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ABSTRACT
Biogeography-Based Optimization (BBO) is a population based al-
gorithm which has shown impressive performance over other Evo-
lutionary Algorithms (EAs). BBO algorithm is based on the study
of distribution of biological organisms over space and time. Yagi-
Uda antenna design is most widely used antenna at VHF and UHF
frequencies due to high gain, directivity and ease of construction.
However, designing a Yagi-Uda antenna, that involves determi-
nation of optimal wire-lengths and their spacings, is highly com-
plex and non-linear engineering problem. It further complicates as
multiple objectives, viz. gain, and impedance, etc., are required to
be optimized due to their conflicting nature, i.e., reactive antenna
impedance increases significantly as antenna gain is intended to
increase. In this paper Non-dominated Sorting BBO (NSBBO) is
proposed and where standard and blended variants of BBO are
investigated in optimizing six-element Yagi-Uda antenna designs
for multiple objectives, viz., gain and impedance, where ranking of
potential solutions is done using non-dominated sorting. The sim-
ulation results of BBO variants and Particle Swarm Optimization
(PSO) are presented in the ending sections of the paper that depict
clearly that NSBBO with blended migration operator is best option
among all.
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1. INTRODUCTION
Antenna is an electrical device which acts as an interface be-
tween free space radiations and transmitter (or receiver). The
choice of an antenna depends on many factors such as gain,
impedance, bandwidth, frequency of operation and Side Lobe
Level (SLL), etc. Yagi-Uda antenna is amongst most popular
antenna designs at VHF and UHF, i.e., 3 MHz to 3 GHz fre-
quency range, due to its constructional ease and high gain, typ-
ically greater than 10dB. It is a parasitic linear array of parallel
dipoles, one of which is energized directly by transmission line
while the others act as a parasitic radiators whose currents are
induced by mutual coupling. Therefore, characteristics of Yagi-
Uda antenna are affected by all of the geometric parameters of
array.

A Yagi-Uda antenna was invented in 1926 by H. Yagi and S. Uda
at Tohoku University in Japan [32, 36]. Since its invention, con-
tinuous efforts have been put in optimizing its design for desired
gain, impedance, SLL and bandwidth, etc., requirements using
different optimization techniques based on traditional mathemat-

ical approaches [24, 4, 8, 25, 7, 6, 9] and Artificial Intelligence
(AI) techniques [16, 35, 34, 3, 19, 31, 30].

In 1949, Fishenden and Wiblin [15] proposed an approximate
design of the antenna for maximum gain. In 1959, Ehrenspeck
and Poehler have presented a manual approach to maximize the
antenna by varying various lengths and spacings of its elements
[14].

Later with the availability of computers and software at afford-
able prices, made it possible to optimize antennas numerically.
Bojsen et al. in [4] proposed another optimization technique to
calculate the maximum gain of Yagi-Uda antenna arrays with
equal and unequal spacings between adjoining elements. Cheng
et al. in [7] and [6] have used optimum wire lengths and their
spacings to maximize the gain of the Yagi-Uda antenna. In [9],
Cheng has proposed optimum design of Yagi-Uda antenna where
antenna gain function is highly non-linear. In 1975, John Holland
introduced Genetic Algorithms (GAs) as a stochastic, swarm
based AI technique, inspired from natural evolution of species,
to evolve optimal design of an arbitrary system based on certain
cost function. Then many researchers investigated GAs to opti-
mize Yagi-Uda antenna designs for gain, impedance and band-
width as single objective problem [1, 16, 10] and multi-objective
problem [35, 33, 18] without use of non-dominated sorting
[12] in ranking different swarm solutions. Baskar et al. in [3],
have optimized Yagi-Uda antenna using Comprehensive Learn-
ing Particle Swarm Optimization (CLPSO) and presented better
results than other optimization approaches. Li has used Differ-
ential Evolution (DE) to optimize geometrical parameters of the
antenna and illustrated the capabilities of the proposed method
with several Yagi-Uda antenna designs in [19]. In [31], Singh
et al. have explored another useful, stochastic global search and
optimization technique named as Simulated Annealing (SA) to
evolve optimal antenna design. In 2008, Dan Simon introduced
yet another swarm based stochastic optimization algorithm based
on the science of biogeography where features sharing among
various habitats, i.e., potential solutions, is accomplished with
migration operator and exploration of new features is done with
mutation operator [28]. Singh et al. have presented BBO as a
better optimization technique for Yagi-Uda antenna designs, in
[30].

