
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

47

Stereo Matching using Multi-Resolution Images
on CUDA

Sudhakar Sah

Center for Engr Sciences & Technology-CREST
KPIT Cummins Infosystems Ltd.

Pune, India

Nikhil Jotwani
Center for Engr Sciences & Technology-CREST

KPIT Cummins Infosystems Ltd.
Pune, India

ABSTRACT

Stereo matching technique is used to estimate the depth of

objects in an image acquired from real time scenes. The basic

algorithm is not very complex but is computationally

exhaustive and hinders its usage for real time applications.

However, this algorithm is highly data parallel and it highly

suitable for execution on GPGPU (General-purpose graphical

processing units). In this paper, we are proposing the parallel

implementation of the fast stereo matching algorithm based on

correlation of multi-resolution images using CUDA (Compute

Unified Device Architecture). The performance of this

implementation is faster than most of the software

implementations of this method and comparable with FPGA

implementation and few other optimized methods mentioned

in the references. This enables the real time usage of stereo

matching method. We have also provided performance

comparison and results for different methods of stereo

matching on CUDA. The paper concludes with analysis of

results and the reasons of the performance variations. We

have also given qualitative image data for comparison of

accuracy of different stereo correspondence methods.

Keywords

Correlation; Multi-Resolution images; CUDA; Stereo

matching.

1. INTRODUCTION
There is a continuous need for increase in processing power to

reduce the execution time of computationally exhaustive

algorithms. Thus, many chip manufacturers are coming up

with different architectures for processors to match the

challenge posed by the applications. GPUs (Graphical

Processing Units) were mainly used for gaming and imaging

applications and not for the general-purpose computations.

NVIDIA had come up with a new technology called CUDA

(Compute Unified Device Architecture) by adding simple C

like APIs along with architectural changes to support these

APIs. These APIs resulted in easy programming on these

GPUs for general-purpose computation. The current available

GPUs have around 512 cores (NVIDIA Tesla architecture)

which can be used for high performance on data parallel

algorithms.

The stereo matching algorithm is used to find the depth of

objects from the reference point in an image taken from real

scene. Major applications of stereo matching are in the field

of robotics, 3D scene reconstruction, 3D television. The

distance of particular object is determined by computing the

disparity map. Correlation based stereo matching is one of the

simplest methods for getting disparity map but it is

computationally exhaustive and takes a lot of time to produce

results. Hence, in its original form correlation based method

cannot be used for real time operations. Correlation based

method is highly data parallel and suitable candidate for

CUDA implementation to get speed up. Additionally, an

implementation using multi-resolution images helps to reduce

the time of execution further. When this method is

implemented on GPGPU, it achieves real time performance.

This paper talks about implementation of different stereo

matching methods using CUDA and comparison of the

performance data on various images.

2. RELATED WORK
All accelerating the stereo correspondence method is

mainstream research in this area and many papers have been

published in stereo matching algorithm describing the

methods to reduce execution time and using available

parallelism. K.Sunil Kumar and U.B. Desai [1] have

developed an approach to integrate different modules in stereo

matching, which include feature extraction, matching, and

interpolation. Because this method is computationally

expensive, they have developed a multi resolution approach to

solve the problem. Changming Sun [2] has implemented a

method of reducing the computation time of the algorithm by

modifying the formulae for calculating the variance and co-

variance. Also, he has used the concept of multi-resolution

images for improving the accuracy of the disparity map. This

method also helps to reduce the computational time. Ke Zhu,

Matthias Butenuth and Pablo D’Angelo [4] have discussed the

implementation of local and global dense stereo matching

method in their paper. They have explained the tradeoff

between the accuracy and execution time on the GPU. They

have also discussed different parallelization strategies for

improving the performance. John Congote, Javier

Barandiaran, InigoBarandiaran and Oscar Ruiz [5] have

proposed a different implementation of stereo matching using

dynamic programming to calculate the dense depth maps

using CUDA architecture and achieved real time performance

on GPU. They have compared the timing analysis of their

implementation against CPU implementations and explained

the scalability property by testing their implementation on

different GPUs. Andreas Geiger, Martin Roser and Raquel

Urtasun [6] have explained a novel approach to stereo

matching of high resolution images. They form a group of

supportive points and these points are robustly matched for

finding the disparities. This allows the exploitation of

disparity space and yields accurate dense reconstruction.

