
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.18, November 2012

21

Survey of Integrating Testing for Component-
based System

ABSTRACT

Today's software larger in size, design complex and time

consuming to implement them, for this we need a prominent

solution to overcome these problems. Component-based

software development (CBSD) has emerged as an Object

Oriented (OO) Software Engineering approach that forced

rapid software development. Using CBSE approach we can

eliminate these problems largely. To build the application

using CBSE approach we can develop the software with

lowest price, reduced in size and we can reduce the time also.

The component-based application may be implemented in

house or by different vendors, integrate them in a different

environment is still challenging. Because the unit level

testing of each component, which can be good but when we

Integrate them with different framework is a considerable

problem. The nature of the component is Heterogeneous, so

the integration is a bit complicated. Through this paper we are

highlighting features and drawback of each methods of

various Integration testing. And we are also giving a potential

method which would be suitable for Integration testing.

General Terms

Component integration testing.

Keywords

Component-based system, Component integration testing,

interface testing.

1. INTRODUCTION

Traditional software systems become larger in size, more

complex and uneasily controlled and high maintenance cost,

resulting in high development cost, slower productivity,

compromised in software quality and high risk to move to

new technology [1]. Consequently, there is an increasing

demand of searching for a new, efficient, and cost-effective

and time to market software development standard. One of the

most potential solutions today is the component-based

software development approach. The idea that software

should be componentized, [11] built from existing

components by gluing prefabricated components together

much like in the field of electronics or Mechanical. Concerns

and objectives are similar in many other engineering

disciplines such as in Civil engineering: house prefabrication,

Chemical engineering: proteins, Electronic engineering:

circuit and Industrial engineering: cars, in above engineering

domain especially in Industrial and civil engineering

successfully develop components because of Standards and

Rules. These engineering branches are quite old so the rules

and standards are well defined. The rapid changes in the

software and implementation point view it is quite complex so

the concept of component in the software will take time in the

Rules and Standard. Since CBS development process is fast,

less time required to assemble and easy maintenance. Quality

wise it is also good, because testing of each and every

component is performed at unit level. But when we integrate

the component, then the unexpected result can occur at

different levels. Therefore, substantial testing and an

appropriate method require at the integration level.

When we talk to Component integration that our first focus is

the interface, because the interface connects two or more

components and that the application is ready to use. Interfaces

are the interaction points of components, through which a

client component can use the services declared in the interface

as provided and required interface. Each interface is identified

by an interface name and a unique identification. Every

interface can include numerous operations, where each

operation performs one particular task. Software components

can be incorporated in a system as units as shown in Figure: 1,

A component based application on a hotel reservation system

where each component is tested well and integrate them in a

new environment to perform the task of an application. The

component to be connected to one another, not only realize it

when we actually do in a new environment indeed have their

effort to Integrate. Component Integration is one of the main

phase which is done by the user If we are not connected

component properly interfacing is the problem or connect the

properly and even expected results [2] are not received then

fully testing is required on the level of integration.

A simple example of two components expressed in UML 2.0

as shown in Figure: 2 the other component, responsible for

facilitating the customer's order, requires the order processing

component to charge the customer's credit/debit card, the

functionality, which the latter provides.

Figure: 2 Representation of Components in UML 2.0

Ravindra Patel, PhD.
Associate Professor

UIT, RGPV, Bhopal

N. S. Chaudhari, PhD.

Professor, Deptt. Of CSE

IIT, Indore

M. K. Pawar

Assistant Professor,

UIT, RGPV, Bhopal

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.18, November 2012

22

2. COMPONENT BUILDING AND UNIT

TESTING

Before we may know the various issues and methods of

Component integrate, it is necessary to know the process of

implementing the component and how to perform the unit

level test. Implementation of the component is still

challenging task because of the lack of standards and services

to make interoperable various languages and platform. Here

we summarize the building process of component and their

unit testing:

