
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.1, November 2012

1

A Compression and Encryption Algorithms on DNA
Sequences using R

2
CP and Modified Huffman Technique

Md. Syed Mahamud Hossein

D.O.,R.O.,Kolaghat, D.V.E.T., West Bengal

ABSTRACT

A lossless compression algorithm, for genetic sequences, based

on two phase, 1st phase- searching for exact R2CP is reported.

The compression results obtained in the algorithm show that

the exact R2CP are one of the main hidden regularities in DNA

sequences. The proposed DNA sequence compression

algorithm is based on R2CP substring and creates online

Library file acting as a Look Up Table. The R2CP substring is

replaced by corresponding ASCII character. Information

security is the most challenging question to protect the data

from piracy. This proposed method may protect the data from

hackers. For better security purpose we have introduced a new

security technique in 2nd phase that is selection encryption

method. In this technique the data are encrypted either in the

Look Up table or in compressed file or in both. It can also

provide the data security, by using ASCII code and online

library file acting as a signature. The size of library file is too

small with respect to compressed file. Compressing the

genome sequence will help to increase the effect of their uses.

Speed of encryption and security levels are two important

measurements for evaluating any encryption system. Selective

encryption, where a part of message is encrypted keeping the

remaining part unencrypted, can be a viable proposition for

running encryption system in resource constraint. This

algorithm is tested on benchmark DNA sequences. The running

time of this algorithm is very few second and the complexity is

O(n2). The algorithm can approach a compression rate of

3.447387 bit/base using 1st phase compression technique, again

the output of the 1st phase compression are used in 2nd phase

compression techniques, at the end ultimate the resultant

compression rate of 2.01 bit/bases.

When a user searches for any sequence for an organism, a

encrypted compressed sequence file can be sent from the data

source to the user. The encrypted compressed file then can be

decrypted & decompressed at the client end resulting in

reduced transmission time over the Internet. A encrypted

compression algorithm that provides a moderately high

compression with encryption rate with minimal decryption

with decompression time.

Keywords: Repeat, Reverse, Complement, Palindrome,

Compression, Security

Abbreviation of R2CP : Repeat, Reverse, Complement and

Palindrome

1. INTRODUCTION

With more and more complete genomes of prokaryotes and

eukaryotes becoming available and the completion of human

genome project in the horizon, fundamental questions

regarding the characteristics of these sequences arise. The

compressibility of DNA sequences. Life represents order. It is

not chaotic or random [1]. Thus, expect the DNA sequences

that encode life as nonrandom. Naturally they should be very

compressible. These are also strong biological evidences in

supporting this claim: It is well-known that DNA sequences,

especially in higher eukaryotes, contain many sub string of

R2CP . It is also established that many essential genes (like

rRNAs) have many copies. It is believed that there are only

about a thousand basic protein folding patterns. Further it has

been conjectured that genes duplicate themselves sometimes

for evolutionary or simply for “selfish” purposes. These all

concretely support that the DNA sequences should be

reasonably compressible. It is well recognized that the

compression of DNA sequences is a very difficult task [2, 3, 4,

and 5]. The DNA sequences only consist of 4 nucleotide bases

{a,t,g,c}, 8 bits are enough to store each base. However if one

applies standard compression software such as the Unix

“compress” and “compact” or the MS-DOS archive programs

“pkzip” and “arj”, they all expand the file with more than 8 bits

per base, although all these compression software are universal

compression algorithms. These software’s are designed for text

compression [6], while the regularities in DNA sequences are

much subtler. It is our purpose to study such subtleties in DNA

sequences. We will present a DNA compression algorithm,

based on exact matching that gives the best compression results

on standard benchmark DNA sequences. However searching

for all exact R2CP in a very long DNA sequences is not a

trivial task. These algorithms achieves high speed, best

compression ratio and runs significantly faster than any

existing compression program for benchmark DNA sequences.

Proposed algorithm consists three phases: i) finding all exact

R2CP and ii) encode exact R2CP regions and non-match

regions and iii) Encryption, compress file or in both. We have

developed for fast and sensitive homology search [7], as our

exact R2CP search engine. Compression of DNA sequences.

We will present a DNA compression algorithm, based on R2CP

substring and corresponding R2CP substring is placed in the a

library file, this R2CP substring create a dynamic Look Up

Table and place ASCII character in appropriate places on

source file and that gives the best compression results on

standard benchmark DNA sequences with fast and efficient

manner. The compression takes fraction of second for

execution better than other techniques. We will discuss details

of the algorithm, provide exponential results and compare the

result with the one most effective compression algorithm for

DNA sequence.

Now a days information security is a most challenging

question, the hackers hack the data and process, manipulate the

information, as a result to break the genome phenotype. This

compression method provides two tier security i) the data are

compressed, generates two separate files individually and each

file contains ASCII code of 256 different characters ii) Apply

selective encryption on Library file or compress file or both.

Selective encryption is the process of selecting a part of a

whole message, to be gone through the process of encryption,

keeping the remaining portion of the message in the clear in

such a way that the security is not compromised. In the

selective encryption, only a fraction(r) of whole message or

plaintext is selected for encryption and the remaining part is

kept in the clear as shown in the figure 1.1. Selection of the r

part is vital from the security point of view in case of selective

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.1, November 2012

2

encryption. The criteria for selection of r vary according to the

type of media. Intuitively, as r increases, the security level also

increases at the cost of increased time of encryption.

Figure 1

In case of selective encryption of compressed text, as

compression follows the encryption process, as shown in

Figure 1, the attacks based on statistical properties of the plain

text will not be possible because of the reduction of

redundancy due to process of compression. Further, in case of

selective encryption of compressed text, the property of certain

compression algorithms that the reconstruction information is

concentrated in a small fraction of compressed text is utilized

[8]. This selective encryption approach not only reduces the

time complexity for encryption and decryption due to

encryption of only the part of the compressed data where

reconstruction information are mostly concentrated and but

also it reduces the storage and communication cost.

