
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.18, November 2012

26

Indexed Tree Sort: An Approach to Sort Huge Data with

Improved Time Complexity

Prateek Agrawal

Department of Computer
Science & Engineering

Lovely Professional University
India

Harjeet Kaur
Department of Computer
Science & Engineering

Lovely Professional University
India

Gurpreet Singh
Department of Computer
Science & Engineering

Lovely Professional University
India

ABSTRACT

Sorting has been found to be an integral part in many

computer based systems and applications. Efficiency of

sorting algorithms is a big issue to be considered. This paper

presents the efficient use of Indexing with Binary Search

Trees (BST) to model a new improved sorting technique,

Indexed Tree (IT)-Sort, capable of working with huge data.

Along with design and implementation details, major

emphasis has been placed on complexity, to prove the

effectiveness of new algorithm. Complexity comparison of

IT-Sort with other available sorting algorithm has also been

carried out to ascertain its competence in worst case also. In

this paper, we describe the formatting guidelines for IJCA

Journal Submission.

Keywords

Computing, Sorting Algorithm, Complexity, Huge Data Set,

Binary Search Tree (BST), Indexing

1. INTRODUCTION
There are number of traditional algorithms used to find

ordering of unordered data sets. Each algorithm has its own

pros and cons and a specific methodology to arrange the data

like merging divide and conquer, partitioning, recursive

methods etc [1, 2]. Different sorting algorithms are analyzed

and compared according to their complexity [3, 6, and 7]. The

analysis of algorithms is the area of computer science that

provides tools for contrasting the efficiency of different

methods of solution. Although the efficient use of both time

and space is important, inexpensive memory has reduced the

significance of space efficiency [4]. Thus, focus of researcher

has been restricted to primarily on time efficiency only. Time

complexity of an algorithm is a function of the size of the

input to the problem and quantifies the amount of time taken

by an algorithm to execute. Designing of suitable sorting

algorithm as per application is a continuous process. Lots of

work is being carried out in this field with single objective to

reduce time complexity of proposed algorithm. Existences of

large number of data values have significant impact on

computational complexity of sorting. Since, sorting large

datasets may slowdown the overall execution, schemes to

speedup sorting operations are needed [8].

Sorting algorithms are classified according to computational

complexity, number of swaps, stability, memory

requirements, recursive nature, number of comparisons etc.

Most of the times aalgorithms are analysed for best, worst and

average cases according to size of input data. In most of the

cases, all efforts are laid on improving the average case

complexity. Present work is related, yet different from

existing works on efficient practical algorithms for sorting.

Proposed algorithm concentrate on reducing time complexity

to a great extend if sorting is carried out with huge data sets

even in worst case. In this paper, an attempt has been made to

present improved approach for finding more efficient solution,

requiring less execution time, of sorting using Indexing and

BSTs.

The rest of the paper is organized as follows. Next section

describes the methodology followed in designing IT-Sort.

Main emphasis in section 3 has been placed on presenting the

design and implementation details of new algorithm. Section

4 supports the whole discussion with experimental results to

prove the effectiveness of proposed algorithm and finally

section 5 concludes the paper with future enhancements.

2. IT-SORT

2.1 Enhanced Algorithm for Sorting
Sort information is inherent in many applications, making

sorting a fundamental problem in the study of algorithms.

Efficient sorting is important to optimize the use of algorithms

requiring sorted lists to work correctly. In proposed work a

list of indexes is created. Each index value further points to a

BST. The idea is to place all values starting from one

particular digit to BST of the index whose value is equal to

that digit. Elements of the unordered list are arranged in BST

of corresponding starting digit. In simple words complete data

is organized as a list of BSTs. Elements are arranged in such a

manner that indexes are pointed directly instead of traversing

of list. Every element in the list is placed in such a position

which best suits for sorting. Element is added to its

corresponding index position and in order to locate these

indexes, direct pointers are used. Mechanism to directly

calculate the address of appropriate position of elements has

been implemented. Direct pointer straight forwardly cuts off

the time to traverse the index list. This makes both searching

and sorting operations on large data set, fast. It’s only the

arrangement of elements in a way that when we start reading

the elements the read value comes out to be sorted. Elements

are put into appropriate position after all input values and

sorting process is just traversal of proposed organization. The

pseudo code given below has two different procedures, one is

to read the different values with appropriate organization and

another is to give the sorted list.

