
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

27

A Framework for Android and J2ME

Bluetooth Communication

Sundeepsingh Neerunjun

Computer Science &
Engineering Department,

University of Mauritius,

Réduit, Mauritius

Chervine Bhiwoo
Computer Science &

Engineering Department,

University of Mauritius,

Réduit, Mauritius

Leckraj Nagowah
Computer Science &

Engineering Department,

University of Mauritius,

Réduit, Mauritius

ABSTRACT

Mobile applications development is attracting more and more

developers recently due to the emergence of new mobile

platforms such as Android; which is making application

development easier as well as its’ marketing. All new

smartphones now support Bluetooth, a popular communication

medium for mobile phones. However, cross-platform Bluetooth

communication between mobile applications is something

uncommon at application level. Traditionally, sharing of media

files such as mp3 and pictures between various mobiles of

different platforms is simple. However, at application level

communication is more complex. For instance a multiplayer

game using Bluetooth can communicate only when the game is

installed on devices with similar platforms like J2ME. The aim

of this paper is to elaborate cross-platform mobile applications

with similar architecture that will communicate between

Android and Java Micro Edition (J2ME) using a Bluetooth

Framework. Therefore, a set of classes have been implemented

in Android and J2ME to support this cross-platform

communication and has been grouped to form a framework. The

key advantage of this solution is that, it is completely re-useable

and any programmer wishing to develop such applications can

use it. Moreover, two applications have been developed using

this framework to demonstrate Bluetooth communication

between Android and J2ME.

General Terms
Mobile Application Development, Bluetooth

Keywords
Bluetooth Framework, Android, J2ME, Cross-Platform

application development

1. INTRODUCTION
In this new era, Mobile phone is one of the most important

needs for human beings; around 87% of the world populations

are mobile subscribers [1]. Smartphone has shown the highest

growth since the last few years in the mobile development

industry.

Mobile applications development is the process of designing

and developing software to be deployed on mobiles and smart

phones. Mobile applications are becoming more popular not

only because the price of smartphones are going down but also

because nowadays there are more proper and better mobile

platforms and Application Programming Interfaces (APIs) than

there were ten years back. Some of these new platforms are

Android, IPhone Operating System (iOS), Windows Mobile and

Java ME. These platforms provide the necessary development

frameworks, APIs and documentation for mobile application

development.

In-line with the expansion of mobile platforms, Bluetooth, a

wireless communication medium, has also grown in popularity.

Today, all new mobile phones support Bluetooth and it is

widely used to share media files between mobile devices.

However, there are very few applications that allow cross

platform Bluetooth communication at application level. In order

to clearly illustrate the problem, here is a scenario:

Assume that user A has to send a media file to user B; both

users will just have to switch on their Bluetooth on their devices

and allow the file sharing, which is occurring at a very low level

in the Bluetooth architecture. But when it comes to an

application level, communication occurs at the RFCOMM layer

or OBEX layer; application would be able to communicate only

when the platform is similar, but when the platforms differ, this

communication process becomes very complex.

To our knowledge, there is no framework that enables Android

and J2ME to communicate via the Bluetooth standard at an

Application Level. Thus the main aim of this paper is to

develop a framework enabling communication between cross-

platform mobile applications notably Android and J2ME. Also,

the framework will be reusable and extensible.

In order to demonstrate the functionalities of the framework in

Android and J2ME, two applications have been implemented,

namely an Anonymous Voting System and a Meeting Scheduler

Application.

2. Related Work
This section of the document elucidates other existing

frameworks related to the field of Bluetooth communication

and also some Bluetooth applications developed recently.

Peer2Me, a mobile peer-to-peer framework [2] supports mobile

collaboration utilizing Bluetooth and Java ME. The framework

runs on standard Java ME-enabled mobile phones and it enables

rapid development of various kinds of collaborative peer-to-

peer applications. It is a high-level programming framework

enabling developers to use simple primitives and methods to

manage the complexity of peer-to-peer mobile ad hoc networks

and is based on MIDP 2.0. The Peer2Me architecture is based

on a layered architectural pattern where each layer is assigned

with its own responsibility. The different layers are shown in

Figure 1.