This approach of selective encryption has got some advantage

due to constraint of the network bandwidth before

communicating and also it needs to be encrypted so to maintain

confidentiality or to protect the digital rights. For ubiquitous

access of digital contents, selective encryption is a viable

proposition in the face of constraints of storage and

computational capacity.

Figure 2

Though a lot of works have been done on selective encryption

of images, videos, speech etc, not much work has been done on

selective encryption of compressed text specially in

Bioinformatics field. In this work, we wish to review the

existing selective encryption algorithms and also study the

effectiveness of selective encryption on compressed text

generated through static Huffman encoding. The effectiveness

of the algorithm will be measured by different parameters like

Lavenstein Distance and relative frequency. The Lavenstein

distance is a measure to find the dissimilarity between two

strings proposed by. It is defined as the no number of

substitution, insertion and deletion operations that are needed

to transform the source string to the target string. The relative

frequency parameter will indicate the status of redundancy of

the encrypted text as defined by

 ∑ fi * ni

Total number of character

Where fi is the frequency and ni is the number of character

having same frequency.

If relative frequency is low then redundancy become also low.

There is a similarity between the process of data compression

and process of encryption. The goal for both the processes is to

reduce the redundancy in the source message. According to

Shannon [9], for perfect lossless compression algorithm, the

average bit rate is equal to the source entropy.

Due to the combination of the process of compression and the

process of encryption, two benefits are realized:

1. Conservation of storage space and communication

bandwidth

2. Encryption cost is reduced.

3. The attacks on the basis of statistical property of the

source bit stream are thwarted.

2.1 HUFFMAN CODING

Statistical codes represent data blocks of fixed length with

variable-length code words. Huffman coding is one type of

statistical code. This coding is also one type of entropy coding.

entropy encoding is a lossless data compression scheme that is

independent of the media’s specific characteristics. entropy

coding assigns codes to symbols so as to match code lengths

with the probabilities of the symbols. Typically, these entropy

encoders are used to compress data by replacing symbols

represented by equal-length codes with symbols represented by

codes where the length of each codeword is proportional to the

negative logarithm (is −logbP, where b is the number of

symbols used to make output codes and P is the probability of

the input symbol) of the probability. Therefore, the most

common symbols use the shortest codes.

The efficiency of a Huffman code depends on the frequency of

occurrence of all distinct fixed length blocks in a set of data.

The most frequently occurring blocks are encoded with short

code words, whereas the less frequently occurring ones are

encoded with large code words. In this way, the average

codeword length is minimized. It is obvious however that, if all

distinct blocks in a data set appear with the same (or nearly the

same) frequency, then no compression can be achieved.

Among all statistical codes, Huffman offer the best

compression since they provably provide the shortest average

codeword length. Another advantageous property of a Huffman

code is that it is prefix free; i.e., no codeword is the prefix of

another one. This makes the decoding process simple and easy

to implement.

 Let T be the fully specified test set. Let us also assume

that if we partition the test vectors of T into blocks of length l,

we get k distinct blocks b1, b2, . . . , bk with frequencies

(probabilities) of occurrence p1, p2, . . . , pk, respectively. The

entropy of the test set is defined as k

 H(T) = - ∑ Pi (log2pi)

 i=1

 and corresponds to the minimum average number of bits

required for each codeword. The average codeword length of a

Huffman code is closer to the aforementioned theoretical

r part

1-r part

Mixer Message

http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Entropy_%28information_theory%29
http://en.wikipedia.org/wiki/Proportionality_%28mathematics%29
http://en.wikipedia.org/wiki/Logarithm

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.1, November 2012

3

entropy bound compared to any other statistical code. In

practice, test sets have many don’t care (x) bits. In a good

encoding strategy, the don’t cares must be assigned such that

the entropy value H(T) is minimized. In other words, the

assignment of the test set’s x values should skew the

occurrence frequencies of the distinct blocks as much as

possible. We note that the inherent correlation of the test cubes

of T (test vectors with x values) favors the targeted occurrence

frequency skewing and, consequently, the use of statistical

coding. To generate a Huffman code, we create a binary tree. A

leaf node is generated for each distinct block bi, and a weight

equal to the occurrence probability of block bi is associated

with the corresponding node. The pair of nodes with the

smallest weights is selected first, and a parent node is

generated with weight equal to the sum of the weights of these

two nodes. The previous step is repeated iteratively, selecting

each time the node pair with the smallest sum of weights, until

only a single node is left unselected, i.e., the root (we note that

each node can be chosen only once). Starting from the root, we

visit all the nodes once, and we assign to each left-child edge

the logic 0 values and to each right-child edge the logic 1

value. The codeword of block bi is the sequence of the logic

values of the edges belonging to the path from the root to the

leaf node corresponding to bi. If c1, c2, . . . , ck are the

codeword lengths of blocks b1, b2, . . . , bk, respectively, then

the average codeword length is

 k

 C(T) = ∑ PiCi

 i=1

The size of a Huffman decoder depends on the number of

distinct blocks that are encoded. Increased encoded-block

volumes lead to big decoders due to the big size of the

corresponding Huffman tree. For that reason, a selective

Huffman approach was adopted in our project, according to

which only the most frequently occurring blocks are encoded,

whereas the rest are not.

