforms. The cost factor and need for shorter

development processes have therefore driven the necessity to

innovate towards cross platform solutions, where widgets can

be coded once and made to run everywhere, thus giving rise to

the concept of write-once-run-anywhere widgets [2].

2. LITERATURE REVIEW
World Wide Web Consortium (W3C) defines widgets as

“interactive single purpose applications for displaying and/or

updating local data or data on the Web, packaged in a way to

allow a single download and installation on a user’s machine

or mobile device”. Widgets can be organized in three main

categories namely desktop, web and mobile. Each category of

widget requires an intended runtime environment for the

widget to execute, known as widget engine [3].

Widget engines act as an intermediary between the widget and

the Application Programming Interfaces (API) which access

device specific capabilities [4]. They provide widgets with

the required interfaces to be able to communicate with the

underlying platform. Widget engines tend to imitate the

behaviour of web browsers such that HTML pages are

rendered by abiding to the CSS and JavaScript instructions [3]

defined on the page.

Currently widgets and widget engines are platform-specific,

i.e. they do not run on all platforms. To make widgets

interoperable, three different standardizing bodies are being

analyzed for this paper: World Wide Web Consortium (W3C),

OMTP BONDI, and Joint Innovative Lab (JIL). All three are

critically evaluated based on a rating system against specific

criteria.

2.1.1 Widget Packaging and Configuration
W3C requires no special tools to build a widget package [5].

W3C recommends a widget package to be a ZIP archive file,

bearing extension WGT. The ZIP archive can support a

number of file formats, but should mandatorily comprise of a

default start file and a configuration document. BONDI also

makes use of the W3C Widget specifications, which were

defined with the help of OMTP [6]. As declared by Sachse

[7], JIL is also based on that recommendation.

So an overview of the criterion, Widget Packaging and

Configuration, shows that all three standards are aligned

across the same practices, which are based on W3C. So W3C

is the best practice that has got as followers BONDI and JIL.

2.1.2 Security Infrastructure and Device API
A problem that has been brought into light is that W3C has

not yet covered mandatory concerns like security framework

needed for protection of user against misuse of APIs. W3C is

still working towards a security model that will allow users to

integrate with APIs securely to access device capabilities [4].

Meanwhile BONDI and JIL have been providing

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

43

complementary efforts which take care of the shortcoming of

W3C. BONDI focuses on two main concerns namely Device

API and security framework [7]. It defines a security policy

language, based on OASIS Extensible Access Control Markup

Language (XACML), for widgets. OMTP BONDI also

exposes APIs to govern access to device features. Of course

BONDI greatly relies on W3C Widget Family of

Specifications for general functionalities but the eleven

additional APIs improve secure access to device functions [4].

JIL widget platform also defines its APIs that are invoked

using JavaScript language [8]. To support the emerging W3C

standards, JIL is contributing its widget API specification to

the W3C to allow for an open mobile development platform

[7]. As a result, W3C is not the leading standard where

device API and security are concerned. BONDI has moved

ahead with the number of APIs exposed and the security

policy framework. JIL has also progressed relatively better in

these aspects, but the progress is medium, when aligned to

that of BONDI.

2.1.3 Maturity of standards
The three standards that have been taken into consideration

have different maturity levels. Overall, W3C has a well

defined maturity structure with its specifications gaining

much popularity. As for BONDI, it has its own specifications

and is contributing to W3C family of specifications. However

JIL hides its specifications, which makes it difficult to

evaluate its maturity. Nevertheless it is worth noting that

BONDI and JIL are undergoing formal releases of its

specifications, while W3C is still in its draft state. However

though formally released, specifications might not necessarily

become standards.

After going through the different criteria, different ratings are

allocated to each standard, with respect to each criterion. The

rating system is based on points. Out of a total of five points,

each standard is rated from one to five, where one is the least

scoring and five is the most scoring.

Table 1. Rating of standards

Feature
W3C BONDI

OMTP

JIL

Widget Packaging and

Configuration
5 3 3

Security Infrastructure 1 5 1

Device APIs 1 4 3

Maturity of standards 3 1 1

TOTAL POINTS 10 14 8

Based on the rating system, the strong areas have been

identified on the different platform standards. These strong

points help to formulate the requirements of the proposed

work.