In this paper, use of BBO, Blended BBO and NSPSO algorithm
along with non-dominated sorting are proposed and investigated
to attain multiple objectives, i.e., (1) maximum gain and (2) only
resistive impedance of 75Ω, during Yagi-Uda antenna design op-
timization.

After this brief historical background survey, remaining paper is
outlined as follows: Section 2 is dedicated to BBO algorithms.
Section 3 explains PSO algorithm. In Section 4, Yagi-Uda an-
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tenna design parameters are discussed. Section 5 explains multi-
objective problem formulation and non-dominated sorting algo-
rithm. In Section 6, simulation results are presented and ana-
lyzed. Finally, conclusions and future scope have been discussed
in Section 7.

2. BIO-GEOGRAPHY BASED OPTIMIZATION
BBO is a population based global optimization technique in-
spired from the science of biogeography, i.e., study of the dis-
tribution of animals and plants among different habitats over
time and space. BBO results presented by researchers are bet-
ter than other EAs [16, 33, 3, 23]. Originally, biogeography was
studied by Alfred Wallace [2] and Charles Darwin [11] mainly
as descriptive study. However, in 1967, the work carried out by
MacAurthur and Wilson [20] changed this view point and pro-
posed mathematical models for biogeography and made it feasi-
ble to predict number of species in a habitat, their migration, spe-
ciation, and extinction etc. over space and time. Habitats that are
well suited residences for biological species are referred to have
high Habitat Suitability Index (HSI) analogues to fitness in other
EAs whose value depends upon many factors such as rainfall, di-
versity of vegetation, diversity of topographic features, land area,
and temperature, etc. These features that characterize habitability
are termed as Suitability Index Variables(SIVs). Each habitat, in
a population of size NP , is represented by M -dimensional vec-
tor as H = [SIV1, SIV2, . . . , SIVM ] where M is the number
of SIVs to be evolved for optimal fitness given asHSI = f(H).

The habitats with high HSI tend to have a large population of
its resident species, that is responsible for more probability of
emigration and less probability of immigration due to natural
random behavior of species. Immigration is the arrival of new
species into a habitat, while emigration is the act of leaving one’s
native region. On the other hand, habitats with low HSI tend to
have low emigration probability, due to sparse population, how-
ever, they will have high immigration probability. Suitability of
habitats with low HSI is likely to increase with influx of species
from other habitats having high HSI. However, if HSI does not
increase and remains low, species in that habitat go extinct that
leads to additional immigration. For sake of simplicity, it is safe
to assume a linear relationship between HSI and immigration
and emigration probability and same maximum emigration and
immigration probability, i.e., E = I , as depicted graphically in
Figure 1.
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Fig. 1. Migration Curves

For k-th habitat values of emigration probability, µk, and immi-
gration probability, λk are given by (1) and (2).

µk = E · HSIk
HSImax −HSImin

(1)

λk = I·
(

1− HSIk
HSImax −HSImin

)
(2)

The migration of new species from high HSI to low HSI habi-
tats may raise HSI of poor habitats as good solutions are more
resistant to change than poor solutions whereas poor solutions
are more dynamic and accept a lot of new features from good so-
lutions. Following subsections describes the standard BBO [28]
and blended BBO [29].

2.1 Standard BBO
2.1.1 Migration. Migration is a probabilistic operator that im-
proves HSI of poor habitats by sharing features from good
habitats. During migration, i-th habitat, Hi (where i =
1, 2, . . . ,NP ) use its immigration rate, λi given by (2), to proba-
bilistically decide whether to immigrate or not. In case immigra-
tion is selected, then the emigrating habitat, Hj , is found prob-
abilistically based on emigration rate, µj given by (1). The pro-
cess of migration is completed by copying values of SIVs from
Hj to Hi at random chosen sites, i.e., Hi(SIV ) ← Hj(SIV ).
The pseudo code of migration operator is depicted in Algo-
rithm 1.