Compression & selection encryption techniques for the general

purpose of sequence data delivery to the client. Existing DNA

search engines do not utilise DNA sequence compression

algorithms & encryption for high security for client side

decryption & decompression, i.e. where a encrypted

compressed DNA sequence is decrypted & decompressed at

the client end for the benefit of faster transmission &

information security. Because most of the existing DNA

sequence compression algorithms aim for higher compression

ratios or pattern revealing, rather than client side & decryption

decompression, their decompression times are longer than

necessary information security. This makes these compression

techniques unsuitable for the “on the fly” decompression. We

use a encrypted compression technique designed for client side

decrypted followed by decompression in order to achieve faster

sequence secure data transmission to the client.

Fig-3

If encrypted compressed sequence data is sent from the data

source to be decrypted decompressed at the client end and the

decryption to decompression time along with the encrypted

compressed file transmission time is less than the transmission

time for uncompressed data transfer from the source to the

client, then efficiency is achieved. Figure-2 illustrates the

situation. Note that the sequence data should be kept pre-

compressed within the data source.

A Sequence compression algorithm with reduced

decompression time and moderately high compression rate is

the preferred choice for efficient sequence data delivery with

faster data transmission. As our target is to minimize

decompression time and high information security, we use

similar compression techniques to those used in [11], based on

a “Two Pass” approach, meaning, that the file is compressed

followed by encryption or decrypt followed by decompressed

while reading it. Unlike “four pass” algorithms there is no need

to re-read the input file. Our compression technique is

essentially a symbol substitution compression scheme that

encodes the sequence by replacing four consecutive nucleotide

sequences with ASCI characters. Our technique to find the

best solution for a client side decompression technique.

2. FLOW CHART:

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.1, November 2012

4

Two Tier Security Label

Label-I Key-I(R2GP Lib. File act as a

Key and ASCII code starting Position)

 Label-II Key-II(Lavel change)

3. METHODS

3.1: File Format: We will begin discussing file type is text file

(file extraction is dot text).

3.2 :Generating the substring from input sequence use the

techniques of as follows, describe in BLAST algorithms[12]

a. Break the query sequence into words

b. Search for word matches (also called high –scoring pairs, or

HPSs) in the database sequences

c. Extend the match until the local alignment score falls below

a fixed threshold (the most recent version of BLAST allows

gaps in the extended match)

3.3: searching for exact R2CP subsequences

If not otherwise mentioned, we will use lower case letters u, v

to denote finite strings over the alphabet {a, t, g, c}, |u| denotes

the length of u, and the number of characters in u.ui is the ith

character of u. ui: j is the substring of u from position I to

position j. The first character of u is ui. Thus u=u1:|u|-1, where ui:

j represents the original substring and |v| denotes the length of

v, the number of characters in v. vi is the ith character of v. vi:j

is the another substring of v from position i to position j. The

first character of v is v1. Thus v=v1:|u|-1. ui:j match with vi:j. The

minimum difference between u-v is of substring length. The vi:

j represents the R/R/C/P substring. The match found if ui: j= vi: j

and count exact maximum R2CP of ui:j. We use Є to denote

empty string and Є =0.

Consider a finite sequence s over the DNA alphabet {a, t, g, c}.

As exact R2CP is a substring in s that can be transferred from

another substring in s with edit operations (on repeat, reverse

and complement, insertion). We encode these substrings only

to match approximate maximum that provides profit on overall

compression.

This method of compression is as below:

1. Run the program and output all exact R2CP into a list

s in the order of descending scores.

2. Extract a R2CP r with highest score from list s, and

then replace all r by corresponding ASCII code into

another intermediate list o and place r in library file.

Where r is R/R/C/P substring.

3. Process each R2CP in s so that there’s no overlap

with the extracted R2CP r.

4. Goto step 2 if the highest score of R2CP in s is still

higher than a pre-defined threshold; otherwise exits.

3.4 : Encoding R2CP

An exact R2CP can be presented as two kinds of triplets, first is

(l,m,p), where l means the R2CP substring length, m and p

show the starting position of two substrings in a R2CP

respectively. Second: replace this operation as expressed (r; p;

char), which means replacing the exact R/R/C/P substring at

position p by ASCII character char.

In order to recover an exact R2CP correctly the following

information must be encoded in the output data stream:

Encoding Analysis

So, we can write s=atggtagtaatgtacatg…………n n>0 and

l<=i<=i-L+1

Consider the sequence is defined by s, the match substring is

stored in u[m] and all matches R/R/C/P substring is stored in

v[p].

After breaking the sequence(s) into substring of three bases we

can get the result as below. So we can get u[m]-

u[l]…………….u [n*] and R/R/C/P substring are v[p]

=v[l]………..v [n-l+1] l<=p<=n-l+1

If the number of substring is u[m], total number of

subsequences are generated by (n-2*l+i) and R/R/C/P

substring are v[p], total match R/R/C/P substring are (n-l+1).

As per above example u[m] ->u[l] =atg and so on.

And v[p] ->v[l] =gta and so on.

This substring method is required to reduce the complexity of

the programmer’s execution.

3.5: Each substring is matched with all other substring for

finding the exact maximum R2CP substring.

Match condition occur if u[m] =v[p] p=l+1,

Step-1

S[l] match { R2CP } with u[p] to v [n-1+l] and count u [1]

{As for example, u [1] =atg, where substring size=3

And v [4] =gta, v [5] =tag……v [19] =atg

So, u [1] substring repeats at 3 places, reverses at complement.

Then m and p is incremented by one}

Step-2

Match u [2] match with u[p] to v [n-l+1] and count u [2]

{As for example u [2] =tgg and v [5] =tag, v [6] =agt

So, v [2] substring R2CP at one place

U [2] substring repeats at 3 places, reverses at complement

Then m and p increments by one}

Step-3

This method will continue till u [n-l+1]

So, u [n-2*l+1] matches with u[p] to v [n-2*l+1] and count u

[n-2*l+1]

So, u [n-2*l+1] R2CP at only one place if match occur.

