
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

12

Fast Longest Common Subsequences for Bioinformatics
Dynamic Programming

Arabi E.keshk
Faculty of computers and

Information
Menofia University

 Mohammed Ossman
Genetic Engineering and
Biotechnology Research

Institute (GEBRI)
 Menofia University

Lamiaa Fathi Hussein
Genetic Engineering and
Biotechnology Research

Institute (GEBRI)
Menofia University

ABSTRACT

Bioinformatics applications represent an increasingly

important workload to improve the programs of sequence

analysis. It can be used to assign function to genes and

proteins by the study of the similarities between the compared

sequences. This paper introduces a modified implementation

of bioinformatics algorithm for sequence alignment .The

implemented algorithm is called Fast Longest Common

Subsequence (FLCS). It is filling the three main diagonals

without filling the entire matrix by the unused data. It gets the

optimal solution but the execution time is decreased and the

performance is high. To illustrate the effectiveness of

optimizing the performance of the proposed FLCS algorithm

and demonstrate its superiority, it is compared with

Needleman-Wunsch, Smith-Waterman and Longest Common

Subsequence algorithms.

General Terms

Bioinformatics.

Keywords

computational biology; algorithm ; Expressed Sequence Tag ;

heuristic algorithms; BLAST ; FASTA; dynamic algorithms;

Needleman-Wunsch; Smith-Waterman ; LCS.

1. INTRODUCTION

In bioinformatics, a sequence alignment is a way of arranging

the primary sequences of Deoxyribonucleic acid (DNA) such

as Expressed Sequence Tags, Ribonucleic acid (RNA), or

protein to identify regions of similarity. This similarity may

be a consequence of functional, structural, or evolutionary

relationships between the sequences .This field includes

components of mathematics, biology, chemistry, and

computer science. In bioinformatics we need some program

languages such as Java, C, C++, My SQL, MATLAB and

Microsoft Excel[1]. The actual process and activities within

bioinformatics include the development and implementation

of tools that enable efficient access to manage various types of

information or the development of new algorithms

(Mathematical formulas) [2]. Different alignment programs

use two sequences as two strings with different length and

characters arrangement. The characters are (A (adenine), C

(cytosine), T (thymine), and G (guanine)) nucleotides [3]. The

alignment algorithms (heuristic and dynamic) use two

different types of sequence alignment, Local and Global.

Local alignment is a portion or subsequence matching which

is followed in Smith-Waterman dynamic algorithm, BLAST

and FASTA heuristic algorithms [4].

 - S1 = GCCCTAGCG

 GCG

 - S2 = GCGCCAATG

 Global alignment is an end to end matching of two

sequences which is followed in Needleman-Wunsch [4] and

longest common subsequence (LCS) algorithms.

- S1 = G C G C – A A T G

 | | | | |

- S2 = G C C C T A G C G

These two types of alignment are used to make a comparison

between genetic sequences like Expressed Sequence Tags

(EST's). EST's are small pieces of DNA sequence (usually 200

to 500 nucleotides long) that are generated by sequencing

either one or both ends of an expressed gene. They are short

DNA molecules reverse-transcribed from a cellular mRNA

population [5],[7].

The organization of the remaining content is as follows:

Section II presents an overview about bioinformatics

algorithms. Section III presents the proposed algorithm

(FLCS). In section IV presents the experimental work. In

section V, the conclusion is illustrated. Finally,the

acknowledgments is illustrated.

2. RELATED WORK

There are two types of algorithms such as: (a)- the heuristic

algorithms such as BLAST and FASTA which it's advantage

is ignoring the unused data from computation this speed the

performance, and it's disadvantage is not found the optimal

solution[3][8] .

(b)- dynamic algorithms such as (Needleman-Wunsch ,Smith-

Waterman and longest common subsequences) which it's

advantage is finding the optimal alignment solution between

the sequences, and it's advantages is taking more time to make

the alignment this decrease the performance[3],[8],[10]

2.1 Comparison between heuristic and dynamic

algorithms:

We use two real sequences such as (human insulin) with

different length in the comparison between BLAST and

FASTA we found that [6],[9]:

From the running of FASTA program we found:

 The approximately average of similarity is =

 (95+78.6) % / 2= 86.8%

http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/MySQL
http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/Microsoft_Excel

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

13

 And the approximately average of identically is =

 (96.3 + 78.6) % / 2 = 87.45 %.