Algorithm 1 Standard Pseudo Code for Migration

for  i = 1 to NP do 

      Select Hi with probability based on λi 

      if Hi is selected then  

          for  j = 1 to NP do 

               Select Hj with probability based on µj 

               if Hj is selected 

                   Randomly select a SIV(s) from Hj 

                   Copy them SIV(s) in Hi  

                end if 

           end for 

      end if 

end for 

2.1.2 Mutation. Mutation is another probabilistic operator that
modifies the values of some randomly selected SIVs of some
habitats that are intended for exploration of search space for bet-
ter solutions by increasing the biological diversity in the popu-
lation. Here, higher mutation rates are investigated on habitats
those are, probabilistically, participating less in migration pro-
cess. The mutation rate, mRate, for k-th habitat is calculated as
(3)

mRatek = C ×min(µk, λk) (3)

where µk and λk are emigration and immigration rates, respec-
tively, given by (1) and (2) corresponding to HSIk. Here C is
a scaling constant and equal to 3. The pseudo code of mutation
operator is depicted in Algorithm 2.

Algorithm 2 Standard Pseudo Code for Mutation

 kkCmRate  ,min  where C =  3 

for n = 1 to NP do 

for j = 1 to length(H) do 

Select Hj(SIV) with       

 If Hj(SIV) is selected then 

Replace Hj(SIV) with  randomly generated SIV 

end if 

end for 

end for 
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2.2 Blended BBO
Blended migration operator is a generalization of the standard
BBO migration operator and inspired by blended crossover in
GAs [21]. In blended migration, a solution feature of solution
ImHbt is not simply replaced by a feature from solution EmHbt
as happened in standard BBO migration operator. Instead, a new
solution feature, ImHbt(SIV), solution is comprised of two com-
ponents, i.e., ImHbt(SIV ) ← α · ImHbt(SIV ) + (1 − α) ·
EmHbt(SIV ). Where α is a random number between 0 and 1.
The pseudo code of blended migration is depicted in Algorithm 3

Algorithm 3 Standard Pseudo Code for Blended Migration

for  i = 1 to NP do 

      Select Hi with probability based on λ i 

      if Hi is selected then  

          for  j = 1 to NP do 

               Select Hj with probability based on µj 

               if Hj is selected 

                             SIVHSIVHSIVH jii   1         

    end if 

          end for 

      end if 

end for 

3. PARTICLE SWARM OPTIMIZATION
PSO algorithm is one of the stochastic swarm intelligence based
global search algorithms. The motivation behind PSO algorithm
is social behavior of animals, e.g., flocking of birds and fish
schooling. PSO has its origin in simulations created to visu-
alize the synchronized choreography of a bird flock by incor-
porating certain features like nearest-neighbor velocity match-
ing and acceleration by distance [22, 27, 17, 13]. Later on,
it was realized that the simulation could be used as an op-
timizer and resulted in the first simple version of PSO. In
PSO, the particles have (1) adaptable velocities that determines
their movement in the search space, (2) memory which en-
able them for remembering the best position in the search
space ever visited. The position corresponding to the best fit-
ness is known as past best, pbest, and the overall best out of
all NP the particles in the population is called global best,
gbest. Consider that the search space is M -dimensional and i-
th particle location in the swarm can be represented by Xi =
[xi1, xi2, ....xid..., xiM ] and its velocity can be represented by
anotherM -dimensional vector Vi = [vi1, vi2, ....vid.., viM ]. Let
the best previously visited location position of this particle be
denoted by Pi = [pi1, pi2, ....pid.., piM ], whereas, g-th parti-
cle, i.e., Pg = [pg1, pg2, ....pgd.., pgM ], is globally best particle
location. Figure 2 depicts the vector movement of particle ele-
ment from location xnid to xn+1

id in (n + 1)-th iteration that is
being governed by past best location, pnid, global best location,
pngd, and current velocity vnid. Alternatively, the whole swarm is
updated according to the equations (2) and (3) suggested by Shi
& Eberhart [26].

vm+1
id = χ(wvmid + ψ1r1(pmid − xmid) + ψ2r2(pmgd − xmid)) (4)

xm+1
id = xmid + vm+1

id (5)
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Fig. 2. Movement of i-th particle in 2-dimensional search space

Here, w is inertia weight, ψ1 is cognitive learning parameter, ψ2

is social learning parameter and constriction factor, χ, are strat-
egy parameters of PSO algorithm, while r1 and r2 are random
numbers uniformly distributed in the range [0,1]. Generally the
inertia weight, w, is not kept fixed and is varied as the algorithm
progresses. The particle movements is restricted with maximum
velocity, ±Vmax, to avoid jump over the optimal location as per
search space requirements.