3. DESIGN ISSUES
Amidst the rapid rise of widgets and widget engines rest a

number of issues for mobile users, developers, and vendors

[9]. Widget engines on different platforms face similar

challenges and attempt to provide equivalent implementations

to overcome the challenges. However the rapid growing

popularity of widgets and the associated revenues are forcing

vendors to create new innovative products for product/service

differentiation on the market. The natural consequence of the

wide range of technologies in use is widget engine

incompatibilities. Thus a severe limitation of current propriety

widget is that it is not possible for a user to run a widget

developed for one widget engine onto another widget engine

without significant medication to either of them. Thus these

incompatibilities prevent widget from being globally

ubiquitous and thus contradicting the concept of cross-

platform [4]. Caceres [9] and Mendes [4] describe different

areas for incompatibilities.

3.1 Development
Development refers to the way in which widgets on built on a

set of technologies, by combining HTML, XML, CSS,

images, sounds, and ECMAScript. The main concern with

widget development is the variation in programmatic control

provided by widget engine. The way widget engines handle

requests and provide functionality is different across engines.

This result in vendor lock-in situation where users cannot run

widgets intended for one platform on a different one.

3.2 Packaging, Distribution, and

Deployment
Widgets are available in packaged format on the galleries.

Packaging a widget means embedding all the necessary

resources and metadata used by the widget into a single file

for distribution and deployment. W3C standards specify that

widgets should be packaged in ZIP format. Once widget is

packaged for distribution it is served with an appropriate

media type, which refers to the kind of data contained in the

resource and obeys format content-type: content-type/sub-

type, where sub-type is usually the file format. The widget

engine then registers the media type and the file system to be

associated to it. This helps web browsers to automatically

attempt to instantiate widgets on appropriate engines.

However incompatibilities around packaging conventions

include: inconsistent file extensions, inconsistent internet

media types, undefined Zip specifications, inconsistent

packaging structure.

3.3 Security
Security refers to how users can be kept safe from malicious

widgets. The scope of security among widgets deals mainly

with access control. However various incompatibilities exist

as to how security policies should be enforced by engines to

control actions instantiated widgets are able to perform, e.g.

read, writes, modify, and delete files, access to networks,

etc… There is currently no standard security model defined

for mobile widgets.

3.4 Configuration and Metadata
Widget packages include a configuration file which contains

metadata and configuration parameters for a widget. Metadata

refers to how authors store information about the widget. An

evaluation of widget engines show that XML is used for

configuration files [10]. However there is an inconsistency

reigning about what exact information and structure of

information the author should be recording. Furthermore there

is no standardized manner to identify version of widget, thus

making it difficult to manage releases.

3.5 Internationalization and localization
Internationalization allows a widget to operate in different

languages without the need to alter the contents of the widget.

Localization enables the widget to respond based on the

location of the user, e.g. showing user location, weather

conditions, temperature etc… A directory based strategy is

normally adopted for internationalization whereby contents

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

44

and resources for different languages are placed in predefined

directories. However the inconsistency in packaging structure

used on different engines cause a problem.

3.6 Device-independence
Device independence refers to the ability of widgets to run on

different devices. There are multiple factors that obstruct this

independence: differences in screen resolution, inconsistent

use of local file system, and access to platform specific

capabilities.

To resolve the different incompatibilities discussed above,

there have been numerous attempts to standardize various

aspects of a widget and overcome the fragmentation of widget

market. Caceres [9] defines standardization as follows:

“Standardization is a process whereby competing entities and

other interested parties collaborate on the creation and

ratification of a standard that defines how products are

supposed to interact in the form of a specification.”

4. SYSTEM ARCHITECTURE
Standards have defined specifications to help resolve the

incompatibilities across widgets and widget engines. The best

practices of these specifications have been used to propose a

design which will allow creation of cross platform widgets.

4.1 Architecture diagram
The architecture diagram, Figure 1, illustrates the different

layers that would be proposed for cross platform widget

development.

Mobile Phone

Mobile Widget

Operating System

Device APIs

Policy Management

HTML CSS XML ECMAScript Resources

Fig 2: Layers of proposed framework

The layers consist of the following:

HTML - Main markup language for displaying web pages and

other information

CSS - Style sheet language used for describing the

presentation semantics of a document written in a markup

language

XML - Markup language that defines a set of rules for

encoding documents in a format that is both human-readable

and machine-readable. It is widely used for the representation

of arbitrary data structures.