And the approximately average of Expect value is =

(7.5e-48+.035)/2= (3.75e+0.0175)

 From the running of BLAST program we found

 Expect-value = 8e-105

 Identities = 212/220 (96%).

From the results of the two heuristic programs we found:

The expectation value of BLAST less than the expectation

value of FASTA and the identities of BLAST greater than

the identities of BLAST SO BLAST is more sensitive than

FASTA because BLAST evaluates the result statistically and

BLAST is faster than FASTA because BLAST evaluates the

entire dynamic programs with the same threshold based on

statistics and reduces the running time.FASTA is less

sensitive than dynamic programming and BLAST because

FASTA uses partial information to speed up the computation

and FASTA doesn't evaluate the result statistically. The

running time of FASTA is faster than dynamic programming

because it doesn't evaluate the result statistically and uses

partial information. The second type of programming,

dynamic programming is the most sensitive result because the

dynamic programming uses all information of two sequences,

so the running time of the dynamic programming is slow

because it computes the useless area for computing the

optimal alignment[2],[8].

Table 1: Comparison between heuristic and dynamic

algorithms as a general:

Algorithm Sensitivity Runtime

BLAST 2 1

FASTA 3 2

Dynamic

programming

 1 3

Comparison between the score of alignment

(performance) for three dynamic algorithms:

2.2 Needleman-Wunsch algorithm:

The Needleman-Wunsch algorithm is a dynamic programming

algorithm which finds the optimal global alignment between

two biological sequences. This algorithm makes the two

sequences and create two dimensional array with the length of

(M*N) science M is the length of the first sequence and N is

the length of the second sequence [10],[11].We can evaluate

each cell by the main function with the computing formula H

(i, j) is: H (i, j)=MAX{

 H(i-1,j-1)+ sub(S1(i),S2(j));

 H (i-1,j)+del(S1(i));

 H (i,j-1)+ins(S2(j))}

 The alignment between two Sequences:

sequence1=“GCCCTAGCG” and sequence2

=“GCCCTAGCG” was made as in table 2:

Initialization: Gap=-2, Match=+1, Mismatch= -1.

Table 2: filling Needleman-Wunsch matrix and

trace back pointers [4],[11]:

 G C C C T A G C G

 0 -2 -4 -

6

-

8

-

10

-

12

-

14

-

16

-18

G -2 1 -1 -

3

-

5

-7 -9 -

11

-

13

-15

C -4 -1 2 0 -

2

-4 -6 -8 -

10

-12

G -6 -3 0 1 -

1

-3 -5 -5 -7 -9

C -8 -5 -2 1 2 0 -2 -4 -4 -6

A -

10

-7 -4 -

1

0 1 1 -1 -3 -5

A -

12

-9 -6 -

3

-

2

-1 2 0 -2 -4

T -

14

-

11

-8 -

5

-

4

-1 0 1 -1 -3

G -

16

-

13

-

10

-

7

-

6

-3 -2 1 0 0

The optimal global alignment that you get from running the

Needleman-wunsch code is:

- S1 = G C G C - A A T G

 | | | | |

- S2 = G C C C T A G C G

The score of Needleman-wunsch algorithm =

(match's number*match's value)+(mismatch's

number*mismatch's value)+(gap's number*gap's value)+()+()

 (5*1) + (3*-1) + (1*-2) = 0.

2.3 Smith-waterman algorithm:

The Smith–Waterman algorithm compares segments of all

possible lengths and optimizes the similarity measure. It has

the desirable to find the optimal local alignment with respect

to the scoring system. The main difference between Smith-

Waterman and Needleman is adding the possibility of zero

value to the main function of Needleman algorithm [10][12].

The formula for computing H (i, j) becomes:

H (i, j) = MAX { 0;

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

14

 H (i-1,j-1)+ sub(S1(i),S2(j));

 H (i-1,j)+del(S1(i));

 H (i,j-1)+ins(S2(j))}

Initialization:

 Gap=0, Match=+1, Mismatch=-1,

Table 3: filling Smith-Waterman matrix and trace

back pointers [12].

The optimal local alignment that you get from running the

smith-waterman code is:

 - S1 = GCCCTAGCG

 GCG

- S2 = GCGCCAATG

 The score of smith alignment =

 (3*1) + (0*-1) + (0*0) =3

2.3 longest common subsequence problems:

The longest common subsequence (LCS) problem is the third

application of dynamic programming and used to find the

longest common subsequence to all sequences in a set of

sequences [13]. When we fill in a cell, we consider: The three

values below correspond, respectively, to the values

returned by the three recursive sub-problems I listed

-V1 = the value in the cell to the left

-V2 = the value in the cell above

- V3 = the value in the cell to the above-left

The main function in the LCS strategy:

 Max = {V1,

 V2,

 V3+1} if C1equals C2, V3 if C1is not equal to C2,

where C1is the character above the current cell and C2 is the
character to the left of the current cell.