2.1 Component implementation process

To implement the Component of any language and any

platform we have to required particular language mapping

IDL compilers. There are various IDL compiler tools were

developed by different vendors and they successfully achieve

the adaptive environment for most of the languages [9]. IDL

compilers that support the CORBA [9] standard such as:

IIOP.NET, interoperation between .NET, and CORBA or

J2EE, Jacob, written in Java IDL-to-Java Compiler,

R2CORBA, a CORBA implementation of the Ruby

Programming Language, VBOrb, CORBA Visual Basic

clients and servers, MICO, IDL to C++ mapping, ACE ORB

(TAO), IDL to C++ mapping, omniORB, ORB with C++ and

Python bindings, ORBit, C and Perl bindings, idlj - The IDL-

to-Java Compiler etc.

 Here we summarize that how to implement the component

using the OmniORB IDL compiler for IDL to C++ language

mapping. The steps are necessary to build the component and

client - server programs using the OmniORB [10] compiler:

 Compile the IDL (for IDL to C++ Mapping)

 IDL Compiler generates the files (i.e. Stub, Skeleton

and other files for CORBA and Network support).

 Implementation of the method, Server and Client

program.

 Compile the implementation method, server, client

and other program files using the C++ compiler

 Link the stub file to the client, skeleton file to the

server and other files.

 Launch the naming service, server and client

program using an appropriate port number.

2.2 Unit testing

A unit testing of Component is the validation process that is

carried out to find the errors. Unit testing is performed

according the specification of input and output parameters.

Developers of an application programmer know that testing is

necessary steps to build reliable application. In a component

based application development process the component may be

collection of in house or third party. So it is necessary to

perform the unit test on different components. There are

various unit testing frameworks being available to perform

unit testing (for example Junit, Xunit etc.). The testing

procedure uses verification and validation methods [15] which

may vary from one framework to another framework but will

all fundamentally test if a particular test unit is fit for use .

Unit tests facilitate refactoring – When changes are

occurring at the code level within a unit, tests are readily

obtainable to check if the changes produce errors. Units of

component can be checked at all times to make sure that

functionality is upheld. Unit tests allow collective ownership

because the implementation code is not available due to its

black box nature, changes may be made by all relevant

vendors. This is because unit tests protect the verification and

validity of the code so that after changes are made the unit

must be tested to certify that all functionality still remains as

their specification.

3. ISSUES AND CHALLENGES IN

COMPONENT-INTEGRATION

TESTING

Over the years different researcher and many published

papers are engaged in this effort how the software component

should be implemented and how a reliable component-based

application should designed. So far only a few research papers

who drew attention to how the software component

integration testing should be performed in an effective

manner.

The software components have been unit tested, many of

these components have been deployed independently[15],

however, Substantial Integrating testing is required, Which

also be according to the quality. As we analyze, this task is

even harder due to various reasons. Study and installation of

various IDL compilers are challenging, which require a lot of

configuration. The language, in which you want to develop

the component and testing of that component. Therefore,

appropriate efforts to encourage the reliability of the

components are necessary. But as time moves on, more and

more software components will be available from different

vendors. On the other hand when the "perfectly matched”

components are integrated, The following issues are still

encountered during testing of component based software,

Which then requires further testing effort.