The architecture consists of nodes, groups, service, network,

message, session, framework and the application. The

framework represents the core entity between the application

and the rest of the system. The framework hides all the

complexity for the application developer and provides the

interface to Peer2Me.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

28

Fig 1: The architecture of the Peer-to-Me framework

Alf Inge Wan, Michael Sars Noru and Carl-Henrik Wolf Lun

[3] have developed another framework for Bluetooth

communication. It is mostly used to develop mobile

collaborative applications in J2ME. The framework consists of

three protocols, namely, the handshake protocol, routing

protocol and disconnection protocol. The handshake protocol

illustrates the signals used during the communication process.

Figure 2 shows the handshake signals used in the peer-to-me

framework.

Fig 2: The handshake protocol

The routing protocol specifies how messages will be transferred

among the nodes connected in the network. All messages go

through master mode first, as shown in Figure 3.

Fig 3: The routing protocol

The disconnection protocol detects when a connection to

another node goes down and handles the disconnection.

Alf Inge Wang, Carl-Fredrik Sørensen and Thomas Fossum [4]

elaborated the experiences from creating a prototype for

spontaneous collaboration, supported through the appliance of

peer-to-peer applications on wireless mobile devices with the

ability to form ad-hoc wireless networks. The paper mainly

highlights an application named ProMoCoTo. The document

shows how the application would promote collaboration by

using peer-to-peer technology and the challenges faced when

implementing it. As such mobile peer-to-peer technology is

used to promote spontaneous collaboration. The ProMoCoTo

was developed and executed on the Java Platform in order to

enable portability. The document also states about the peer-to-

peer frameworks like JXTA, JXME, Proem, and RockyRoad.

Concerning Bluetooth applications, Fluid Nexus [5], an

application for mobile phones that is primarily designed to

enable activists or relief workers to send messages and data

amongst themselves independent of a centralized cellular

network was analyzed. The idea is to provide a means of

communication between people when the centralized network

has been shut down, either by the government during a time of

unrest, or by nature due to a massive disaster. Fluid Nexus

works by using Bluetooth to connect to nearby devices and

automatically share messages (or other data). This means that

messages can still be passed even when there is no external

network connectivity.

Artemisa [6] is an efficient driving assistant that uses the

features of the smartphone to accurately model the driver’s

driving style from the point of view of energy consumption and

generate eco-driving tips to correct the bad driver’s driving

habits. As such the solution is based on the use of mobile

devices running the Android OS where the eco-driving assistant

is executed. A Bluetooth module is used to connect to the

vehicle’s diagnostic port. Thus the Bluetooth module allows the

sending of the vehicle telemetry to the mobile devices. The

information transmitted is used to accurately model the driver’s

driving style in order to save energy.

3. Design Issues
The Design Issues section shows the issues that might crop up

and how they have to be addressed. It also caters for problems

that need to be considered while developing the applications to

be used to demonstrate the usability of the framework.

1.1 Networking Framework

The issues that should be addressed while designing the

communication framework are categorized in the following:

1.1.1 Bluetooth
One main issue that has to be taken into consideration while

designing the framework is the distance at which a Bluetooth

device can operate. Theoretically, it is about 10 meters (Mobile

phones) but this distance is reduced along with the obstacles

forming barriers between the communication processes [7]. The

Bluetooth medium itself is limited; only 7 slaves can

communicate with the master but in practice this number is

reduced depending on the phone capabilities. While designing

the protocol, the biggest issue will be to find a way where the

communication interpretation occurs in the same way in both

the Android platform and the J2ME platform.

1.1.2 Reusability
The framework shall be designed such a way that any

application being developed can use it to communicate via

Bluetooth standard – J2ME to J2ME, Android to Android,

J2ME to Android and Vice-versa. More precisely, any

application being developed can use this framework for

communication process between Android and J2ME

inclusively.

1.1.3 Extensibility
Another challenge in designing the framework is to make it

extensible; the framework should be able to include new

communication protocol like for iOS without affecting the other

routing protocol. Hence, the framework should be able to

accommodate new communication protocols like for iOS, Bada

OS, Windows Mobile OS.