U [4] substrings repeats at 3 palaces and reverses at

complement.

Step-4

Store all R2CP count in decreasing order and find all exact

maximum R/R/C/P count.

Step-5

R2CP

Modified

Huffman

Technique

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.1, November 2012

5

Replace exact maximum R/R/C/P substring by corresponding

ASCII code and place R/R/C/P substring in library file, and

create an on line look up table.

Step-6

Repeat: R/R/C/P Step-1 to step-5 excluding ASCII code.

Step-7

If the highest score of R/R/C/P in ‘s’ is still higher than a pre-

defined threshold; otherwise exit.

As per above example: Now we find maximum repeat, reverse

and complement’s probability. These substrings are replaced

first. Here we can get u [2] = (atg) substrings are repeated,

reversed and complement 3 times in the sequence.

These substrings are placed in Look Up Table, corresponding

ASCII characters replaces all the R/R/C/P substrings by ASCII

characters. A library file creates the online Look Up Table.

So, n= Length of the string= Total number of base pairs in s=

File size in byte.

The encoding procedure follows this rule and produces

compressed output file[m], that matches { R2CP } with v[p] to

v [n-1+l], places.ASCII characters in the output files ith

position. In each match the value of m is incremented by: m=

number of unmatched character+ (number of substring match*

substring length+1).

Otherwise u[m] =! v [p] to v[n+1] place base pair in output

files ith position. If unmatch occurs, the value of m and p is

incremented by one.

At the end we can get the compressed output file o which

contains the unmatched a, t, g and c and ASCII character set.

At the end we can get the compressed file, corresponding input

sequence. So, o=!””!tac……...n1,where n1 is the length of

output file. Output file size is n1 byte. And library file:!atg”gta.

3.6: Decoding

Decoding time first requires online Library file, which was

created at the time of encoding the input file.

On this particular value, the encoded input string is decoded

and produces the original files output.

O=!””!tac!..............n1, where n1 is the length of the output

string (n>n1).

At the time of decoding, each ASCII character is replaced by

corresponding base pair i.e. O [M] =L [K].

In case of repeat L [K] =

In case of reverse L [K] =

In case of complement L [K] =

Where O [M] is defined by output sequence and L [K] is

defined by library file substring. If match occurs in between L

[33] to L [256] with O [M], place ASCII equivalent substring

in ith places in the output file. The value of m is incremented by

one. If unmatch found in between L[33] to L[256] with O[M],

place base pair in ith position in output file./ The value of M is

incremented by one. This process will continue until M=n1

position will appear.

The decoding processes mention this rule and produce the

original output string.

Match is found if o[m] =L [33] to L [256] place ASCII

character equivalent substring in ith position. If match found,

the value of m is incremented by one.

Otherwise o[m] =! l [33] to L[256]place base pair in ith position

in output file. If mismatch occurs, the value of m is

incremented by one.

For easy implementation, characters a, t, g, c will no longer

appear in pre-coded file and A,T,G,C will appear in pre-coded

file. For instance, if a segment “atggtagtaatgtacatg……..n” has

been read, in the destination file, we represent them as

“!””!tac!.............n1” obviously the destination file is case

sensitive.

We know that each character requires 1 byte (8 bit) for storing.

In the above example, string length= 18, that means 18 byte is

required for storing this string. After encoding on the basis of

R2CP techniques of 3 substring length, reduced string length is

8, requires 8 byte for storing this string.

3.7 Information security

This technique can provide two phase information securities.

In phase one, the input sequence contain 4 bases (a, t, g, c),

after compression the file size is compressed as well as file

contain is converted into 256 characters including a,t,g &c i.e.

one substring contains 3 characters, is replaced by single

ASCII code, so the output file is information secure than input

file. This technique can provide a information security.

3.7.1: METHODOLOGY OF EXPERIMENTS PERFORMED

We have conducted our experiments in normal text files of

different sizes and on the basis of the statistical property

generated by Huffman tree for each text files. Since our

objective is to find out the selective portion i.e. R part

(discussed previously) from the text message we made

swapping of the branches in the Huffman tree on at a particular

level on the basic of a key and decode the encoded symbols

using the modified Huffman tree which are specified in scheme

I and II. In scheme-I we apply swapping method on two nodes

at specified level on Huffman tree, and in scheme-II we

perform swapping method between two specified nodes at

different level on Huffman tree. When we generate the

Huffman tree using the statistical property of symbols, first we

consider each character of input text message as a symbol and

later each word as a symbol.

SCHEME-I: SWAPPING NODES AT SPECIFIED LEVEL

Our objective is to find out the selective portion i.e. R part

(discussed previously) from the text message. We made

swapping of the branches in the Huffman tree on at a particular

level on the basis of a key and decode the encoded symbols

using the modified Huffman tree. Now for selecting the R part,

my first experiment is swapping two nodes at specified levels.

Here I exchange left most node with right most node at

specified level. So only those nodes, which are changed their

positions after swapping, are affects and also corresponding

codes are also altered. Remaining other nodes is kept

unchanged. Hence selective bits are altered.

 Let illustrate this with an example, Fig.4.2 is the original tree

and Huffman codes of W=00, X=01, Y=10, Z=11.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.1, November 2012

6

Figure 4

Suppose we apply swapping at level 1 then we find out A is

single node i.e. root node at level 0 i.e. root node at level 0.

Then we interchange the position of left and right child node

with their sub tree as shown in fig.4.3. So corresponding code

of W, X, Y, Z are totally changed. W=10, X=11, Y=00, Z=01.

So if the original text is “WWXYXZ” then it will be encrypted

“101011001101”. If we decode it without change the level the
text will be “YYZWZX”. D

SID
in this case is 6.