Termination: We also add arrows that point pack to which

of those three cells .I used to get the value for the current cell.
We'll use these arrows later in "tracing back".

 Tracing back to find an actual LCS:

In the tracing back step we use the cell pointers that we draw.

When you have a pointer to the above-left cell, and the value

in the current cell is 1 more than the value of the above-left

cell, this means that the characters to the left and above are

equal (match) else the characters not equal (mismatch) or gaps

as shown:

Figure 1: Shows the best matches in LCS matrix with

trace back and matches [13].

From the trace back:

We find the score of LCS alignment = 5.

Performance:

Space: O (M*N)(we need a matrix to store all the trace

back pointers).

Time: O (M*N)(we need to fill all the cells in the

matrix) Time of backing trace (M+N).

3. PROPOSED ALGORITHM:

3.1 FAST longest common subsequence:

We use the same two Sequences in the new algorithm

sequence1=“GCCCTAGCG” and sequence 2

=“GCCCTAGCG”. Create a matrix of size M*N (M is the

length of first sequence; N is the length of second sequence).

The main steps of FAST longest common subsequences

algorithm is as follow:-

1. Initialization

C (0, 0) =V1= 0

Match=+1

 G C C C T A G C G

 0 0 0 0 0 0 0 0 0 0

G 0 1 0 0 0 0 0 1 0 1

C 0 0 2 1 1 0 0 0 2 0

G 0 1 0 1 0 0 0 1 0 3

C 0 0 2 1 2 0 0 0 2 1

A 0 0 0 1 0 1 1 0 0 1

A 0 0 0 0 0 0 2 0 0 0

T 0 0 0 0 0 1 0 1 0 0

G 0 1 0 0 0 0 0 1 0 1

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

15

C (0, 1) = C(0,0)=V1 = 0

C (j, 0) = C (0,0) = V2=0

 3. Main function

Calculate the values for each cell in the three main diagonals:

C (1, 1) =C (0,0)+match= V1+match=0+1=1 (i =j)

diagonal C(1,2)= max(C(0,1),C(1,1),C(0,2)) +mismatch (i ≠ j)

C (0, 2) not has any value so

C (1, 2) = max(C (0, 1), C (1, 1))

= max (-1, 1) =1=1

The maximum value =left.

Then, follow this method to complete the three diagonal

values, the matrix will be as

Table 4: Fill 3 diagonal values and trace back pointer:

 G C C C T A G C G

 0 0

 G 0 1

1

 C 1 2

2

 G 2 2 2

 C 2 3 3

 A 3 3 3

 A 3 4 4

 T 4 4

4

 G 4 4 5

 - S1 = G C G C – A A T G

 | | | | |

 - S2 = G C C C T A G C G

 From the last matrix we found that FLCS algorithm find the

same optimal solution as the longest common subsequence

algorithm but it ignored most unused data of the matrix so

the FLCS algorithm reduce the execution time for the

alignment and also increase the performance used for this

alignments.

4. EXPERIMENTAL WORK:
Table 5: the table of the running time of four dynamic

algorithms for the unreal sequences:

Name of

algorithm

s

Numbers

of

running

time

Needle

man-

Wunsch

Smith-

Waterma

n

Longest

Common

Subsequ

ence

(LCS)

FAST

Longest

Common

Subsequ

ence

(FLCS)

1 828386 1188476 389326 135249

2 699740 1190778 401076

135830

3 829588 1968769 402598

138265

4 850028 1922481 404004

138401

5 672688 1207712 405876

138657

6 697936 1171042 407193

138924

7 788710 1421121 408485

139261

8 121973

6

1201100 413052

139366

9 681705 2561504 403485

139454

10 661266 1183666 425392

139544

The sum 792978

3

5368433 4060487

2605421

Average

with

nanoseco

nd

792978.