ECMAScript - Scripting language standardized by Ecma

International in the ECMA-262 specification and ISO/IEC

16262. The language is widely used for client-side scripting

on the web, and used in the form of JavaScript.

Resources - Any other files required by the widget, e.g. icons,

images, .mp3 files, flash files

Policy Management- Layer responsible for access control

mechanism. This will implement the Subject-Role based

access control.

4.2 Component diagram
The component diagram's main purpose is to show the

structural relationships between the components of a system.

User

Security Access Control XML Parser Persistence Data Store

HTML
JavaSc

ript
CSS XML

Widget engine <<execution

environment>>

Widget WGT package

«implementation

class»

External

libraries

«extends» «extends» «extends»

«inherits»

«uses» «uses»«uses»«uses»

Components of widget

Fig 2: Component diagram of proposed framework

The component diagram, Figure 2, illustrates several

components that are critically important to meet principle

design goals. These are:

1. Security – to enhance security on widget (authentication,

authorization, access control)

2. Parser – to parse XML files mainly when dealing with data

structures

3. Persistence – to store data

4. External libraries – use of developed and well-tested

libraries to enhance any functionality

4.3 Flow chart
The flowchart, Figure 3, illustrates the different processes that

will run when a user starts a widget. First the widget engine

will check whether the media type and file system associated

to the widget is registered. If yes, then it will run the widget

with the required file system, and launch the configuration file

that will consequently open the web page with required

styling. Client side scripting is accomplished by JavaScript

calls. If required, the use of external libraries can enhance

current functionalities, e.g. XML parser functions are already

available as JavaScript libraries and do not need to be re-

implemented.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

45

User starts

widget

Widget engine

checks if file is

supported?

Open file

system to

process widget
Yes

Open

configuration file

Run HTML file

Load stylesheet

Load JavaScript

Require

support of

external

libraries?

Load external

libraries
Yes

Determine

access control

No

Retrieve policy

data store

Run algorithms

to process

policies

Is user allowed to

access device?

No

Run widget

code
Yes

Display results

to user

Display warning

to user

No

Fig 3: Flow chart showing detailed processes.

4.4 Data Store
Widget framework will allow the widgets to store the session

information and user preferred information on the mobile

device. This persistent data will be internally handled by the

Widget and is readable and writable by the user configured.

The persistent data can be stored in different formats. BONDI

specifications consider eXtensible Markup Language (XML)

to be the appropriate language given its simplicity, generality,

and usability.

For cross platform widget development, XML is deemed to be

more apt for the following reasons [11].

Device independence - XML is device independence, a

characteristic which makes it very popular among wireless,

mobile and portable devices.

Content Personalization - Data can be personalized with the

use of XML, as it separates content from presentation.

Standard Format - XML stores content in a standardized, open

format, which can be made to be recognized by any software

since it is not a proprietary language.

Cost Saving - XML is free and does not bear any license cost

for usage.

4.5 Algorithm

The proposed framework will use BONDI specification to

develop a customized access control to process policies. The

access control mechanism that will be developed is named as

Subject-Role based access control mechanism.

Pseudo code 1 describes how to go about to parse a policy file

and process its contents, according to BONDI’s specification,

to evaluate to a decision which later determine whether a

request should be allowed or not.

Pseudo code 2 demonstrates how to process a specific policy

or rule. It is worth noting that the same algorithm is used to

resolve both policies of a policy-set and rules of each policy.

Table 2. Pseudo Code 1 – Parse policies file and

evaluate to decision

Check policy combining algorithm which can be

DENY-OVERRIDES,

OR PERMIT-OVERRIDES,

OR FIRST-APPLICABLE ,

OR ONLY-ONE-APPLICABLE

FOR EACH policy in policy set,

FOR EACH rule in policy,

Check rule combining algorithm, which

can be

DENY-OVERRIDES,

OR PERMIT-OVERRIDES,

OR FIRST-APPLICABLE ,

OR ONLY-ONE-APPLICABLE

Evaluate if rule applies

To determine if rule applies, check if

Subject, Resource, Action on request A

matches that in policy file.

IF rule applies, THEN return effect associated to

rule. Effect can be deny or permit or Not

Applicable.

Using rule combining algorithm, process rule

according to Pseudo code 1.

Return result of processing each policy’s rule.