2.2 Data Structure Used
The computation performed by the proposed algorithm

requires dynamic manipulations of data, such as index and

BST. The data can be of any length. Particularly, IT-Sort is

designed to meet the requirements of applications working on

large data set. It is therefore necessary that values are stored in

flexible and dynamic data structures. In order to avoid the

non-determinism of solutions, data is stored in a list of BSTs.

List, which is serving as an index for BSTs, is again designed

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.18, November 2012

27

to be an array of pointers. In order to create an index of BSTs,

two special kinds of structures are created. First one is to

access the indexed items and another to represent the node in

a BST. As shown in Figure 1(a and b), we use a pointer-based

linear list structure to implement Indexed BSTs. Each node of

the list contains a link to one BST with index value equal to

the node number and a reference down pointer to point the

next node of the list.

An array of pointers to BSTs, index_bst has been used to

represent an element in Index List. Pointer arrays offer a

particularly convenient method for representing these index

values. An n element array can point to n different BSTs.

Each individual BST can be accessed by referring to its

corresponding pointer. An advantage to this scheme is that a

fixed block of memory needs not to be reserved in advance, as

is done when initializing a conventional array. Moreover, size

of the index list varies according to values in the list to be

sorted. Maximum value from the unordered list is taken to

determine the size of the list. If max_value represents the

biggest value in unsorted list, then size is calculated as per

following formula

 INDEX_SIZE = sqrt(MAX_VALUE)

Memory is dynamically allocated to index list according to

calculated array_size as

INDEX_BST = (int *) malloc (INDEX_SIZE * sizeof (int))

Since an array name is actually a pointer to the first element

within the array, it is more convenient to define array as a

pointer variable. In order to calculate the address of any

element, one must specify only the array name and number of

elements beyond the first. An important advantage of dynamic

memory allocation is the ability to reserve as much memory

as may be required during program execution and then release

this memory when it is no longer needed.

Figure 1(a): Pointer based dynamic linear list structure for Indexed BST

Figure 1 (b): Structure of each Node N in Indexed Tree

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.18, November 2012

28

Apart from array_bst, one another significant structure is

BST_Node defined as

typedef struct BST_Node

{

BST_Node*l_node;

int data;

BST_ node*r_node;

}

Each node of binary search tree will contain l_node to point to

left BST, r_node to point to right BST and an integer data to

hold value. In order to deal with duplicate values in data set, a

separate counter has been associated with each data item. The

major advantage of using binary search trees over other data

structures is that the related traversal is very efficient. An in

order tree walk will produce arranged data in sorted order.

3. DESIGN OF PROPOSED

TECHNIQUE

 3.1 Efficient Solution

The algorithm for IT Sort is presented below in Figure 2. The

complete algorithm has been divided into two different

modules. Before the application of IT Sort, data items are

required to be placed in appropriate locations. Second module

CREATE_INDEX() is responsible for making the indexed

tree of data items. This function creates indexed tree of a list

LIST with N items and returns starting address of the index

INDEX_BST and size of the index INDEX_SIZE.

INDEX_BST is a pointer indicating the start of the index with

INDEX_SIZE entries. Value of N is supposed to be very

large. Function FIND_MAX() calculates the largest value in

the LIST, MAX_VALUE and later on this MAX_VALUE is

utilized in calculating the size of the index INDEX_SIZE.

Once the size is known, function malloc() dynamically

allocates INDEX_SIZE blocks of memory for index in IT

Sort. The starting address of the allocation is assigned to

INDEX_BST. Step 4 in the algorithm arranges the data items

in LIST in a binary search tree at corresponding index entry.

LIST is read till the end, for every read data item

LIST_ITEM, CALCULATE_INDEX_POINTER() is called to

find its relevant index pointer. The address returned by this

function, ROOT serve as root address of its corresponding

BST. INSERT_BST() adds the LIST_ITEM in a BST at

ROOT after finding its appropriate placement in BST.

Function IT_SORT() includes two basic steps of creating

indexed tree and in order reading of BSTs. In first step

function CREATE_INDEX is called which returns the

beginning of the indexes INDEX_BST and number of indexes

to be processed INDEX_SIZE. For every index starting from

INDEX_BST to INDEX_SIZE, in order traversal of binary

search tree INORDER() is made. A simple iterative loop has

been applied to in order traverse the different binary search

trees in sequence. After the execution of this module the

printed items are found to be in sorted order. The psuedocode

for the complete procedure is presented below. The

complexity details are given in next section to prove the

enhanced efficiency and effectiveness of the algorithm.