4. ANTENNA DESIGN PARAMETERS
Usually, Yagi-Uda antenna consists of three types of elements:
(a) Reflector–biggest among all and is responsible for blocking
radiations in one direction. (b) Feeder–which is fed with the
signal from transmission line to be transmitted and (c) Direc-
tors–these are usually more then one in number and responsi-
ble of unidirectional radiations. Designing a Yagi-Uda antenna
involves determination of wire-lengths and wire-spacings in be-
tween to get maximum gain, desired impedance and minimum
SLL at an arbitrary frequency of operation. An antenna with N
elements requires 2N − 1 parameters, i.e., N wire lengths and
N−1 spacings, that are to be determined. These 2N−1 parame-
ters, collectively, are represented as a string referred as a habitat
in BBO given as (6).

H = [L1, L2, . . . , LN , S1, S2, . . . , SN−1] (6)

where Ls are the lengths and Ss are the spacing of antenna el-
ements. An incoming field sets up resonant currents on all the
antenna elements which re-radiate signals. These re-radiated sig-
nals are then picked up by the feeder element, that leads to total
current induced in the feeder equivalent to combination of the
direct field input and the re-radiated contributions from the di-
rector and reflector elements. This makes highly non-linear and
complex relationships between antenna parameters and its char-
acteristics like gain, impedance and SLL, etc.

Figure 3 depicts a typical six-wire Yagi-Uda antenna where all
wires are placed parallel to X-axis and along Y -axis. Middle
segment of the reflector element is placed at origin and excitation
is applied to the middle segment of the feeder element.
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Fig. 3. Six-element Yagi-Uda Antenna
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5. MULTI-OBJECTIVE OPTIMIZATION
5.1 Multi-objective Problems
In single-objective optimization, optimal solution is easy to ob-
tain as compared to multi-objective scenario where one solution
may not exist which could be globally optimal with respect to all
objectives. Objectives under consideration may be of conflicting
in nature, i.e., improvement in one objective may cause declina-
tion in other objective(s). There exists a set of solutions which
are the best tradeoff solutions important for decision making and
are often superior to rest of solutions when all objectives are con-
sidered, however, inferior for one or more objectives. These so-
lutions are termed as pareto-optimal solutions or non-dominated
solutions and others are dominated solutions.

Multi-objective optimization problems result in pareto-optimal
solutions instead of a single optimal solution in every run. Every
solution from non-dominated set is acceptable as none of them
is better than its counterpart. However, final selection of a solu-
tion is done by the designer based on nature of problem under
consideration.

5.2 Non-Dominated Sorting
Problem, presented in this paper, of optimizing a six wire Yagi-
Uda antenna design has two objectives viz, (a) 75 + j0Ω an-
tenna impedance and (b) maximum possible antenna gain. Sub-
objectives of antenna impedance, viz. real part, Re, and imagi-
nary part, Im, are combined together to form single fitness func-
tion, as (7), that is required to be minimized.

f1 = |Re− 75|+ |Im| (7)

Whereas, second objective of gain maximization is also con-
verted into minimization fitness function, f2, given as (8)

f2 =
1

Gain
(8)

Suppose every solution, in a swarm of NP solutions, yields f1k
and f2k as fitness values (where k = 1, 2, . . . ,NP ), using (7)
and (8), that belongs to a set of either non-dominated solutions,
P , or dominated solutions, D. An i-th solution in set P dom-
inates the j-th solution in set D if its satisfy the condition of
dominance, i.e., f1i ≤ f1j and f2i ≤ f2j , where both objectives
are to be minimized. This condition of dominance is checked
for every solution in the universal set of NP solutions to as-
sign it either P set or D set. Solution members of set P form
the first non-dominated front, i.e., the pareto optimal front, and
then remaining solutions, those belong to set D, are made to
face same condition of dominance among themselves to deter-
mine next non-dominated front. This process continues till all
solutions are classified into different non-dominated fronts, as
shown in Fig. 4. Preference order of solutions is to be based
on designer’s choice, however, here in this paper euclidian dis-
tance is determined from origin for every member solution in a
non-dominated front and are picked up in ascending order. The
pseudo code of Non-dominated sorting approach is depicted in
Algorithm 4.