Combining result of rules according to policy combining

algorithm (Process occurs as in Pseudo code 1).

Overall result for the request is then determined by result of

policy combining algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

46

Table 3. Pseudo Code 2 – Course of action for each type of

algorithm

FOR EACH rule OR policy

IF combining algorithm is DENY-OVERRIDES

THEN

Look through the set of policies

IF any rule (or policy) evaluation returns

deny, THEN overall result is DENY

ELSE IF any rule (or policy) is

undetermined, THEN overall result is

undetermined

IF any rule (or policy) evaluation returns

prompt one-shot, THEN overall result is

PROMPT ONE-SHOT.

IF any rule (or policy) evaluation returns

prompt session, THEN overall result is

PROMT SESSION.

IF any rule (or policy) evaluation returns

prompt blanket, THEN overall result is

PROMPT BLANKET.

ELSE IF any rule (or policy) evaluations

return permit, THEN overall result is

PERMIT

ELSE IF no rule (or policy) is applicable,

Not Applicable is returned

ELSE IF combining algorithm is PERMIT-

OVERRIDES THEN

 Look through the set of policies

 IF any rule (or policy) evaluation returns

permit, THEN permit is returned

ELSE IF all rule (or policy) evaluations

return deny, THEN deny is returned

ELSE IF no rule (or policy) is applicable,

Not Applicable is returned

ELSE IF combining algorithm is FIRST-

APPLICABLE THEN

 Look through the set of policies

 Find the first one that applies

 IF match found, return that policy

evaluation result

ELSE IF no rule (or policy) is applicable,

Not Applicable is returned

ELSE IF combining algorithm is ONLY-ONE-

APPLICABLE THEN

IF only one applicable rule/policy, THEN

return the decision of the only applicable

rule

ELSE IF there are more than one applicable rule,

THEN return indeterminate (which indicates an

error)

ELSE IF no rule (or policy) is applicable, Not

Applicable is returned

ELSE invalid combining algorithm.

5. TESTING
In order to be able to test the proposed widget architecture

based on W3C standards, and Subject-Role Access Control

mechanism, a widget application has been proposed, which is

a bus fare calculation widget for Mauritius. The purpose of

the widget is to calculate bus fare tariff for Mauritius routes.

This is achieved based on the inputs supplied by the user:

• Origin

• Destination

• Category (Adult, Child, Student, Disabled)

• Resources (Stage – routes are made up of stages,

Cost, Route)

The user is able to read tariff information or write specific

information depending upon the access level configured for

that user.

Figure 4 shows an overview of the bus fare calculation

widget.

Send

request for

fare

calculation

Determine

if access is

allowed

Display

Required

Prompt

Process

Access

Decision

Evaluate

Prompt

Decision

Display

Results

1.Request

2.Request

11.

Access

Decision

1
2

.R
e

q
u

e
s
t

A
c
c
e

s
s

d
e

c
is

io
n

1
3

.
D

e
c
is

io
n

:

P
e

rm
it

18. Results

14. Decision:

Prompt-blanket

Prompt-session

Prompt-oneshot

1
5

.
P

ro
m

p
t

d
e

c
is

io
n

16.Allow

19.Deny

17.Deny

Subject Role Based Access Control Center

Policy

Enforcement

Point (PEP)

Subject

Resource

Environment

Policy Decision

Point (PDP)

Policy Access

Point (PAP)

9.Response

Policy Information

Point (PIP)

5
.

A
tt
ri
b

u
te

q
u

e
ry

6
.P

o
lic

y

7a.Resource

attributes

7b.Environment

attributes

7c. Subject

attributes

8
.A

tt
ri
b

u
te

4.Request

10.Reponse

3.Request

Fig 4: Overview of widget

The policies are configured in an XML file, a sample of which

is shown in Figure 5.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

47

Fig 5: Policy XML file of widget

Different test cases have been created to test the different

policies that have been configured in the policy XML file.

After running the widget on two different platforms (Symbian

and Android), the results have been recorded.