IT_SORT (LIST , N)

 // This algorithm sorts LIST with N items.

Step 1: CREATE_INDEX (LIST , N , INDEX_BST ,

INDEX_SIZE)

Step 2: Repeat for I = 1 to INDEX_SIZE

a) Print INORDER (INDEX_BST)

b) INDEX_BST = INDEX_BST + 1

Step 3: Exit

CREATE_INDEX (LIST , N , INDEX_BST ,

INDEX_SIZE)

// This algorithm creates index tree of LIST with N items

and returns the starting address of index INDEX_BST

and size of index INDEX_SIZE

Step 1 : MAX_VALUE = FIND_MAX (LIST)

Step 2 : INDEX_SIZE = sqrt (MAX_VALUE)

Step 3 : INDEX_BST = malloc (INDEX_SIZE)

Step 4 : While Not (End of LIST) Repeat

(a) Read LIST_ITEM

(b) ROOT = CALCULATE_INDEX_POINTER (

LIST _ITEM)

(c) INSERT_BST (LIST_ITEM , ROOT)

Step 5 : Exit

Figure 2: Psuedocode for IT_SORT

3.2 Implementation Details
The implementations and executions during testing was

carried out on Intel (R) Core(TM) i3 processor with M350 @

2.27 GHz 2.27 GHz and 3 GB RAM on Windows 7 Ultimate

Service Pack 1, 64 bit Operating System. Compiler used is

Bloodshed Dev C++, Version-4.9.9.2. The choice of this

compiler was because of the facts this being freeware,

compatibility with Windows 7 and its capability to handle

large volume of data. In order to generate a list of large set of

numbers, worst case data arrangements have been used. List is

produced in descending order. One of the main strengths of C

is that it combines universality and portability across various

computer architectures while retaining most of the control of

the hardware provided by assembly language. One powerful

reason is memory allocation. Unlike most computer

languages, C allows the programmer to write directly to

memory. Key constructs in C such as structs, pointers and

arrays are designed to structure, and manipulate memory in an

efficient, machine-independent fashion. In particular, C gives

control over the memory layout of data structures. Moreover

dynamic memory allocation is under the control of the

programme. Whenever it comes to performance (speed of

execution), C is unbeatable [5]. C provides you access to the

basic elements of the computer. It gives its users direct access

to memory through pointers. It is easy to manipulate and play

with bits and bytes.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.18, November 2012

29

4. TESTS AND RESULTS

4.1 Examples
Figure and table on next page demonstrate a complete

example solved on a small item set of 25. Unordered set of

these 25 values include one, two and three digit number. The

problem can be extended to n numbers with maximum digit

width as per the capacity of processing environment. Table I

gives the complete representation of data items and their

corresponding calculated index values as per formulas

described. Same data and index values have been represented

in the form of complete Indexed Tree in next picture, Figure

3.

4.2 Complexity Analysis
Let T(n) be the time to execute IT_Sort on an array of size n.

Examination of present algorithm leads to the following

formulation for run time.

 Eq.… 1

where n is the number of items and m is the index size such

that

 Eq. … 1(a)

Tmax(n) and Tbuild_index(n) refers to the execution time taken to

calculate maximum element of the list and to create the

indexed tree of each element of the list. Since approach used

here divides the list into smaller k parts with each part to be

read separately, time Tindex_read(k) is calculated by summing

up the individual time taken by m different indexes. In

isolation these three time complexity functions for both

average and worst case can be summarized as calculated in

following equations Eq 2 – Eq 5.

A simple linear algorithm to find the maximum element of the

list yields time complexity of n in both average and worst case

so complexity remains in order of n only

 Eq. … 2

In average case time complexity for building an indexed tree

of size m comes out to be m log(m) while for worst case it is

m2 .

 Eq. …3(a)

 Eq. …3(b)

Last stage of the complexity calculation deals with the simple

accessing of the indexed tree. For this, the results vary with

average and worst case. Since present work is concentrated on

superior time complexity in worst case, discussion will

continue on this track only. As per Eq. 1(a), in maximum

cases it comes out to be far less than n which is the only key

to successful implementation of the algorithm in worst case

also. In initial analysis m appears to be very large and

deceives with higher complexity issues but even the larger

value of m is leading to fewer k’s in Eq 1. Many of the k

values are unutilized and not required to be read as per the

programming techniques used. Many of the null indexes will

remain untouched in actual sort procedure. A demonstration

for this has been given in the example considered in previous

part (Figure 3). In order to substantiate the fact, Table II

illustrates the difference between the n and m2 as number of

null pointers. This huge difference in these random values can

portrait any maximum n and corresponding m value.