Yong Zhao, Gabriel Taubin [7] have used progressive multi

resolution pipeline, which includes background modeling and

dense matching with adaptive windows. Their approach is

mainly used for applications where moving objects are of

interest. They have achieved 60 frames per second (fps) on an

800*600 video. Yoshikatsukimura [10] has developed a

driving support system for safety purpose. Images from a

camera on the vehicle are used to capture image and stereo

matching algorithm is used to provide the distance

information. He uses the multi resolution images and provides

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

48

the distance information. Jian Sun, Yin Li, Sing Bing Kang

and Heung-yeung Shum [11] have proposed a method to deal

with occlusion in dense two frames stereo. They have

incorporated the visibility constraint in an energy

minimization framework resulting in a stereo model that treats

both the left and the right image equally. They use an iterative

method to determine the minimum value of the energy using

belief propagation. Sven Forstmann, Yutaka Kanou, Jun

Ohya, Sven Thuering and Alfred Schmitt [12] have

implemented stereo matching using dynamic programming to

achieve real time performance. They have used coarse to fine

scheme and the MMX extensions in the hardware to increase

the speed. SirajSabihuddin, JaminIslam and W. James

MacLean [13] have provided a hardware implementation to

the stereo matching problem. They have used a pipelined

architecture i.e. FPGA, which gives almost 200 fps (frames

per second) performance. RatheeshKalarot and John Morris

[14] have compared the performance of stereo matching

algorithm on GPU and FPGA. They have shown that

performance of stereo matching on FPGA is very good.

However after a certain disparity value, the FPGA

implementation does not work.

 Our paper is to showcase the performance achieved by

using multi resolution method and to compare the

performance with other similar implementations. The fps

achieved by this paper is very high and it is comparable with

some of the hardware implementations available in the

literature. Our implementation is software implementation

and hence it is not restricted to any disparity range and is

flexible.

Fig 1: GPGPU Architecture

3. NVIDIA CUDA
GPUswere earlier used to get high quality graphics in gaming

applications. In 2007, NVIDIA introduced a new architecture

called CUDA (Compute Unified Device Architecture) to

enable GPU usage for general-purpose computation. CUDA

provided top level APIs to make program development for

GPGPUs easier in order to utilize massive parallelization

powers of GPU.

Figure 1 shows the hardware architecture of NVIDIA GPGPU

[8]. The architecture consists of array of multiprocessor

called symmetric multiprocessor (SM), each having its own

shared memory and stream processors (SP). NVIDIA GTX

480 has 15 SM and each SM contains 32 SPs. The code is

dispatched from CPU to the thread execution manager, which

schedules these threads to cores. Hence, user is freed from the

burden of writing code and scheduling it for load balancing.

Each core can run multiple threads at the same time and hence

can produce exceptional speed up required for high

performance computation. Every SM can access large chunk

of memory called global memory. Global memory size is

huge but its performance is low as compared to shared

memory. Hence, the memory management affects the GPU

implementation throughput heavily. An application written

using CUDA can be seen as a host program which runs on

CPU in addition to a 'kernel' which is run by multiple threads

at the same time on different cores of GPGPU. Threads are

executed in groups, which are called as 'blocks'. Grid is the

collection of blocks to be executed on the device. Multiple

threads execute the kernel code at the same time. CUDA

architecture provides different types of memories like global,

shared, texture and constant. Performance of the CUDA code

largely depends on how well the architecture of the GPU

hasbeen exploited. Some of these techniques are discussed in

the implementation section.