 Figure 5 Figure 6

Character Before

Encrypt

After Encrypt

Swapping at Level 1 Swapping at Level 2

W 00 10 11

X 01 11 01

Y 10 00 10

Z 11 01 00

Table- 1

Now we apply swapping at level 2(here B, C) then we

interchange the position of left child of B and right child of C

and with their sub tree as shown in fig.4.4. In this case

corresponding codes are selectively changed. i.e. since in

fig.4.4 we see on W and Z are interchange their positions so

code of Z and W are only changed, other should be unchanged

according to table 4.1. So if the original text is “WWXYXZ”

then it will be encrypted “111101100100”. If we decode it

without change the level the text will be “ZZXYXW”. D
SID

in

this case is 3.

 The results diverged from our expectations in some simple

cases due to the complexities in the alignments of characters
when calculating D

SID
. In our experiment, when we measure

Lavenstein distance and effect ness on actual text we face some

minor problems.

Suppose we compress a text file-applying node swapping

method at particular level. But if we measure effect ness on

actual text by decoding the encoded text without any swapping

method apply, then in some cases all codes may not be

retrieved, for e.g. suppose frequency of A=2, B=1 and C=1

then tree will be generate like

Figure 7 Figure 8

and their corresponding codeword A=0, B=10, C=11.

And suppose the string ‘AABBC’ would be encoded as

00101011.

Now if we apply swapping method at level 0 then the tree will

generate like fig. 4.6

And their corresponding code A=1, B=00, C=01.

And same string then encoded as 11000001.

Now if we measure Lavenstein distance & % of effect ness on

actual text then we must decode without apply swapping

method at level 0. Then that encoded string is decoded using

original tree (fig.4.5).

1 1 0 0 0 0 0 1

C C A A A A A -

 Table-2

The last 1 is left over because there is no such code of only 1.

So for measurement purpose the size of original text is altered

in these cases.

SCHEME-II-SWAPPING BETWEEN TWO SPECIFIED NODES AT

DIFFERENT LEVEL

In my second experiment we get another approach for selecting

the r part (discussed previously). In this approach swapping can

be perform at any specified two nodes. By this approach we

can interchange any two nodes with its subtree of the Huffman

tree at any level. Hence this scheme has flexibility to modify

Huffman tree and also use more than one key so it obviously

increase security concern. In this scheme we need to specify

two level values of two nodes and two binary values. Number

of binary digit must be same with level value with respect to

nodes. If we consider above specified two values as a key then

security concern is improved than before experiment. E.g.

Fig.4.7 is the original tree and Huffman codes of W=00, X=01,

Y=10, Z=11.

Figure 9

Suppose I want to swap between two nodes B and Z then we

need to specify first, level number, in this case 1 and binary

digit 0 for B node and level number for Z, in this case 2 and

binary digit 11. Then new tree will generate like

A

B
C

Y Z X W

A

C B

Z X W Y

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.1, November 2012

7

 Figure-10

After interchanging the position of left and right child node

with their sub tree as shown in fig.4.8 so corresponding codes

of W, X, Y, Z are totally changed according to table 4.2. So if

the original text is “WWXYXZ” then it will be encrypted

“110110111101110”. If we decode it without change the level
the text will be decrypt like “ZXYZZXZ”. D

SID
in this case is

6.

Character Before

Encrypt

After Encrypt

Swapping

Between B

and Z

Swapping

Between C

and X

W 00 110 00

X 01 111 1

Y 10 10 010

Z 11 0 011

 Table-3

Work already carried out : So many biological compression

algorithm is available in market as in paper[100] where

showing that Huffman’s code also fails badly on DNA

sequences both in the static and adaptive model, because there

are only four kind symbols in DNA sequences and the

probabilities of occurrence of the symbols are not very

different. Here this two phase technique solved this problem

because after the 1st phase compression we get the 252 ASCII

characters’ with nucleotide base pair a, t,g & c.

4. We have developed the following algorithms:

4.1 : Compression algorithm

Step 1: Here we use three text file. First is for take input of

Genome sequence i.e, any combination of {a,t,g,c}. Second is

for Dynamic look up table. And last one for out put.

Step 2: Store the input form the first text file to a buffer, say s.

Step 3: We have to check whether the first input sequence is

{a,t,g,c} or not. If true do step 4 to step8 else increment the

position by one.

Step 4: We have to match the whole input sequence according

to the first four taking sequence.

Step 5: If the number of matching sequence foung greater than

one then do step 6 to step 8 else increment the position by one.

Step 6: Write the ascii character with its corresponding

matching sequence into the dynamic look up table.

Step 7: Replace the sequences with corresponding ascii

character in the input string where the matching sequences are

found.

Step 8: Increment the value of the ascii counter by one.

Step 9: Now we have to write the input buffer into the output

file. After doing those steps successfully the input buffer will

be the compressed genome sequence.

Step 11: Stop.

4.2 : Decompression algorithm

Step 1 : Declare three FILE pointer fp, fp1, fs and five

character variable say ch1,ch2,ch3,ch4,ch5.

Step 2 : fp is required to point the encrypted file & retrive the

encrypted genom sequece.

Step 3 : fs is required to point lookup table & retrive the genom

sequeuence and croessponding ASCII character.

Step 4 : fp1 required to point the decripted file & used to store

the decrypted genom sequence.

Step 5 : Store the encryped genom sequence in a temporary

buffer say s.

Step 6 : Determine the number of neucleotide exist in the

encrypted file (say len).

Step 7 : Initialize a counter (say i) is equal to 0 (zero). Repeat

step 8 to step 15 until i lessthan number of neucleotide

 exist in the encrypted file i.e, (i<len).

Step 8 : Seek the FILE pointer fs to the first neucleotide in the

lookup table by rewind(fs).

Step 9 : Do step 10 to step 14 while(!feof(fs)).