6. SIMULATION RESULTS AND DISCUSSIONS
As BBO and PSO are swarm based stochastic optimization al-
gorithms, to present fair analysis, a six-wire Yagi-Uda antenna
design is optimized for 10 times using 300 iterations and 30
habitats (particles). The universe of discourses to search opti-
mal values of wire-lengths and wire-spacings are 0.40λ− 0.50λ
and 0.10λ−0.45λ, respectively. However, cross-sectional radius
and segment size for all wires are kept constant, i.e., 0.003397λ
and 0.1λ, respectively, where λ is the wavelength corresponding
to frequency of operation, i.e., 300MHz. The C++ programming

Algorithm 4 Standard Pseudo Code for Non-dominated sorting

Compute f1s and f2s using (7) and (8) for all s = 1 to NP 

1f      % Non-dominated front  f 

All solutions in the swarm set  F 

if  (No. solutions in set F  ≠ 0) 

    1 ff  

     for 1i  to NP 

       for 1j  to NP 

         if ( i ≠ j) 

           if ( if1  ≤ jf1  and  f2i ≤ f2j ) 

  j-th solution fD  
           else 

   j-th solution fP  

           end if  

         end if 

       end for 

     end for 

            F = Df 

end if 
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Fig. 4. Non-dominated sorting and pareto-fronts

platform is used for algorithm coding, whereas, method of mo-
ments based software, Numerical Electromagnetic Code (NEC2)
[5], is called using system command to evaluate antenna designs.
Both objectives, gain and impedance, are optimized using two
fitness functions, given by (7) and (8).
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Fig. 5. Antenna Gain Convergence

Average of 10 Monte-Carlo simulation runs are plotted here to
analyze convergence flow while achieving (i) maximum antenna
gain, in Fig. 5, (ii) Re = 75Ω, i.e., resistive antenna impedance
of 75Ω, in Fig. 6, and (iii) Im = 0Ω, i.e., zero reactive antenna
impedance, in Fig. 7. From the plots it can be observed that best
compromised solution, during initial iterations, sometimes lead
to poor solutions in terms of gain or impedance. However with
increasing iteration number best compromised solution improves
in aggregate that may, improve further, if maximum iteration
number is kept high. The best antenna designs obtained during
process of optimization and average results of 10 monte-carlo
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Fig. 6. Resistive Antenna Impedance
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Fig. 7. Reactive Antenna Impedance

runs, depicted in Fig. 5 to 7, after 300 iteration are tabulated in
Table 1.

Table 1. The best antenna designs obtained during optimization

 Standard BBO Blended BBO PSO 

Element Length Spacing Length Spacing Length Spacing 

1(λ ) 0.4732 - 0.4738 - 0.4525 - 

2(λ ) 0.4780 0.1979 0.4622 0.2185 0.4641 0.1917 

3(λ ) 0.4397 0.1631 0.4417 0.3929 0.4383 0.3546 

4(λ ) 0.4316 0.2735 0.4289 0.6546 0.4348 0.7201 

5(λ ) 0.4193 0.3902 0.4225 1.0289 0.4011 1.0408 

6(λ ) 0.4307 0.3360 0.4283 1.3835 0.4385 1.3909 

Best Gain 12.58 12.58 12.29 

Best Imp. 74.9414+j0.0364 Ω 75.2441-j0.0847 Ω 68.1499-j2.9725 Ω 

*Average Gain 11.16 dBi 12.40 dBi 10.81 dBi 

*Average Imp. 74.946-j0.024 Ω 75.050-j0.073 Ω 75.048+j0.013Ω 

7. CONCLUSIONS AND FUTURE SCOPE
In this paper, NSBBO and NSPSO algorithm are investigated
for attaining multiple objectives, i.e., maximum gain and an-
tenna impedance. It can be observed from simulation results that
the NSBBO with blended migration presents better convergence
flow in terms of achieving gain and only resistive impedance of
75Ω as compared to standard BBO and NSPSO over limited 300
iterations. Reasons for poor performance of PSO may include
use of global best PSO model, where each particle learns from
every other particle in the swarm and globally best particle, that
is prone to get trapped in local optima. Investigation into other
variants of PSO and BBO algorithms for improved performance
is next on our agenda.
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