Table 4. Decision combinations for bus fare application

C
a

te
g

o
ry

A
ct

io
n

 (
R

/W
)

Resources

C
o

m
b

in
in

g

C
o

n
d

it
io

n

Route Stage Cost

Child R PERMIT PERMIT PERMIT OR

W DENY DENY DENY OR

Student R PERMIT PERMIT PERMIT OR

W DENY DENY PROMPT-

ONESHOT

OR

Adult R PERMIT PERMIT PERMIT OR

W DENY DENY PROMPT-

BLANKET

OR

Disabled R PERMIT PERMIT PERMIT OR

W DENY DENY PROMPT-

SESSION

OR

Admin R N/A N/A N/A N/A

W PERMIT PERMIT PERMIT OR

5.1.1 Test case 1- Child requests to read info

from Port Louis to Rose Hill

Decision of policy: PERMIT

Since from policy XML file, read is permitted for all

categories, then the same results will be obtained with every

category, except for admin user, who does not see any route

information.

Figure 6. Read on Android

Figure 7. Read on

Symbian

5.1.2 Test case 2- Child requests to update all

resources from Port Louis to Rose Hill

Decision of policy: DENY

Fig 8: Update 1 on Android

Fig 9: Update 1 on

Symbian

5.1.3 Test case 3- Student requests to update cost

info from Port Louis to Rose Hill

Decision of policy: PROMPT-ONESHOT

Figure 10. Update 2 on

Android

Figure 11. Update 2 on

Symbian

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

48

5.1.4 Test case 4- Adult requests to update cost

info from Port Louis to Rose Hill

Decision of policy: PROMPT-BLANKET

Figure 12. Update 3 on

Android

Figure 13. Update 3 on

Symbian

5.1.5 Test case 5- Disabled requests to update

cost info from Port Louis to Rose Hill

Decision of policy: PROMPT-SESSION

Figure 14. Update 3 on

Android

Figure 15. Update 3 on

Symbian

If the decision is to allow the user to carry on with the update

operation, then the process continues until the cost

information is saved, for the requested route and specified

category.

6. DISCUSSION AND EVALUATION
The two main areas of focus were highlighted for cross

platform widgets:

(a) W3C Packaging and Configuration, which is a strong

aspect of the W3C specifications to make widgets

interoperable

(b) W3C lack of security control.

So to make widgets go by write-once-run-anywhere

mechanism, W3C Packaging and configuration specifications

were adopted and BONDI’s specifications were used to

develop Subject-Role based access control mechanism to

complement for the lack of security on W3C.

To demonstrate the above implementation, a bus-fare

calculation widget was developed to be used by the public of

Mauritius to acquire more information on Mauritian routes

and tariffs. The application could successfully exhibit

required features like:

(c) Use of W3C Packaging and Configuration standards for

widget content definition, and package building

definition

(d) Use of BONDI’s specification to develop Subject-Role

based access control mechanism, which is a customized

mechanism that uses subject and role information to

derive access permissions.

Testing results support the testing of pre-requisites defined for

the widget, and the objectives set were greatly achievable.

Apart from the two main aspects identified during analysis,

there were several findings from research papers gathered

about the different incompatibilities resulting from cross

platform widgets. The contributions that can be brought in

these areas are listed in table below.

Table 5. Evaluation of results and experiences with past

work

FINDING CONTRIBUTIONS

Incompatible browser

implementation [12]

This is indeed a problem

encountered during

implementation.

Very few browsers are built

according to W3C standard, e.g.

Opera.

Declarative Markup

[12]

The solution identified for this

incompatibility is somewhat

different. With the introduction of

HTML5, and the support of JQuery

library, formatting is no longer an

issue.

Portability [12] XML is indeed extensible, but

should allow only attributes as

defined by W3C standards. This is

because widget runtimes built on

W3C standards would not

understand any other attribute other

than those defined in

specifications.

Interoperability and

Compatibility Issues

[3,4, 12, 13]

There are publicly available APIs

like WAC APIs for standard access

to device features, but these do not

work across all platforms, as local

resources may be located at

different locations.

Usability and User

Interaction Issues [12]

HTML5 has done a great job in UI

perspective.

Abstraction level of

widgets [14]

Not applicable to widget proposed.

Packaging and

distribution

Configuration and

metadata

W3C standards have provided a

good recommendation to

packaging problems, which can

establish a standardized level for

all W3C widgets under

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

49

Internationalization

[4,13]

development.

Security Models and

Digital Signatures [13]

Not applicable to widget proposed.

Manifest document [3] The Document Type Definition

(DTD) and property keys on the

manifest file should not be

modified. Instead the manifest file

should conform to W3C standards.