Step 10: Initielize the following :

 ch1=fgetc(fs) i.e, ch1 holds the first

neucleotide present in the lookup table.

 ch2=fgetc(fs) i.e, ch2 holds the second

neucleotide present in the lookup table.

 ch3=fgetc(fs) i.e, ch3 holds the thired

neucleotide present in the lookup table.

 ch4=fgetc(fs) i.e, ch4 holds the fourth

neucleotide present in the lookup table.

 ch5=fgetc(fs) i.e, ch1 holds the first

neucleotide present in the lookup table.

Step 11: If s[i]=ch5 then print ch1,ch2,ch3,ch4 into the

decrypted output file.

Step 12: else if(s[i]=='a' || s[i]=='t' || s[i]=='g' || s[i]=='c') then

print s[i] into the decrypted output file.

Step 13: else continue.

Step 14: end if.

Step 15: end for.

Step 16: The number of neucleotide present in the encrypted

file is equal to len.

Step 17: Calculate the total estimated time to decompress the

encrypted file.

Step 18: Check that the decompression is lossless. If true then

decompression is successful.

Step 19: Stop.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.1, November 2012

8

4.3 Proposed Algorithm for Scheme-I:

This algorithm recursively find a weighted binary tree with n

given weights w1, w2, ….wn. (Here weights mean frequency of

n characters in text). LEVEL is the input where the tree is

altered.

1.Arrange the weights in increasing weights.

2.Construct two leaf vertices with minimum weights, say wi

and wj in the given weight sequence and parent vertex of

weight wi + wj.

3.Rearrange remaining weights (excluding wi and wj but

including parent vertex of weight wi + wj) in increasing order.

4.Repeat step 2 until no weight remains.

5.Find out left most node and right most node at specified

LEVEL and interchange their position with respect to their

parent node.

6.To find out code for each given weights (i.e. frequency of

characters) traversing tree from root assign 0 when traverse left

of each node & 1 when traverse right of each node.

4.4 Proposed Algorithm for scheme-II:

This algorithm recursively find a weighted binary tree with n

given weights w1, w2, ….wn. (Here weights mean frequency of

n characters in text). LEVEL is the input where the tree is

altered.

1.Arrange the weights in increasing weights.

2.Construct two leaf vertices with minimum weights, say wi

and wj in the given weight sequence and parent vertex of

weight wi + wj.

3.Rearrange remaining weights (excluding wi and wj but

including parent vertex of weight wi + wj) in increasing order.

4.Repeat step 2 until no weight remains.

5.Find out two nodes at specified LEVEL by binary digits and

interchange their position with respect to their parent node.

6.To find out code for each given weights (i.e. frequency of

characters) traversing tree from root assign 0 when traverse left

of each node & 1 when traverse right of each node.

4.5: Algorithm for file mapping:

Matching Percentage (String_1,String_2)

The function takes two strings as argument and returns the

percentage of matching. Here first we calculate the number of

errors i.e. miss match in between these two strings. After that

we can calculate percentage by this following formula:

Percentage= [(Frame_size-Error_no)/ (Frame_size)]*100

Here Frame_size means the length of the String.

ALGORITHM:

1.Frame_size = LENGTH(String_1);

2.Repeat step 3 to 5 while Strng_1 is NULL;

3.Index=MISMATCH-INDEX(String_1,String_2);

4.If INDEX>Length(String_1)-1 then goto step 6;

5.If Index= Length(String_1)-1

 Then String_1= NULL.

 Else

 String_1=SUBSTRING (String_1, (Index+1));

 String_2=SUBSTRING (String_2, (Index+1));

6.Error _no=Error_no+1;

7.Percentage=((Frame_size-Error_no)/Frame_size)*100;

8.Return Percentage.

5. EXPERIMENTAL RESULTS

We tested R2CP techniques on standard benchmark data, used

in [13].For testing purpose we use two types of data, they

comes under different sources.

These tests are performed on a computer whose CPU is Intel P-

IV 3.0 GHz core 2 duo (1024FSB), Intel 946 original mother

board, 1GB DDR2 Hynix, 160GB SATA HDD Segate.Since

the program to implement the technique have been written

originally in the C++ language[14-15],(Windows Xp platform

and TC compiler) it is possible to run in other microcomputers

with small chances (depending on the platform and compiler

used) . The program run on the IBM personal computer

requires 512K, without additional hardware except for disk

drives and printer.

The definition of the compression ratio is [16]; 1-(|O|/2|I|),

where |I| is the number of bases in the input DNA sequence and

|O| is the length (number of bits) of the output sequence. The

compression rate which is defined as (|O|/|I|), where |I| is the

number of bases in the input DNA sequence and |O| is the

length (number of bits) of the output sequence. The

compression ratio and rate presented in tables Tadle-4 to

Table-5.

S
eq

u
en

ce

B
as

e
p
ai

r

F
il

e
S

iz
e

b
y
te

Using R2CP algorithm. Using R2CPHUFF

algorithm.