S S

S

M

1. Route Message 2. Application Message

2. Application Message

S

1. Node Joined
M S

2. Service Inq

3. Service Ack

4. Group Desc

5. Node Joined

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

29

1.2 Mobile Application Development

This section evaluates the design issues that need consideration

when developing the two applications used to test the

framework.

1.2.1 GUI components
The two applications which are going to be developed should

be identical in the working structure and also to a very large

extent in the GUI. Android offers a very good autonomy when

designing GUI components; but for J2ME it is very restricted,

hence the design layouts shall be made such that it can be

implemented on both platforms.

1.2.2 Testing
While designing the applications, testing will be a very

important aspect to be forecasted; this is because while

developing the Bluetooth functionalities in J2ME, the

application can be tested in the Sun Java Wireless Toolkit 2.2.5

emulator. This emulator enables Bluetooth functionalities to be

tested. Functionalities working on the emulator may eventually

not work on a mobile device, thus all the functionalities should

be tested in a live environment. As for the Android applications,

there is no emulator to test Bluetooth functionalities; but the

Android Software Development Kit and the Android Mobile

Device provides a debugging mode. Hence the Bluetooth

functionalities can be run directly on the mobile device using

the debugging mode. All the components of the applications

should be independent of each other, for example GUI

components.

4. System Architecture
This section of the document illustrates the architecture of the

different components of the framework to be implemented and

how communication is done. The Bluetooth communication

classes shall be implemented as a framework so as to cater for

re-usability issues. That is, it shall be designed in such a way

that it could be used in any application using Bluetooth in J2ME

and Android.

Therefore, the framework shall act as a completely abstract

layer in any application, providing communication between the

cross-platform applications being developed. In this paper, two

applications shall be developed, the Anonymous Voting System

and a Meeting Scheduler Application. Both applications shall

use the Bluetooth framework for communication processes.

Figure 4 shows the structure of the Bluetooth framework.

The framework will have the implementation of the Bluetooth

classes for communication between the two platforms

inclusively. That is communication between Android to

Android, J2ME to J2ME and Android to J2ME (vice-versa).

The framework shall access the platform layer and the

application layer. The framework supports the Radio Frequency

Protocol (RFCOMM) communication protocol for the

Bluetooth communication which is a simple set of transport

protocols [8], made on top of the Logical link control and

adaptation protocol (L2CAP) protocol, providing emulated RS-

232 serial ports.

The framework would be of type peer-to-peer architecture;

which means a device can act as a client or server depending on

the availability of the service; but in some cases it will not be

automated; it would be run either as client or server by the

application itself.

Fig 4: High Level Architecture Diagram

The steps the framework performs for making Android to J2ME

Bluetooth communication are illustrated using the below

scenarios.

Scenario 1: Assume that the server in running on an Android

device and the client is running on a J2ME device. Using the

steps from Table 1 and Table 2, the framework will enable the

communication process. Figure 5 shows this stepwise

communication establishment process.

Table 1. Android Server Communication steps
Step 1 Get Default Adapter

Step 2 Enable Bluetooth

Step 3 Set discoverable

Step 4 Get Bluetooth socket

Step 5 Open Bluetooth socket

Step 6 Get input stream

Step 7 Get output stream

Step 8 Write to output stream

Step 9 Read from input stream

Step 10 Close connection

Table 2. J2ME Client Communication steps

Step 1 Get Local Device

Step 2 Get Discovery Agent

Step 3 Get UUID

Step 4 Define stream connection

Step 5 Get input stream

Step 6 Get output stream

Step 7 Read from input stream

Step 8 Write to output stream

Step 9 Close connection

Scenario 2: Assume that the server is running on a J2ME

device and the client is running on an Android device. Using the
steps from Table 3 and Table 4, the framework will enable the
communication process. Figure 6 shows this stepwise
communication establishment process.