4. STEREO MATCHING

In this paper, we have described stereo matching using

correlation. The disparity map generated as output of the

algorithm enables to find distance of the object from the

reference plane. There are two images viz. left and right

image of the same environment taken from different camera

angle. For every pixel in the left image we try to find

corresponding pixel in the right image. The displacement of

the pixel position in the right image from the pixel position in

the left image gives the disparity for that particular pixel.

Disparity map is a set of disparity values of each point in left

image from right image.

Sha
red
Me
mo
ry

Sha
red
Me
mo
ry

Sha
red
Me
mo
ry

Sha
red
Me
mo
ry

Sha
red
Me
mo
ry

Sha
red
Me
mo
ry

Sha
red
Me
mo
ry

Thread
Processor

s

Sha
red
Me
mo
ry

Sha
red
Me
mo
ry

Sha
red
Me
mo
ry

Thread
Processors

Thread
Processors

Thread
Processors

CPU

Input
Assembler

Thread
Execution
Manager

Load/
Store

Global
Memory

Sha
red
Me
mo
ry

Sha
red
Me
mo
ry

Sha
red
Me
mo
ry

Sha
red
Me
mo
ry

Sha
red
Me
mo
ry

Sha
red
Me
mo
ry

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

49

Fig 2: Pixel position in left and right image

As shown in the Figure 2, we are considering the pixel

highlighted in the left image and trying to find the pixel in the

right image, which has the maximum correlation with pixel

under consideration. The corresponding matching pixel in

right image is highlighted in Figure 2. Thus, distance between

the pixels in the left and right image gives the disparity of

particular pixel of left image. Let ‘L(i,j)’ represent any pixel

in the left image and ‘R(i,j)’ represent any pixel in right

image. Let Co(i,j) represent the correlation value, Cov(i,j) be

the covariance, Var(i,j) be the variance, La be the mean value

for the left image and Ra be the mean value for the right

image, then we can find correlation by[2].

Co(i,j)(L,R) =
)Var(i,j)(R)Var(i,j)(L

,R)Cov(i,j)(L

*
(1)

Where, Cov(i,j)(L,R)=

 









Wli

Wlim

Wwj

Wwjn

RandmRLanmL)),((*)),(((2)

Var2
(i,j)(L)=  










Wli

Wlim

Wwj

Wwjn

LanmL)),((
2(3)

Var2
(i,j)(R)=  










Wli

Wlim

Wwj

Wwjn

RandmR)),((
2(4)

The variance and co-variance takes a lot of time to compute as

per equation (2), (3) and (4). Hence, it needs modifications

(optimization) to reduce the computational time. The modified

form of covariance and variance [2] is shown by equation (5)

and (6) respectively.

Cov(i,j)(L,R)=  









Wli

Wlim

Wwj

Wwjn

ndmRnmL),(*),(-

 (2*Wl+1)*(2*Ww+1)La*Ra(5)

(5)

Var2
(i,j)(L)=  









Wli

Wlim

Wwj

Wwjn

nmL),((
2 –

(2*Wl+1)*(2*Ww+1)La(6)

(6)

Fig 3: Correlation by single thread for each pixel

An exhaustive search is performed on the right image until the

maximum value of correlation is not found for the particular

pixel. However, this search is limited to the maximum value

of disparity set. The correlation can be performed by using

kernels of different sizes viz. 3*3, 5*5, 7*7. This algorithm is

highly data parallel. The correlation of each pixel can be

computed with a single thread and hence all the pixels can be

computed in parallel. In addition, computation of the disparity

for each pixel can be performed in parallel.

5. STEREO MATCHINGUSING

CORRELATION

In this section, we will describe different parallelization

strategies and architectural optimization applied to the

correlation method on CUDA to improve the performance.

5.1 Global Memory Implementation

In the first method, we load both the left and right images in

the global memory. A correlation window is chosen for e.g.