Plug-in [3] Not applicable to widget proposed.

7. CONCLUSION AND FUTURE WORK
Widgets are handy applications whose power rests on the

strong relationship to web technologies. Their grace lies

within their simplicity and orientation to a single specific task.

However mobile widgets are in the initial stage of their

development. Nearly all vendors of mobile widgets use their

proprietary markup and scripting languages to develop

widgets making them incompatible across platforms.

The solution to this has been to adopt standardization

approaches originating from World Wide Web Consortium

(W3C) which provide well-defined guidelines of how widgets

should be built to make them interoperable.

Security concern is another major issue where widgets are

concerned. Users do not want to put at risk sensitive

information. Thus Subject-Role based access control

mechanism has been proposed as a potential way to go around

this concern.

The implementation of a prototype, bus fare calculation, has

been successful in demonstrating the above features. The

standards adopted from W3C to create and build the widget

have allowed the widgets run across different platforms. On

the other hand, the Subject-Role based access control

mechanism provides control while accessing resources.

Several limitations have been identified during the course of

the study, which are food for thoughts for future work.

One major area that definitely needs to be looked at is widget

runtimes. Building widgets that conform to standards might

prove not to be useful, if we do have the appropriate widget

runtimes for the widgets to operate in. Currently each

platform uses its own widget runtime to run widgets. So this

requires a collaborative effort to make mobile platforms

support widgets which are compliant to standards.

HTML5 is a promising technology for building highly

interactive web applications. Widget runtimes should be able

to support those technologies so that there is greater scope for

creating innovative widgets.

Some widgets are built to operate as standalone applications

on the client mobile device. These widgets might need some

application cache or local storage for persisting client data.

Currently this is not achievable on browsers supported by

mobile devices, but is possible on desktop applications. The

idea should be definitely extended to mobile widgets, so that

static client data can be persisted.

8. REFERENCES
[1] Allen, S., Graupera, V. and Lundrigan, L. 2010. “Pro

Smartphone Cross-Platform Development: iPhone,

Blackberry, Windows Mobile and Android Development

and Distribution”, 1st Ed. Apress, New York.

[2] Paananen, T. 2011. “Smartphone Cross-Platform

Frameworks: A Case Study. Bachelor’s Thesis”, Jamk

University of Applied Sciences

[3] Kaar, C. 2007. “An introduction to widgets with

particular emphasis on Mobile Widgets”, Mobile

Computing, Technical Report, Mobile Computing,

University of Applied Sciences, Hagenberg, Austria

[4] Mendes, P., Caceres, M. and Dwolatzky, B. 2009. “A

review of the widget landscape and incompatibilities

between widget engines”, AFRICON 2009.

[5] Marcos, C. 2011. “Misconceptions about W3C Widgets”,

W3C Workshop on The Future of Off-line Web

Applications, Redwood City, CA

[6] Rogers, D. 2010. “BONDI Augmented Reality”, Position

Paper, Mobile AR Summit at Mobile World Congress

[7] Sachse, J. 2010, “The standardization of Widget-APIs as

an approach for overcoming device fragmentation”,

GRIN Verlag.

[8] Duarte, C. and Afonso, A. P. 2011. “Developing once,

deploying everywhere: A case study using JIL”,

Proceedings of the 8th International Conference on

Mobile Web Information Systems MobiWIS, pp. 641-

644. 2011.

[9] Caceres, M. 2007. “Standardizing widgets – Improving

various aspects of client‐side web applications”,

Queensland University of Technology

[10] Jones, N. 2007. “Nokia widgets will encourage S60

mobile services”, Gartner Research Report, vol.

G00148087

[11] Costello, J., Canestraro, D. S., Werthmuller, D., Gil-

Garcia, J. R. and Baker, A. 2006. “Using XML for Web

Site Management”, Center for Technology in

Government University, Albany

[12] Kostiainen, A. 2008. “The Web as a Runtime in Mobile

Context”, Helsinki University of Technology

[13] Mendes, P. A. 2010. “Evaluation of widget-based

approaches for developing rich internet applications”,

Masters Thesis, University of the Witwatersrand,

Johannesburg.

[14] Cammareri, D. 2010. “Automatic generation of widgets”

International Journal of Pervasive Computing and

Communications, Vol. 7, No. 2, pp. 132-146