Bluetooth Framework

Bluetooth

+Bluetooth()

+closedown()

Server

+server()

+getDate

+sendData()

+run()

+close()

ConnectedClientThread

+getDate

+sendData()

+run()

+close()

Client

+Client()

+getData()

+sendData()

+run()

+close()

Bluetooth Functions

+checkBluetoothSupport()

+enableBluetooth()

+getPairedDevices()

+setBluetoothDiscoverable()

+getDataInputStream()

+getDataOutputStream()

J2ME Android

Platform Layer

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

30

Fig 5: Communication between Android server and J2ME

client

Fig 6: Communication between J2ME server and Android

client

Table 3. J2ME Server Communication steps
Step 1 Get local device

Step 2 Create UUID

Step 3 Create URL

Step 4 Set discoverable

Step 5 Get Stream Connection

Step 6 Open stream connection

Step 7 Accept stream connection

Step 8 Open input stream

Step 9 Open output stream

Step 10 Read to input stream

Step 11 Write to output stream

Step 12 Close connection

Table 4. Android Client Communication steps
Step 1 Get default adapter

Step 2 Enable Bluetooth

Step 3 Set discoverable

Step 4 Create RFCOMM Socket

Step 5 Connect

Step 6 Get Input Stream

Step 7 Get Output Stream

Step 8 Write to output stream

Step 9 Read to input stream

Step 10 Close Connection

5. System Implementation
This part consists of the implementation phases of the

framework. There are two versions of the communication

protocol that have been grouped to form the framework; they

are the Android version and the J2ME version.

The most important thing in the Bluetooth protocol is to set the

UUID, however the Android and the J2ME UUID interpretation

differs.

Android version
UUID uuid = UUID.fromString("0BAE0D0C-0B0A-

0009-5570-605040302011");

Fig 7: Android UUID Sample Code

J2ME version
UUID uuid = new

UUID("BAE0D0C0B0A00095570605040302011",false);

Fig 8: J2ME UUID Sample Code

3.1 Bluetooth Package
The Bluetooth package is divided into 5 classes:
1. Bluetooth.java
2. BluetoothFunctions.java (available only for Android)
3. Server.java
4. ConnectedClientThread.java
5. Client.java

Table 5 quotes out the main methods available in the mentioned

classes along with a short description.

Table 5. Classes and Methods
Classes & Methods Description

Bluetooth

Bluetooth() Constructor

closeDown() Close all connection

BluetoothFunctions

checkBluetoothSupport() Check if device support Bluetooth

enabledBluetooth() Switch on the Bluetooth

getPairedDevices() Return a Set of paired devices

setBluetoothDiscoverable() Enable the Bluetooth to be seen by
other devices

getDataInputStream() Return DataInputStream for reading
data

getDataOutputStream() Return DataOutputStream for
sending data

Server

Server() Constructor – create server socket

setDataToSend() Set the data to send to the clients

Client

Client() Constructor – create client socket

Common Functions in class Server, ConnectedClientThread and
Client

getData() Get the data captured by the
DataInputStream object

sendData() Send data via the
DataOutputStream object

run() Loops and captures receiving data
at the same time

close() Close the connection socket

Close connection

J2ME Server Android Client

Steps 1 - 4
Search service

using UUID

Accept connection

request + send ACK

Steps 1 - 3

Step 5 Step 4

Step 6 Step 5

Connect using UUID

Steps 7 - 9 Steps 6 - 7

Step 10 Step 8

Send message to

server

Step 11 Step 9

Send message to

client

Step 10

Step 12 Close connection

Android Server J2ME Client

Steps 1 - 4 Steps 1 - 3

Connect using
UUID

Accept connection

request + send ACK

Step 5 Step 4

Step 6 - 7 Step 5 - 6

Step 8 Step 7

Send message to

client

Step 9 Step 8

Send message to

server

Step 9

Server close
connection

Step 10

ACK + Close
connection

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

31

3.1.1 Server.java
This class implements Runnable and thus is run on a thread. For

each client requesting a connection it creates a separated thread

for managing the particular connected client –

ConnectedClientThread.java.

Figure 9 below shows the sample code where the server creates

a socket to listen and accept incoming connections from clients.

public void run(){

 try{

 serverSocket =

bluetoothAdapter.listenUsingRfcommWithServiceRe

cord(serviceName, uuid);

 socket = serverSocket.accept();

…

Fig 9: Server Sample Code

3.2 Application of the framework

This section will discuss how the two applications will use the

particular framework to communicate. Figure 10 below shows

the communication process of the applications. Meeting

scheduler application and Anonymous Voting System, both

Android and J2ME versions use the same communication

Framework to communicate.

