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 ABSTRACT 

Hall effects on the unsteady hydromagnetic flow of a viscous 

incompressible electrically conducting fluid bounded by an 

infinite flat porous plate in the presence of a uniform transverse 

magnetic field has been analyzed. Initially ( 0t  ) the fluid at 

infinity moves with uniform velocity 0U . At time > 0t , the 

plate suddenly moves with uniform velocity 0U  in the 

direction of the flow. The velocity field and the shear stress 

components at the plate are found exactly by using the Laplace 

transform technique. The solutions are also obtained for small 

as well as large times. It is observed that the primary velocity 

decreases whereas the secondary velocity increases with an 

increase in Hall parameter. The suction parameter is found to 

accelerate the primary velocity and it has a retarding influence 

on the secondary velocity. It is also found that the shear stress 

components decrease with an increase in time. 

Key words: Hydromagnetic, Hall currents, inertial oscillations 

and porous plate  

1. INTRODUCTION  

In an ionized gas where the density is low and/or the magnetic 

field is very strong, the conductivity normal to the magnetic 

field is reduced due to the free spiraling of electrons and ions 

about the magnetic lines of force before suffering collisions and 

a current is induced in a direction normal to both the electric 

and the magnetic fields. This phenomenon, well known in the 

literature, is called the Hall effect. The study of hydromagnetic 

viscous flows with Hall currents has important engineering 

applications in problems of magnetohydrodynamic generators 

and of Hall accelerators as well as in flight 

magnetohydrodynamics. The unsteady hydromagnetic flow of 

an incompressible electrically conducting viscous fluid induced 

by a porous plate is of considerable interest in the technical 

field due to its frequent occurrence in industrial and 

technological applications. Katagiri [1] have discussed the 

effects of Hall current on the boundary layer flow past a semi-

infinite flat plate. Pop and Soundalgekar[2] have investigated 

the effects of Hall current on hydromagnetic flow near a porous 

plate. The hydromagnetic flow past a porous flat plate with Hall 

effects has been studied by Gupta [3]. Debnath et al.[4] have 

discussed the effects of Hall current on unsteady hydromagnetic 

flow past a porous plate in a rotating system. Hossain [5] has 

studied the effects of Hall current on unsteady hydromagnetic 

free convection flow near an infinite vertical porous plate. The 

effects of Hall current on hydromagnetic free convection flow 

near an accelerated porous plate has been studied by Hossain 

and  

 

 

Mohammad [6]. Maji et al. [7] have studied the Hall effects on 

hydromagnetic flow on an oscillatory porous plate. 

The aim of the present paper is to study the unsteady 

hydromagnetic flow of a viscous incompressible electrically 

conducting fluid induced by an infinite porous flat plate in the 

presence of a uniform transverse magnetic field. Initially, at 

time 0t  , the fluid at infinity moves with uniform velocity 

0U . At time > 0t , the plate suddenly starts to move with 

uniform velocity 0U  in the direction of the flow. An exact 

solution of the governing equation has been obtained by using 

the Laplace transform technique. The solution for large and 

small times have also been obtained. It is observed that the 

primary velocity decreases whereas the secondary velocity 

increases with an increase in Hall parameter. It is also found 

that the shear stress components decrease with an increase in 

time. 

2. MATHEMATICAL FORMULATION 

AND ITS SOLUTION 

Consider the flow of a viscous incompressible electrically 

conducting fluid filling the semi-infinite space 0z   in a 

cartesian coordinate system. Initially, at time 0t  , the fluid 

flows past an infinitely long porous flat plate with free-stream 

velocity 0U  along x -axis. A uniform magnetic field 0B  is 

imposed along z -axis [See Fig.1] and the plate is taken 

electrically non-conducting. The y -axis is normal to the zx  -

plane. At time > 0t , the plate suddenly starts to move with 

same uniform velocity as that of the free stream velocity 0U . 

  

  

 

Fig.1: Geometry of the problem 

At time 0t  , the velocity components ˆ ˆ ˆ, ,u v w  in the 

directions of x , y  and z -axes respectively, the equations of 

motion are  
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where p  is the modified pressure including centrifugal force, 

  the density of the fluid and   the kinematic coefficient of 

viscosity and ( , , )x y zJ J J J  the current density vector. 