There will be one mi associated with each Tindex_read(k) for k

varying from 1 to m whose value can be any integer greater

than or equal to 0 which will be deducted every time

Tindex_read(k) is calculated. Above revealed Tabular results are

for worst case only where all maximum 100000 values are

there in the list in decreasing order. Number of null pointers

will increase drastically with average cases where data set will

have a normal range of random numbers. This time extraction

λ is responsible for decreasing the complexity in worst case

with very huge data set and large values.

Formally, λ can be defined as total number of null pointers

available in the entire indexed tree.

 Eq …. 4

Using Eq 3(a), and Eq. 3(b), for both worst case and average

case

 Eq. … 5

Complexity comes out to be O(n)

Putting the results of Eq 2, 3(b) and 5 for worst case together

in Eq. 1, Overall Time Complexity:

 Or

Similarly, combining the results of Eq 2, 3(a) and 5 for

average case together in Eq. 1,

Or

Table III summarizes the actual time taken by few popular

algorithms along with IT_SORT executed individually on the

same environment as specified in previous section.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.18, November 2012

30

Table I: Index value of randomly selected 25 data items

Item N Value Index

1 30 2

2 122 11

3 96 8

4 64 5

5 41 3

6 43 3

7 121 11

8 32 2

9 11 0

10 5 0

11 61 5

12 40 3

13 6 0

14 38 3

15 102 8

16 45 3

17 10 0

18 98 8

19 63 5

20 35 2

21 8 0

22 42 3

23 1 0

24 4 0

25 31 2

 MAX_VALUE = 121 INDEX_SIZE = int (SQRT(121)) = 12

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.18, November 2012

31

Figure 3: Demonstration of IT Sort

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.18, November 2012

32

Table II: No of k values not to be read for few large n items (all worst cases)

S.No No. of Items (n) m Null pointers (mi)

1 10000 100 0

2 20000 142 164

3 30000 174 275

4 40000 200 0

5 50000 224 447

6 60000 245 25

7 70000 265 224

8 80000 283 89

9 90000 300 0

10 100000 317 489

Table III: Execution Time of popular sorting algorithm
 Execution Time (in sec)

Data Set in thousands

10 20 30 40 50

Sorting Algorithm

Bubble 1 3 8 16 23

Insertion 0 2 6 10 16

Selection 1 4 8 14 24

Quick 0 0 2 4 6

IT Sort 0 1 2 4 6

5. CONCLUSION AND FUTURE WORK

The above discussion and experimental results contribute in

making a conclusion that IT Sort perform much better in

comparisons to most of the widely used popular sorting

algorithms. Time complexity can be reduced with grouping

and arranging data in separate Indexed Trees. The same

experiment can be extended to parallel environment with

multi processor architectures. All different Indexed Trees can

be created on separate processor and manipulations can be

done simultaneously in each processor. It will further reduce

execution time. Our next paper in this series would be

exploring and analyzing the parallel implementation of

Extended IT-Sort on multi core system.

6. REFERENCES

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D.Ullman.

The Design and Analysis of Computer Algorithms.

Addison Wesley, 1974.

[2] Cormen T., Leiserson C., Rivest R. and Stein C.,

Introduction to Algorithms, McGraw Hill, 2001.

[3] Liu C. L., Analysis of sorting algorithms, Proceedings of

Switching and Automata Theory, 12th Annual

Symposium, 1971, East Lansing, MI, USA, pp 207-215

[4] Zulkarnain Md. Ali, Reduce Computation Steps Can

Increase the Efficiency of Computation Algorithm,

Journal of Computer Science 6, 1203-1207, 2010

[5] Brian W. Kernighan, Dennis M. Ritchie, The C

Programming Language

[6] Box R. and Lacey S., A Fast Easy Sort, Computer

Journal of Byte Magazine, vol. 16,no. 4, pp. 315-315,

1991.

[7] G. Franceschini and V. Geffert, An In-place Sorting with

O (n logn) comparisons and O(n) moves, In Proc. 44th

Annual IEEE Symposium on Foundations of Computer

Science, pages 242-250, 2003.

[8] Hari Krishna Gurram & Gera Jaideep, Index Sort,

International Journal of Experimental Algorithms (IJEA),

Volume 2: Issue (2) : pp:55-62, 2011