Fig 10: Cross-Platforms application using the framework

The two applications were developed firstly in Android and

then in the J2ME. Below Figure 11 and Figure 12 show the

screenshots of the two applications.

At the application level, the service is hosted and made

available online using the server socket. The server is initialized

by using the constructor of the Bluetooth class –

Framework.Bluetooth.Bluetooth (“Server”)
The client is initialized by using the constructor of the same

Bluetooth Class –

Framework.Bluetooth.Bluetooth (“Client”)

Some signals that are used are described in Table 6.

Fig 11: Anonymous Voting System

Fig 12: Meeting Scheduler Application

Table 6. Bluetooth Message Signals
Signal Description Signal Symbol

Anonymous Voting System AAVS

Meeting Scheduler AMS

Start SS

End SE

Element Separator ,

Container Open (

Container Close)

PollName AAVSPN

Description AAVSPD

Options AAVSPO

Results AAVSPR

Choice AAVSPC

Time Frame AMSTF

Free Slots AMSFS

Meeting Date AMSMD

3.2.1 Meeting Scheduler
The server sets the timeframe of the meeting and sends it to all

connected clients using the method sendData() from the

framework (step 1). The client uses the method getData() from

the framework to get the signal. It then loop in its local calendar

to get all the dates on which it is free, builds its signal string and

sends it to the server (step2). The server gets all the free slots

from the client using the method getData() and then determines

the meeting date. It then sends it to all the clients which save

the date to their calendar as a reminder using the sendData()

method (step 3). The above scenario is described in Figure 13.

Fig 13: Meeting Scheduler Bluetooth Message Signals

3.2.2 Anonymous Voting System
In this application, the server accepts connection from clients

which requested for the particular service. Once connected, the

server send a signal holding the poll information to the client

Server Clients

“SS,AMS,MS1AMSTF(start date, end date),SE”

“SS,AMS,MS2,FREESLOTS(sslot1,slot2,slot3)”

“SS,AMS,MS3,METING(start date, end

date,Description),SE”

sendData()

sendData()

sendData()

getData()

getData()

getData()

Methods Methods Signals

Step 1

Step 2

Step 3

Bluetooth Framework

J2MEAnonymous Voting

Android Anonymous Voting

Android Meeting Scheduler

J2ME Meeting Scheduler

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

32

using the sendData() method (Step 1). At the client side, the

data is retrieved using the getData() method and is represented

in a GUI by the application itself. Each user votes for the poll,

the users being as clients send back the choice signal to the

server (Step 2) using the sendData() method of the client class.

After receiving all the clients’ choices using the getData()

method, the server computes the result, displays it and sends it

to all the clients using again the sendData() method (Step 3).

The above scenario is illustrated in Figure 14.

Fig 14: Anonymous Voting System Bluetooth Message Signals

6. Discussions and Evaluation
The objectives of the framework have been accomplished; the

framework allows cross-platform communication between

Android and J2ME. Furthermore, it is completely reusable, that

is any developer can use just the framework to implement the

communication part in their application. The framework is also

extensible; meaning that it can lodge new routing protocols for

other cross-platform communications like Android to iOS,

J2ME to Bada OS and so on.

In order to demonstrate the usability of the framework, two

applications have been successfully developed, namely the

Anonymous Voting System and the Meeting Scheduler

Application.

However the framework has some limitations. One limitation is

that the Bluetooth API developed works only for Android and

J2ME platforms. Another limitation is that the Bluetooth

connection uses RFCOMM standards, thus it is like TCP,

Connected Oriented; this reduces the number of nodes that can

be connected to the server device, theoretically it is 7 slaves

[9], but in practice, only 4 can be connected.

The two applications have been thoroughly tested on mobile

devices to check whether the framework is working according

to the functionalities required. The applications have been

tested on the following devices (See Table 7).