3

536843.3

406048.7

260542.1

Average

of

millisecon

d

.792978

3

.5368433

.4060487

.2605421

 After made a comparison between four algorithms such as

fast longest common subsequences, longest common

subsequences LCS, The Needleman-Wunsch Algorithm And

Smith-Waterman, we found the approximately average

execution time in this case when the sequences is A=

GCCCTAGCG and B= GCCCAATG. The total execution

time for the alignment by using the total execution time for

the alignment by using Needleman-Wunsch algorithm is = ~

.7929783 millisecond, and = .5368433 millisecond by the

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

16

Smith-Waterman algorithm, and Longest Common

Subsequences algorithm is = .4060487 millisecond, and finally

= .2605421 millisecond by FAST Longest Common

Subsequence (FLCS) algorithm.. From these values we found

that our algorithms FLCS achieve the least execution time this

come from ignoring the unused data of the matrix and evaluate

the only three main diagonal.

Figure 2: The GUI of four dynamic algorithms and the

Output alignment for the sequences S1=GCGCAATG

and S2= GCCCTAGCG by using the new algorithm

FLCS. The score of alignment is 5and the optimal
solution is the same of LCS.

Figure 3: the diagram of the running time of four

dynamic algorithms for the unreal sequences:

FLCS Case Study:

Then we apply four dynamic algorithms on the two type of

human insulin such as: and EST'S sequence1 with accession

number : C07137.1 and EST'S sequence2 with accession

number : C07145.1 with length 231, then we found the total

execution time for the alignment by using Needleman-

Wunsch algorithm is 4.4839166 millisecond, and = 4.3071470

millisecond by the Smith-Waterman algorithm , and Longest

Common Subsequences algorithm is = 3.0585219

millisecond, and finally = 2.2647422 millisecond by

FAST Longest Common Subsequence (FLCS) algorithm..

From these values we found that our algorithms FLCS

achieve the least execution time this come from ignoring the

unused data of the matrix and evaluate the only three main

diagonal.

Figure 4: the diagram of the comparison between

four algorithms between two sequences of human

insulin (real sequences).

The running time of unreal sequences

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1 3 5 7 9 11 13 15

The number of running

time

T
h

e
 v

a
lu

e
s
 o

f
ru

n
n

in
g

 t
im

e

Name of

algorithms

Numbers of

running time
Needleman-

Wunsch

Smith-Waterman

Longest Common

Subsequence

(LCS)

FAST Longest

Common

Subsequence

(FLCS)

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

50000000

1 3 5 7 9

T
h
e
 s

u
m

A
v
e
ra

g
e
 o

fm
il
li
s
e
c
o
n
d

Neddleman-

wunsch

Smith-waterman

Longest Common

Subsequence(LCS

)

FAST Longest

Common

Subsequence(FLC

S)

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

17

Table 6: the table of the running time fo four dynamic algorithms on the real sequences such as the EST's of human insulin:

Table 7: comparison between four dynamic algorithms.

Algorithms

Execution time of

unreal sequences

Execution time of

real sequences
Performance Memory locations

Big O

notation

FAST Longest

common

subsequences

~ .2605421

millisecond

~ 2.2647422

Millisecond

 High O(3M+2) as we need to fill all the matrix

O(3M+2) as
we need to

fill all the

matrix

Longest

common

subsequences

algorithm

~.4060487

millisecond

~ 3.0585219

Millisecond

 High O(M*N)as we need to fill all the matrix

O(M+N) as

we need to

fill all the
matrix

Smith-

Waterman

~.5368433millisecond

~ 4.3071470

millisecond

 Low O(M*N)as we need to fill all the matrix

O(M*N)as
we need to

fill all the

matrix

Needleman-

Wunsch

algorithm

~.7929783

millisecond

~ 4.4839166

millisecond

Low O(M*N)as we need to fill all the matrix

O(M*N)as
we need to

fill all the

matrix

Name of algorithms

Numbers of running time

Needleman-Wunsch Smith-waterman Longest Common Subsequence

(LCS)

FAST Longest Common

Subsequence

(FLCS)