The boundary conditions are  

  0ˆ ˆ ˆ0, 0, = at = 0,u v w w z    

0ˆ ˆ, 0 asu U v z                                 (4) 

The generalized Ohm's law, on taking Hall currents into 

account and neglecting ion-slip and thermo-electric effect, is 

(see Cowling [8])  

0

( ) = ( ),e eJ J B E q B
B

 
                               (5) 

where B  is the magnetic induction vector, E  the electric field 

vector, e  the cyclotron frequency, e  the collision time of 

electron and   the electrical conductivity. 

We shall assume that the magnetic Reynolds number for the 

flow is small so that the induced magnetic field can be 

neglected. This assumption is justified since the magnetic 

Reynolds number is generally very small for partially ionized 

gases. The solenoidal relation . = 0B  for the magnetic field 

gives 0zB B   constant everywhere in the fluid where 

( , , )x y zB B B B . The equation of conservation of the charge 

0J   gives zJ   constant. This constant is zero since 

0zJ   at the plate which is electrically non-conducting. Thus 

0zJ   everywhere in the flow. Since the induced magnetic 

field is neglected, the Maxwell's equation =
B

E
t


 


 

becomes = 0E  which in turn gives 0xE

z





 and 0

yE

z






. This implies that xE   constant and yE   constant 

everywhere in the flow. 

     In view of the above assumption, equation (5) gives  

 0ˆ( ),x y xJ mJ E v B                       (6) 

 0ˆ( ),y x yJ mJ E u B                        (7) 

where = e em    is the Hall parameter. Since the magnetic field 

is uniform in the free stream so that there is no current and 

hence, we have  

 0, 0 as .x yJ J z                      (8) 

On the use of (8) and the condition at infinity, equations (6) and 

(7) give  

  0 00, ,x yE E U B                             (9) 

everywhere in the flow. 

Substituting the above values of xE  and yE  in  equations (6) 

and (7) and solving for xJ  and yJ , we get  

 0
02

ˆ ˆ= ,
1

x

B
J v m u U

m


   
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
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Under usual boundary layer approximations and on the use of 

(10) and (11), equations (1) and (2) become  
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Introducing the non-dimensional variables  

0
0

ˆ ˆ ˆ= , = ( )/ , = 1,
U z

F u iv U i


                      (14) 

equations (12) and (13) become  
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where 
2

2 0
2
0

B
M

U

 


  is the magnetic parameter and 0

0

w
S

U
  the 

suction parameter . 

The corresponding boundary conditions for ˆ ( )F   are  

ˆ ˆ= 0 at = 0 and 1 as .F F                   (16) 

The solution of (15) subject to the boundary conditions (16) can 

be obtained as  

0

ˆ
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u
e

U
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                                                                                                (19) 

Solutions given by (17) and (18) is valid for both suction 

( > 0)S  and blowing ( < 0)S  at the plate. Solutions given by 

equations (17) and (18) are identical with the equations (36) 

and (37) of Gupta [3]. 

 At time > 0t , the plate suddenly starts to move with uniform 

velocity 0U  along x -axis in the direction of flow. Assuming 

the velocity components 0( , , )u v w  along the coordinate axes, 

we have the following equation of motion  
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The initials and boundary conditions are  

 ˆ ˆ, at 0 for 0,u u v v t z     

 0= , = 0 at = 0, > 0,'u U v z t            (23) 

               0, 0 as , > 0.'u U v z t       

It is observed from equation (22) that p  is independent of z . 

Further, equations (20) and (21) together with conditions 

0u U  and 0v   as z   yield  
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On the use of (24), equations (20) and (21) become  
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Equations (25) and (26) can be written in combined form as  
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On the use of (14) together with 
2
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'U t
t


, equation (27) yields  
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The corresponding initial and the boundary conditions for 

( , )F    are  

ˆ( ,0) = ( ), 0,F F     (30) 

(0, ) 0 for > 0, ( , ) 0 for > 0,F t t F t t           (31) 

 where ˆ ( )F   is given by (14). 

To solve the equation (29), we assume  
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Using (32), the equation (29) becomes  
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With the  initial and the boundary conditions  

ˆ( ,0) ( ) for 0,H F                                        (35) 

(0, ) 0 for > 0, ( , ) 0 for > 0.H t t H t t          (36) 

Taking the Laplace transform of the equation (34), we have  
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The inverse Laplace transform of the equation (40) and on 

using (32) and (28), yields  
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The solution given by (41) is valid for both suction ( > 0)S  and 

blowing ( < 0)S  at the plate. 