Table 7. Mobile Devices used for Testing
Status Device

Server Android (S5830)

Client A J2ME (Nokia 5800)

Client B J2ME (Nokia C5)

Client C J2ME (Nokia N70)

Figure 15 shows a graph illustrating the time taken by particular

devices to connect to the server using the Bluetooth

Framework; taking in consideration the distance from the

server.

Fig 15: Bluetooth Connection Distance-Time Graph

7. Conclusion and Future works
The objective of this paper was to provide a brief description

about the communication protocol used to make two platforms,

Android and J2ME communicate via the Bluetooth standard.

Many issues were mentioned and their solutions were provided

to tackle them. According to our knowledge, this type of

framework enabling Android and J2ME to communicate did not

exist earlier; hence this is a very promising area for others to

focus as it is according to us the first framework achieving this

cross-platform communication.

The Bluetooth framework currently supports only Android and

J2ME. Hence a forthcoming work can be to add additional

platform’s Bluetooth routing protocol in this framework to

make it platform independent; thus devices with different

platforms like Windows Mobile and iOS will also be able to use

it.

Concerning for the communication, if Bluetooth Protocol is the

only protocol to be used then a solution can be that the

communication process does always stay connected, the

connection can be halted and reconnected at certain time

interval when needed; similar to a connectionless-oriented

protocol. Hence, another future work can be to integrate a WIFI

network in the bundle, thus more devices would be able to

connect to the network.

However, it is not possible to group these two package version

together to form only one because J2ME uses the JAR type and

Android uses APK. [10] But in the upcoming years new ways

will certainly crop up to group several platforms applications.

In addition may this paper be a plus point for others working in

the field of communication. Especially mobile collaboration

and will entice others to explore this area in more details.

8. References
[1] MobileThinking, 2012. Global mobile statistics 2012.

Available: http://mobithinking.com/mobile-marketing-

tools/latest-mobile-stats. accessed 22nd April 2012.

[2] Wan, A.I., 2009. “Mobile Peer-to-peer Collaborative

Framework and Applications”. Dept. of Computer and

Information Science, Norwegian University of Science and

Technology.

[3] Wang, A.I., Norum, M.S., Lund, C.-H.W. 2006. “A peer-

to-peer framework for mobile collaboration”, Proceedings

of the 10th IASTED International Conference on Software

Engineering and Applications.

[4] Wang, A.I. Soerensen, C.-F. Fossum, T., 2005. “Mobile

Peer-To-Peer Technology Used To Promote Spontaneous

Collaboration”, CTS'05 Proceedings of the 2005

Server Clients

“SS, AAVS, AAVSPN(pollName), AAVSPD(pollDesc),

AAVSPO(Options), SE”

sendData()

sendData()

sendData()

getData()

getData()

getData()

Methods Methods Signals
Step 1

Step 3

“SS, AAVS, AAVSPN(pollName),

AAVSPC(choice), SE”

“SS, AAVS, AAVSPN(pollName), AAVSPD(pollDesc),

AAVSPO(Options), AAVSPR(results) SE”

Step 2

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

33

international conference on Collaborative technologies and

systems, pp 48-55.

[5] Knouf, N. 2008. “Fluid Nexus for the Android Platform”

[6] Magaña, V. C. and Organero, M. M., 2011. “Artemisa:

Using an Android device as an Eco-Driving assistant”,

Cyber Journals: Multidisciplinary Journals in Science and

Technology, Journal of Selected Areas in Mechatronics

(JMTC), June Edition

[7] Huang, A. S. And Rudolph, L., 2007. “Bluetooth

Essentials for Programmers”, Cambridge University Press;

1st ed.

[8] Rathi, S., 2000. “Bluetooth Protocol Architecture”,

Dedicated Systems Magazine, pp.28-33.

[9] Newton, H., 2011. “Newton's Telecom Dictionary:

Telecommunications, Networking, Information

Technologies, The Internet, Wired, Wireless, Satellites and

Fiber”, Flatiron Publishing; 26th ed.

[10] Boone, K., 2011. “Mobile Application Development –

Android compared to J2ME” [Online] Available: at

http://kevinboone.net/android_j2me.html