1 3675454 1759038 2800210 2279002

2 4055989 4782785 2948696 2214678

3 4250162 4426901 3111010 2224200

4 4355364 4449144 3660471 2265771

5 4529698 5160911 3656865 2208667

6 4468381 4031342 2908558 2223695

7 9725477 4850716 2968538 2292228

8 6405301 4901212 3787317 2316668

9 4775571 4397941 3734414 2292225

10 4357769 4311480 3009140 2330288

The sum 44839166 43071470 30585219 22647422

Average with nanosecond 4483916.6

4307147.0 3058521.9 2264742.2

Average of millisecond 4.4839166 4.3071470 3.0585219 2.2647422

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

18

5. CONCLUCION
 In this paper, a modification to the implementation of

Longest Common Subsequence algorithm called Fast Longest

Common Subsequences (FLCS) is made. This modification

depends on ignoring the unused data of the Longest Common

Subsequences matrix and evaluates the only three main

diagonals of the FLCS matrix. The main idea of the

implementation is reducing the execution time, increasing the

performance and decreasing the memory location used to

make the sequence comparisons. This algorithm is based on

taking the advantage of dynamic algorithms that is getting the

optimal solution for the sequences alignment. It also takes the

advantage of the heuristic algorithm that it is decreasing the

execution time for the sequence comparison. In this

implementation we use java language and the Net-beans 6.8

IDE with the JDK 1.6 to test the algorithms under the

Windows Operating system with RAM 2GB.

6. ACKNOWLEDGMENTS:
First and foremost, I give my deep thanks to Allah, then I

would like to thank my Husband, all my family and all

Doctors who help me in this research.

7. REFERENCES

[1] Dimitris Papamichail and Georgios

Papamichail2,"Improved algorithms for approximate

string matching (extended abstract)"BMC Bioinformatics

2009.

[2] Wagner, R. A. and Fischer, M. J. (1974). "The string -to-

string correction problem". Journal of the ACM 21 (1) ,

1974: 168–173.

[3] Moulton, V., Singl, M. ALGORITHMS IN

BIOINFORMATICS, 10thInternational workshop, WABI

, Proceedings 2010, 20-22.

 [4] Tahir Naveed, Imitaz Siddiqui, Shaftab Ahmed,

“Parallel Needleman-Wunsch Algorithm for Grid”,

Proceedings of the PAK-US International Symposium on

High Capacity Optical Networks and Enabling

Technologies. Islamabad, Pakistan, Dec 19 -21, 2005.

[5] MacIntosh, G.C., Wilkerson, C., Green, P.J. (2001).

Identification and analysis of analysis of Arabidopsis

expressed sequence tags characteristic of noncoding

RNAs. Plant Physiol. 127(3): 765-776.

[6] Casey, R. M. (2005). "BLAST Sequences Aid in

Genomics and Proteomics". Business Intelligence

Network . http://www.b-eye-network.com/view/1730.

[7] Lopez, C., Piegu, B., Cooke, R., Delseny, M., Tohme, J.,

Verdier, V. Using cDNA and genomic sequences as

tools to develop SNP strategies in cassava (Manihot

esculenta Crantz) . Theor. Appl. Genet, 2005 110: 425-

431. 47.

[8] Diaz, D., Esteban, F.J., Hamandez, P. , Caballero, J.A.,

Dorado G. ,Galvez, S. (2011),Parallelizing and

optimizing a bioinformatics pairwise sequence alignment

algorithm for many-core architecture ,journal: Parallel

computing-PC,VOL.37,no.4-5, pp .244-259.

 [9] Source of DNA Sequences (online),National Center

Biotechnology Information. Available:

http://www.ncbi.nlm.nih.gov/mapview.

[10] Bin Wang, Implementation of a dynamic programming

algorithm for DNA sequences alignment on the cell

Matrix Architecture (online), Utah State University,

Logan, Utah. Available:

http://www.cellmatrix.com/entryway/products/pub/wang

2002.pdf

[11] Needleman, S.B. and Wunsch, C.D .(1970). "A general

method applicable to the search for similarities in the

amino acid sequence of two proteins". Journal of

Molecular Biology.1970, 443–453.

[12] Smith, T. F. and M. S. Waterman, Identification of

common molecular subsequences, Journal of Molecular

Biology, 1981, 147: 195-197.

[13] Bergroth, L. , Hakonen, H. and Raita, T. "A Survey of

Longest Common Subsequence Algorithms". SPIRE

(IEEE Computer Society), 2000,39–48.

http://en.wikipedia.org/wiki/Journal_of_the_ACM
http://www.b-eye-network.com/view/1730
http://www.b-eye-network.com/view/1730
http://www.b-eye-network.com/view/1730
http://www.ncbi.nlm.nih.gov/mapview
http://linkinghub.elsevier.com/retrieve/pii/0022-2836%2870%2990057-4
http://linkinghub.elsevier.com/retrieve/pii/0022-2836%2870%2990057-4
http://linkinghub.elsevier.com/retrieve/pii/0022-2836%2870%2990057-4