3.  RESULTS AND DISCUSSION  

To study the flow situations due to the impulsive start of the 

porous plate for different values of Hall parameter m , suction 

parameter S  and time t , the velocity are examined 

numerically and plotted in Figs. 2-7. It is seen from Figs.2 and 

3 that the primary velocity 
0

u

U
 decreases whereas the 

secondary velocity 
0

v

U
 increases with an increase in Hall 

parameter m . This phenomenon is clearly supported by the 

physical reality. It is revealed from Figs.4 and 5 that the 

primary velocity 
0

u

U
 increases whereas the secondary velocity 

0

v

U
 decreases with an increase in suction parameter S . Figs.6 

and 7 show that the primary velocity 
0

u

U
 increases while the 

secondary velocity 
0

v

U
 decreases with an increase in time t . 

 

Fig.2: Primary velocity 
0

v

U
 for m  when 

2 = 5M , =1S  

and = 0.2  

Fig.3: Secondary velocity 
0

v

U
 for m  when 2 = 5M , =1S  

and = 0.2    

 

Fig.4: Primary velocity 
0

u

U
 for S  when 

2 = 5M , = 0.5m  

and = 0.2  

 

Fig.5: Secondary velocity 
0

v

U
 for S  when 

2 = 5M , 

= 0.5m  and = 0.2  
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Fig.6: Primary velocity 
0

u

U
 for   when 2 = 5M , = 0.5m  

and =1S  

 

Fig.7: Secondary velocity 
0

v

U
 for   when 2 = 5M , = 0.5m  

and =1S  

Now, we shall consider the case when t  is small which 

correspond to large ( 1)s . For small times, method used by 

Carslaw and Jaegar [9] is used because it converges rapidly for 

small times. In this case, the inverse Laplace transform of the 

equation (40) yields  
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The above equations show that the Hall effects become 

important only when terms of order t  is taken into account. 

For small values of time, we have drawn the velocity 

components 
0

u

U
 and 

0

v

U
 from the exact solution given by 

equation (41) and the series solution given by equations (45) 

and (46) in Figs.8 and 9. It is seen that the series solution given 

by (45) and (46) converge more rapidly than the exact solution 

given by (41) for small times. Hence, we conclude that for 

small times, the numerical values of the velocities can be 

evaluated from the equations (45) and (46) instead of equation 

(41). 

 

Fig.8: 
0

u

U
 for general solution and solution for small times 

when 
2 = 5M , = 0.5m  and =1S  



International Journal of Computer Applications (0975 – 8887)  

Volume 57– No.18, November 2012 

42 

 

Fig.9: 
0

v

U
 for general solution and solution for small times 

when 2 = 5M , = 0.5m  and =1S  

The shear stresses at the plate = 0  due to the primary and 

secondary flow are given by [from equation (38)]  
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              
 

2

1 1
1 1 1 1

1
erf

2

i tS
i i t e

t

 
   



 
 
     
 
 

(48) 

The numerical results of the shear stress components x  and 

y  are shown in Figs.10 and 11 against Hall parameter m  for 

different values of t  with 2 = 5M  and =1S . It is seen that the 

shear stress components x  and y  decrease with an increase 

in t . On the other hand, with an increase in Hall parameter m  

both x  and y  increase. 

 

  

Fig.10: Shear stress x  for different time   when 
2 = 5M  

and =1S  

 

Fig.11: Shear stress y  for different time   when 2 = 5M  

and =1S  

By letting t  , the steady state shear stress components at 

the plate = 0  are obtained as  

1 1= ( ) ( ).
2

x y

S
i i i                                (49) 

Estimation of the time which elapses from the starting of 

impulsive motion of the plate till the steady state is reached can 

be obtained as follows. It is observed from (48) that the steady 

state is reached after time 0t  when erf ( ) =1a ib t . Since erf

( ) =1a ib  when 0 = 2a ib t , it follows that  

1

2 2 22 2 2

0 2 2
= 4 .