Im
p
ro

v
em

en
t

o
v
er

 R
2
C

P

R
ed

u
ce

 f
il

e
si

ze

b
y
te

L
ib

ra
ry

 F
il

e
si

ze

C
o
m

p
re

ss
io

n
 r

at
io

C
o
m

p
re

ss
io

n
 r

at
e(

b
it

s
/b

as
e)

R
ed

u
ce

 f
il

e
si

ze

b
y
te

C

o
m

p
re

ss
io

n
 r

at
io

C
o
m

p
re

ss
io

n
 r

at
e(

 b
it

s

/b
as

e)

MTPACGA 100314 100314 44982 133 -0.7936 3.5873 27657 -0.102817 2.205634

3
6
%

MPOMTCG 186608 186608 83942 129 -0.7993 3.5986 53029 -0.136693 2.273386

CHNTXX 155844 155844 70204 133 -0.8019 3.6038 43844 -0.12533 2.250661

CHMPXX 121024 121024 53842 129 -0.7795 3.5591 32835 -0.085239 2.170479

HUMGHCSA 66495 66495 30049 129 -0.8076 3.6152 19249 -0.157922 2.315843

HUMHBB 73308 73308 33154 129 -0.809 3.618 21117 -0.152234 2.304469

HUMHDABCD 58864 58864 26366 129 -0.7917 3.5833 17149 -0.16533 2.330661

HUMDYSTRO

P

38770 38770 17472 129

-0.8026 3.6053

11544

-0.191024 2.382048

HUMHPRTB 56737 56737 25821 133 -0.8204 3.6408 16554 -0.167069 2.334138

VACCG 191737 191737 85921 129 -0.7925 3.585 52796 -0.101425 2.202851

HEHCMVCG 229354 229354 102656 129 -0.7904 3.5807 64768 -0.129573 2.259145

Average 3.5979 2.27484

Table-4

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.1, November 2012

9

S
eq

u
en

ce

B
as

e
p
ai

r

F
il

e
S

iz
e

b
y
te

Using R2CP algorithm Using R2CPHUFF algorithm

Im
p
ro

v
em

en
t

o
v
er

 R
2
C

P

R
ed

u
ce

 f
il

e
si

ze

b
y
te

L

ib
ra

ry
 F

il
e

si
ze

C
o
m

p
re

ss
io

n
 r

at
io

C
o
m

p
re

ss
io

n
 r

at
e(

 b
it

s

/b
as

e)

R
ed

u
ce

 f
il

e
si

ze

b
y
te

C
o
m

p
re

ss
io

n
 r

at
io

C
o
m

p
re

ss
io

n
 r

at
e(

 b
it

s

/b
as

e)

atatsgs 9647 9647 4313 125 -.7883 3.5767 3626 -0.503473 3.006945

2
1
%

atef1a23 6022 6022 2738 105 -0.8186 3.6373 2677 -0.778147 3.556294

atrdnaf 10014 10014 4464 129 -0.7831 3.5662 3769 -0.505492 3.010985

atrdnai 5287 5287 2319 35 -0.75449 3.509 2433 -0.840741 3.681483

celk07e12 58949 58949 26583 133 -0.8038 3.6076 16864 -0.144311 2.288622

hsg6pdgen 52173 52173 23399 129 -0.7939 3.5879 15282 -0.171641 2.343281

mmzp3g 10833 10833 4869 117 -0.7978 3.5957 2952 -0.090003 2.180006

xlxfg512 19338 19338 8658 129 -0.79088 3.5818 6186 -0.279553 2.559106

Average 3.5827 2.82834

Table-5

The results from Table 4 & 5 show our algorithms to be the

best solution for client side decryption -decompression with the

shortest and linearly increasing decompression time. However,

our algorithms doesn’t compress sequences as much as others

for many of the cases in the compression ratio table of [17] but

it provide high information security. This is because our

algorithms uses 2 bits to represent one nucleotide

In order to compare the overall performance, we conducted

further studies involving sending actual sequence files of

varying sizes (without compression) to measure the calculated

time (Tc) needed for the transmission from the source to the

destination. Then we compressed those files using both

compression & encryption algorithms. The total time T,

defined as the sum of the encryption compressed file

transmission time (Tec) plus the client side decompression time

(Tdd), is measured by both these methods.

6. RESULT DISCUSSION:

The result show that compression ratio are vary from each

other due to the data set are come into different sources. Our

algorithm is very useful in database storing. You can keep

sequences as records in database instead of maintaining them

as files. By just using the exact R2CP, users can obtain original

sequences in a time that can’t be felt. Additionally, our

algorithm can be easily implemented.

From these experiments, we conclude that internal R2CP

matching patter are same in all type of sources and Library

file plays a key role in finding similarities or regularities in

DNA sequences. Output file contain ASCII character with

unmatched a, u, g and c so, it can provide information security

which is very important for data protection over transmission

point of view. This techniques provide the high security to

protect nucleotide sequence in a particular source using

modified Huffman Techniques.

The ratio of decompression time to original transmission time

of the uncompressed sequence file (Tdd / Tc), reduces with

increasing file size. This means our client side decryption

decompression technique with our algorithm is a better choice

for larger sequence files. Our client side decryption

decompression technique can be implemented by a genome

search agent and decryption decompression time can be

estimated by two empirical equations according to our

experiments.

Our algorithms combines moderate encryption compression

with reduced decryption decompression time to achieve the

best performance for client side sequence delivery compared

with existing techniques. Its linearity in decompression time

and close linearity in compression time make it an effective

compression tool for commercial usage. Given, for a particular

connection speed, the efficiency achieved using our algorithm,

this compression technique is recommended for transmission

of queried sequence files.

7. CONCLUSION:

Discuss a new DNA compression & security algorithm whose

key idea is internal R2CP. This compression algorithm gives a

good model for compressing DNA sequences that reveals the

true characteristics of DNA sequences including data security.

This method is able to detect more regularities in DNA

sequences, such as mutation and crossover, and achieve the

best compression results by using this observation. This

method is fails to achieve higher compression ratio than others

standard method, but it has provide very high information

security.

Important observation are :

a)R2CP substring length vary from 2 to 5 and no match found

in case the substring length becoming six or more.

b)The substring length is three of highly repeated substring

than substring length of four and five. That is why substring

length of three is highly compressible over substring length of

four and five.

c)This algorithm provide the better data security than other

methods. If we use security directly on the cellular DNA

sequence, we are getting very low label security because DNA

sequence contain only four bases, anyone can hack the data by

trial error methods where as our result show that after

compression it has created four separate file first one is

compress data contain 256 (ASCII) different characters, so it

provide strong security label second file is library life, which is

also contains more than four characters. At the time of

transmission if two files are transmit one by one it is very hard

to hack the data, these techniques has also provide data secure.