3.1 Heterogeneity of Component

Since the nature of the component may be heterogeneous, it

can be implemented using various programming language

and runs on different platforms. Operating the component-

based system in various platforms is one of the challenging

issues. So it is necessary that an implementation of a

component in any language should support various operating

systems, database of various corporations and middleware

through which the communication is performed [12]. For

http://www.inf.fu-berlin.de/~brose/jacorb
http://www.theaceorb.nl/
http://www.martin-both.de/vborb.html
http://www.mico.org/
http://www.labs.redhat.com/orbit
http://www.google.co.in/url?sa=t&rct=j&q=free%20idlj%20compiler&source=web&cd=4&cad=rja&ved=0CD0QFjAD&url=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F1.4.2%2Fdocs%2Fguide%2Frmi-iiop%2FtoJavaPortableUG.html&ei=er9WUOCXE4fqrQe2x4D4Bg&usg=AFQjCNEj0d3jNjr1BxkjWZm628uRv93P9A
http://www.google.co.in/url?sa=t&rct=j&q=free%20idlj%20compiler&source=web&cd=4&cad=rja&ved=0CD0QFjAD&url=http%3A%2F%2Fdocs.oracle.com%2Fjavase%2F1.4.2%2Fdocs%2Fguide%2Frmi-iiop%2FtoJavaPortableUG.html&ei=er9WUOCXE4fqrQe2x4D4Bg&usg=AFQjCNEj0d3jNjr1BxkjWZm628uRv93P9A

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.18, November 2012

23

instance, the failure of the European Ariane 5 launch vehicle

was due to a reused module in Ariane 4 failing to convert a

64-bit floating-point value to a 16-bit signed integer. There

are various well developed components are exist and they are

working well to build an application but the limitations of the

component are that their domain specific nature for example

COM, DCOM of Microsofts, EJB of Java etc. When we cross

the boundaries of their domain they are incompatible to

operate in different environments. For example Microsoft has

developed .NET framework and incorporate a tool of an

intermediate language: Microsoft Intermediate Language

(MSIL). MISL supports the various packages of its own

development and limited functionality of JAVA and COBOL

to make interoparabe. It easily compiles and generate the

intermediate files that support the Visual C++, Visual Basic,

Visual J++, Java, and COBOL. With the .NET framework,

components that are implemented using their own high level

languages, JAVA and COBOL under different platforms can

be easily combined without worrying about the interoperable

issues.

3.2 Component Communication

Component communication is another issue that arise during

component integration. Many people assume that the

integration of software components has been just a process to

connect the component in plug-in way. For many simple

cases, it is true that software components can be viewed as an

interface point. In other words, a software component

application in which client sends the request to the server

object and server object will reply back if and only if client

request is per specification. For most complex software

components, middleware communication, naming services

and data models need to be taken into account. Middleware

communication specifies how the different components

interact. Their interactions can go through an RMI method

[1], or their communications can go ORB or other

middleware. Different data structure defines the contents and

format of the interactions in the middleware communication.

Usually, software components are developed by different

vendors, who may make different assumptions of how

components interact and what details are involved in their

interactions. Furthermore, a component may expose multiple

interfaces, which may have varied constraints and different

types of relationships with each other. For instance, a Vending

Machine component may represent Select Item, Coin

Checker, Compute Change, and Dispenser interfaces. Among

these interfaces, instead of allowing arbitrary invocation

sequences, a Select Item interface has to be invoked at the

very beginning of each transaction, and Dispenser has to be

performed at the end of each transaction. Different invocation

sequences may generate different results.

3.3 Distributed System Issues

As component-based systems are always built under a

distributed operating environment, which will then come into

all the issues of distributed systems, such as transaction

controlling and deadlocks. These distributions related [8]

issues can only be detected during the integration phase.

Moreover, component-based may even introduce versioning

issues, which is caused by the coexistence of two different

versions of a component in the system.

4. INTEGRATION TESTING

TECHNIQUES

There is growing demand of Component based system many

researchers are beginning to focus the testing of Component

based system at unit and system level. There are various

published papers have discussed the improvement of testing in

component based system. Many researchers have given the

different component integration techniques; we are

highlighting some major integration testing techniques:

4.1 UML based test model

The Unified Modeling Language (UML) is a general-purpose

modeling language that is used to identify, visualize, construct

and document the artifacts of a software system.UML

Statechart can be used to describe the static and dynamic

behavior of a component or object over time by modeling its

lifetime. UML has many useful tools [4], such as interaction

diagrams, statechart diagrams, and collaboration diagram,

component diagrams, differentiate the activities of a

component in various phases, and thus can be used in testing

component-based systems. All the elements of UML are

analyzed and apply the various testing criteria to test the

component based system. In a Statechart diagram main

elements are states, transitions, events, and actions. States and

transitions define all possible states and changes of state an

object during its lifetime. State changes occur as responses to

events received from the object’s interfaces. This test model

uses the UML Sequence and Collaboration Diagrams to take

out the faults existing between the component interfaces

communicating with each other in the system. It incorporates

the UML based development process to the test process. This

technique of testing has not yet implemented. But this can be

automatic testing technique.