4 1 1

S M mM
t

m m


    
     
          

            (50) 

The above equation shows that for fixed m , the time 0t  to 

attain the steady state decreases with an increase in either 

suction parameter S  or the magnetic parameter 
2M . The 

values of the time 0t  are entered in the Table 1 for several 

values of Hall parameter m  and suction parameter S  for 

2 = 5M . It is seen that for fixed 2M  and S , the time 0t  

increases with an increase in Hall parameter m . This means 

that the system with Hall currents takes more time to reach the 

steady state than  without Hall current. 

Table 1. Values of time 0t  when 
2 = 5M    

m  = 0.0S  = 0.5S  =1S  

0.0 

0.5 

1.0 

1.5 

0.80000 

0.89442 

1.13137 

1.44222 

0.79012 

0.88337 

1.11731 

1.42171 

0.76190 

0.85160 

1.07628 

1.37005 

  

For small time, the shear stresses at the plate = 0  due to 

primary and the secondary flows are given by  
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 with   

         
2 12 2 1

2 1= , where erfc .
2 2

nn n
n

dT Y
Y j

d t t








 
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Table 2. Shear stress due to primary flow when 
2 = 5M , =1S  

 

   x (For  General  solution)   x (Solution for small time)  

\m t  0.005 0.010 0.015 0.005 0.010 0.015 

0.0 

0.5 

1.0 

1.5 

5.896093 

6.032860 

6.290388 

6.515985 

3.644242 

3.765285 

3.998794 

4.208713 

2.673381 

2.782767 

2.998242 

3.196242 

5.896093 

6.032872 

6.290404 

6.515995 

3.644238 

3.765358 

3.998886 

4.208762 

2.673358 

2.782959 

2.998493 

3.196378 

  

Table 3. Shear stress due to secondary flow when 
2 = 5M , =1S  

 

 
y (For  General  solution) y  (Solution for small time) 

\m t  0.005 0.010 0.015 0.005 0.010 0.015 

0.0 

0.5 

1.0 

1.5 

0.000000 

0.393570 

0.595888 

0.660252 

0.000000 

0.361540 

0.555407 

0.622620 

0.000000 

0.337486 

0.524776 

0.594005 

0.000000 

0.393615 

0.595908 

0.660258 

0.000000 

0.361790 

0.555517 

0.622650 

0.000000 

0.338174 

0.525087 

0.594089 

  

 

For small time, the numerical values of the shear stress 

components calculated from equations (48), (51) and (52) are 

entered in Tables 2 and 3 for different values of m  and t . It 

is observed that for small times the shear stresses calculated 

from the equations (51) and (52) are greater than that 

calculated from equation (48). Hence, for small times, shear 

stresses should be calculated from equations (51) and (52) 

instead of the equation (48). 

We may now write down the asymptotic form of the solution 

(38) by using asymptotic expansion of erfc( )z  with complex 

argument in the form of  

2exp( )
erfc( ) as | | ,

z
z z

z 


                        (56) 

 together with the fact that erfc ( ) = 2 erfc ( )z z  . Therefore, 

the final solution is  
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1 1
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                (57) 

Additionally, if 2 t , 1t  then the solution becomes  
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v e

U t

  

  

  


 

           1 1 1 1 1 1 1 1[ cos2 sin2 cosh sint t          

           1 1 1 1 1 1 1 1cos2 sin2 sinh cos ].t t              (59) 

Equations (58) and (59) show the existence of inertial 

oscillations. The frequency of these oscillations is  

                        
2

1 1 2
= 2 = ,

1

mM

m
  


                                   (60) 

 It is observed from equations (58) and (59) that the Hall 

parameter not only induced a cross flow but also occurs 

inertial oscillations of the fluid velocity. The frequency of 

these oscillations increases with an increase in 2M . On the 

other hand, with an increase m , the fequency   first 

increases, reaches a maximum at =1m  and then decreases. 

5. CONCLUSION  

 An analysis is made on the unsteady hydromagnetic flow of a 

viscous incompressible electrically conducting fluid bounded 

by an infinitely long flat porous plate in the presence of a 

uniform transverse magnetic field. An analytical solution is 

obtained by using the Laplace Transform technique. It is 

found that Hall current has a retarding influence on the 

primary velocity and it accelerates the secondary velocity. It is 

also found that the primary velocity increases whereas the 

secondary velocity decreases with an increase in suction 

parameter. It is seen that the shear stress components decrease 

with an increase in either Hall parameter or time. 
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