Also if any one can apply simple Huffman techniques they fail

to achieve the original DNA sequences without node label

value.

In this work we have performed computational experiments to

selectively encrypt the compressed text of different sizes

generated through static Huffman encoding technique and

compare the effectiveness in terms of dissimilarity from the

original file if one has to decrypt without the key and the

resistance of the cipher text from the attacks based on statistical

property of the plain text. We have used two different schemes;

in scheme-I swapping of nodes is done at specified level based

on key and in scheme-II swapping is done between two

specified nodes at different levels. We have found from our

experiments, the effectiveness of the encryption system

increases as the level at which swapping is done, increases. We

have achieved in the both the scheme with x % encryption can

achieve.

 This approach has a good scope as a selective encryption

scheme because of the fact that in a text of any language the

articles, verbs, and prepositions have a higher frequency

compared to the other words relevant to the core content of the

http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atef1a23
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnaf
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/celk07e12
http://www.cs.tut.fi/~tabus/genml/sequences/hsg6pdgen
http://www.cs.tut.fi/~tabus/genml/sequences/mmzp3g
http://www.cs.tut.fi/~tabus/genml/sequences/xlxfg512

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.1, November 2012

10

text. The problem small key space has to be sorted out to

effectively apply this encryption system in real world..

In case of word consideration word’s frequency are high but

other word have very lower frequency. These lower frequency

words are representing by higher bit. So percentage of

compression is decrease. In terms of security word encryption

is more effective than character encryption. In case of character

encryption, we know there is only 256 characters are available

and since workspace is short. So here is a possibility to break

the security. But in case of word encryption, numbers of

distinguishable words are huge, not known by all, so that

workspace is also increased and breaking the security is not

possible.

8. FUTURE WORK:

We try to reduce the time complexity and compression rate.

Also we are try to apply another security method for getting

better security.

Here in this work, we have taken into consideration the

statistical property of a character or a word while doing

compression. Instead, one can consider the statistical property

of any number characters or bits, the number of bits may be

provided by the user depending on the application or may be

chosen automatically on the basis of entropy. In that case this

encryption technique may be extended to any type of media.

The effectiveness of selective encryption may be studied for

the other statistical compression algorithms available.

9. ACKNOWLEDGEMENT

Above all, the authors are grateful to all our colleagues for their

valuable suggestion, moral support interest and constructive

criticism of this study. We would also like to thank our PCs.

10. REFERENCES

[1] M. Li and P. Vitányi, An Introduction to Kolmogorov

Complexity and Its Applications, 2nd ed. New York:

Springer-Verlag, 1997.

[2] Curnow, R. and Kirkwood, T., Statistical analysis of

deoxyribonucleic acid sequence data { a review, J. Royal

Statistical Society, 152:199{220, 1989.

[3] Grumbach, S. and Tahi, F., A new challenge for

compression algorithms: genetic sequences, J. Information

Processing and Management, 30(6):875-866, 1994.

[4] Lanctot, K., Li, M., and Yang, E.H., Estimating DNA

sequence entropy, to appear in SODA '2000.

[5] Rivals, _E., Delahaye, J.-P., Dauchet, M., and Delgrange,

O., A Guaranteed Compression Scheme for Repetitive

DNA Sequences, LIFL Lille I University, technical report

IT-285, 1995.

[6] Bell, T.C., Cleary, J.G., and Witten, I.H., Text

Compression, Prentice Hall, 1990.

[7] Ma,B., Tromp,J. and Li,M. (2002) PatternHunter—faster

and more sensitive homology search. Bioinformatics, 18,

440–445.1698

[8] H. Cheng and X. Li, “Partial Encryption of Compressed

Images and Video,” IEEE Transactions on Signal

Processing, 48(8), 2000, pp. 2439-2451.

[9] C. E. Shannon, “Communication theory of secrecy

systems,” Bell Systems Technical Journal, v. 28, October

1949, pp. 656-715.

[10] D. A. Huffman, “A method for the construction of

minimum-redundancy codes,“Proc. IRE, vol. 40, pp.

1098-1101,1952.

[11] Chen, L., Lu, S. and Ram J. 2004. “Compressed Pattern

Matching in DNA Sequences”. Proceedings of the 2004

IEEE Computational Systems Bioinformatics Conference

(CSB 2004)

[12] S.F. Altchul, W. Gish, W.Miller,E.W. Myers, and

D.J.Lipman,1990, A. Basic Local Alignment search tool,

J.Mol. Biol. 215 :403-410.

[13] S. Grumbach and F. Tahi, “A new challenge for

compression algorithms: Genetic sequences,” J. Inform.

Process. Manage., vol. 30, no. 6, pp. 875-866, 1994.

[14] E. Balagurusamy, Introduction to Computing. McGraw-

Hill,1998

[15] K.R. Venugopal & S.R. Prasad, Mastering C. McGraw-

Hill,1998

[16] Xin Chen, San Kwong and Mine Li, “A Compression

Algorithm for DNA Sequences Using Approximate

Matching for Better Compression Ratio to Reveal the

True Characteristics of DNA”, IEEE Engineering in

Medicine and Biology,pp 61-66,July/August 2001.

[17] Chen, X., Li, M., Ma, B. and J. Tromp. 2002.

"DNACompress: fast and effective DNA sequence

compression". Bioinformatics. 18: 1696-1698.

[18] ASCII code. [Online]. Available:

http://www.asciitable.com

[19] National Center for Biotechnology Information,

http://www.ncbi.nlm.nih.gov

http://www.asciitable.com/