4.2 Component Interaction Graph (CIG)

Component Interaction Graph (CIG), [3] which shows the

interactions and various dependencies among components.

CIG detects the failures of interface encountered during

integration of various components to build an application. The

approach utilizes both the static and dynamic information to

design test cases and determining test sufficiency. The

example of component interaction graph shown in figure 3 to

build an application. CFG is formed by the sets of provided

and required interfaces, where each vertex represents a

method of an interface. Edges are represented from the

vertices corresponding to the required interfaces to the

vertices of providing interfaces for component dependencies,

and from the provided to the required interfaces for

component dependency. The suggested approach can be

applied on all types of components and it is based on black-

box testing.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.18, November 2012

24

4.3 Certification of components

The certification of a component is a proper demonstration

that the component complies with its specified requirements

and is acceptable for use as specified. A good certification

methodology [6] gives the component reliability that it

deserves. The approach suggests a method for the certification

of component. It covers the certification of the whole

application as well as a component unit. The certification

applies to the safety critical parts of the component that have

been identified during the analyses. For certification of

component we require black-box testing as component level,

System-level fault booster technique, checking lack of

operational level and implement measures to protect the

building step.

4.4 Component Interaction Testing (CIT)

This approach [5] is based on the assumptions that how the

components interact with one another. These suppositions are

restricted as formal test requirements that specify the choice

of test cases. The testing technique presently focuses on the

control-flow interactions of events; other types of interaction

are not encountered. So we cannot imagine it completely

reliable testing technique. Scalability is an another issue with

this technique. In theory the model can enough scale from unit

testing to system testing but as the size of an application

model increases, it becomes more difficult.

4.5 The Component Metadata way

In this approach [7] component metadata information is used

to analyze and test components. When integrating a well-

developed component to build an application, we may need to

perform a set of tasks including, the requirement of third-party

information about the certification component, analyses and

testing of the system, and evaluation of some quality of the

resulting based on pre and post condition. The metadata is

based on different kinds of information depending upon the

explicit context and needs. There is a unique arrangement and

a unique label for each kind of metadata provided [7]. The

source code for the component is generally not available, and

so we have only a formal specification of the components.

The component developer embeds this summary information

in the software component. The metadata illustrates both the

static and the dynamic aspects of the component. Metadata

Increases the precision of the program analyses and change

according to the particular functionality required by the

component user. The idea behind the concept of metadata is to

define an infrastructure that lets the component developer add

the different types of data that are useful in a given context.

Obviously, metadata [15] can also be produced for in-house-

developed components, so that all the components that are

used to build an application can be handled in a uniform way.

This notion of providing metadata with software components

is highly related to what mechanical engineers do with

hardware components: just as building a car, so a software

component needs to provide some information about itself to

be used in different context [13]. The more metadata that is

available from or about a component, the fewer will be the

restrictions on tasks that can be performed by the component

user, such as applicable program analysis techniques, model

checking etc. In this sense, the availability of metadata for a

component can be perceived as reliable by an application

developer who is selecting the components to deploy in

his/her system. So far, it has applied and tested with small

applications.

5. PROPOSED METHODOLOGY

This approach is based a combination of Sequence Diagrams

and UML State chart. Furthermore the semantic information

is expressed in OCL. The process is built using standard

notations, which are used widely. This overcomes the issue of

learning new notations and languages to identify with the

approach suggested. This approach assumes that all the

components in the integration level have already been tested

individually and thus considers them as black-boxes. We

carry out the component integration testing in the following

steps:

 Building of the UML test model based on the one

flow of events. First the sequence diagram of

normal flow of events is extracted. This information

is then used to model component interaction states

and transitions using UML State chart.

 The UML State chart is used to generate test

sequences for normal and exceptional behaviour.

 Test Cases are selected by application of the test

case selection criteria on the UML test model.

 The testing technique has potential for automation

where test sequences can be generated automatically

from the State chart.

 We intend to evaluate the effectiveness of the

proposed approach on a set of components.

6. CONCLUSION

In this survey paper we revealed the various integrations

testing techniques of component based systems; this paper is

useful for early stage researcher.. We propose component

integration testing based on UML and OCL which overcomes

some of the limitations of existing model based integration

testing. Most of the component integration testing can be

automated. UML is a semi-final language for indicating,

visualizing, building, and documenting the artifacts of

software systems and at times is not capable to represent or

model a perspective satisfactorily. We demonstrate and

encourage the use of OCL to overcome this limitation of

UML. Propose approach does not assume the availability of

source code and also will be helpful on COTS. And therefore

will also be useful for testing component assembly comprising

of COTS components

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.18, November 2012

25

7. REFERENCES

[1] Pour, G., “Software Component Technologies:

JavaBeans and ActiveX,” Proceedings of Technology of

Object-Oriented Languages and systems, 1999, pp. 398 –

398. Weyuker, E.J., Testing component-based software:

A cautionary tale, IEEE Software, 15(5):54–59,

September/October 1998.

[2] Wu, Y. Pan D., Chen, M. H., Testing Component Based

Software, submitted to International Conference on

Software Engineering, Toronto, 2001

[3] Ye Wu, Mei-Hwa Chen and Jeff Offutt “UML-based

Integration Testing for Component-based Software”, The

2nd International Conference on COTS-Based Software

Systems (ICCBSS), pages 251-260, Ottawa, Canada,

February 2003

[4] Choi, Y. H., B., Jeon, J. O., A UML Based Test Model

for Component Integration Test, Workshop on Software

Architecture and component (WSAC), Japan, 1999.

[5] Liu, W. and Dasiewicz, P. Formal Test Requirements for

Component Interactions, IEEE Canadian Conference on

Electrical and Computer Engineering, 1999.

[6] Vaos, J. M., Certifying Off-the Shelf-Components, IEEE

Computer, June 1998.

[7] Orso, A., Harrold, M. J., Rosenblum, D., Component

Metadata for Software Engineering Tasks, In Proc. 2nd

International Workshop on Engineering Distributed

Objects, Davis, CA, November 2000.

[8] Harrold, M. J., Liang, D. Sinha S., An Approach To

Analyzing and Testing Component Based Software,

Proceedings of the First International ICSE Workshop on

Testing Distributed Component-Based Systems, Los

Angeles, CA, May 1999.

[9] Object Management Group; Object Management

Architecture Guide, OMG Document Number 92.11.1,

Revision 2.0, 1992

[10] The omniORB version 4.1, User’s Guide Duncan Grisby,

Apasphere Ltd., Sai-Lai Lo, David Riddoch, AT&T

Laboratories Cambridge, July 2009.

[11] Cheesman, J., and Daniels, J. UML components: A

simple process for specifying component-based software.

Addison-Wesley, 2001.

[12] Heineman, G. and Councill, W. Component-based

software engineering: Putting the pieces together.

Addison-Wesley, 2001.

[13] Orso, A., Harrold, M. J., Rosenblum, D., Rothermel, G.,

Soffa, M. L., and Doo, H. Using Component Metadata to

support the regression testing of component-based

software, In Proceedings of the International Conference

on Software Maintenance (ICSM2001), pp 716-725,

November, Florence, Italy, 2001.

[14] Liang, D., and Harrold, M. J. Reuse-driven inter-

procedural slicing in the presence of pointers and

recursion. In Proceedings IEEE International Conference

on Software Maintenance, pp. 421-430, 1999.

[15] M.J Rahman, F Jabeen,, A. Bertolino “Testing Software

Component for Integration: survey of issues and

techniques”, 2006, DOI:10.1002/stvr.357, wiley

InterScience 17:95-133.