3*3 and parallel threads compute correlation of each pixel in

left image with multiple pixels in right image. Each thread

fetches values from the left image in the correlation window

and performs correlation with the corresponding pixels from

the right image. The values of correlation are calculated for

one pixel in the left image by shifting the correlation window

in the right image. Figure 4 explains the movement of the

correlation window for right image. The correlation is

calculated using equations (1)-(6). The amount of shift of the

window in the right image is determined by fixing the

maximum allowed disparity in advance.

Left image Right image

Correlation window

Pixel under

consideration

Movement of correlation

window

Single thread

operation for

one pixel

Left image Right image

Disparity for the pixel

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

50

Fig 4: Movement of correlation window for the pixel under consideration

Each thread stores the maximum value of correlation

computed by comparing it with the previously calculated

values and stores the distance at which the maximum value is

obtained. The value of the distance gives us the disparity map

for the image. Disparity map is used to determine the distance

of the object from the reference plane by using other

information related to camera positions. This implementation

is simple and results in high speed up compared to the CPU

implementation but global memory access is very slow and

hence overall speed up is not up to the mark.

5.2 Shared Memory Implementation

In the second method, we store the left image in the shared

memory and the right image is fetched from the global

memory. The advantage of the second method over the first is

that, in the left image there is memory access repetition.

Fetching values from shared memory is very fast and results

in reduction in execution time. Right image cannot be stored

in shared memory because number of pixels to be fetched

from the right image exceeds the maximum storage capacity

of shared memory. Thus, the values to be computed from the

right image would have to be fetched from the shared memory

of other blocks (non-coalesced memory access) which would

take more time to fetch. The execution of correlation is the

same as that explained in the previous implementation. Each

thread is used to compute the correlation values of single pixel

and to calculate its disparity value. A speed up of almost 8 to

10 times is obtained by utilization of the shared memory for

storing the left image.

5.3 Shared Memory and Texture Fetch

Implementation

 In this approach of implementing stereo matching algorithm

using correlation, we can make use of texture memory

available in the GPGPU. Fetching data from texture memory

is advantageous when there is a fixed pattern of data access.

This implementation makes use of 1D texture for storing the

image. Here, we store the left image in the shared memory

and the right image in the texture memory. We make use of

1D texture fetch to get the values. The reason for using 1D

fetch is because of the need of the algorithm. The values to be

used for correlation from the right image for a pixel in the left

image are along the row in which the pixel lies. The method

to find the correlation is similar to that explained in previous

section. Each thread is used to calculate the disparity of a

single pixel in the left image. Thus, all the pixels are

computed in parallel. The difference is just that the values are

fetched from shared memory and texture memory for left and

right image respectively. The performance of this

implementation is low as compared to the

previousimplementation where the right image is stored in the

global memory. This is because the values to be fetched are

not located within the same block (non-coalesced memory

access). Thus, we have to fetch it from other blocks, which

cause the delay in fetching it.

6. DYNAMIC PROGRAMMING

METHOD

Dynamic programming method for stereo matching falls

under semi global method as it considers the cost of

neighboring pixels for cost computation of current pixel.

Dynamic programming is NP hard problem.

Consider, Il – left image and Ir – right image

6.1 Cost computation and aggregation

For each pixel of one scan line, cost matrix Ds is with size

WxDmax is created where W is width of image and Dmax is

maximum allowed disparity.

Ds(x,d) = SAD(x,d) + min(Є + Ds(x-1, d-1), Ds(x-1,d),

Є+ Ds(x,d+1))

(7)

Where, SAD(x,d) = abs(Il(x,y) – Ir(x+d,y))

and y - scan line

(8)

6.2 Minimum path computation

Once Ds is created for each scan line, it is traversed from end

and min cost path is followed. Based on the min path,

disparity for each pixel in a particular scan line is computed.

This is explained with the help of following pseudo code.In

this process, the path is stored in one variable which can be

used for disparity map computation. We are not discussing the

CUDA implementation of dynamic programming in detail

because it is out of the scope of this paper. This

implementation was running at 28 fps.

m = width and n – Dmax

while(m != 1 && n != 1)

{

 Min = min(Up, Upleft, Left)

 If min == Up

 N --

Maximum disparity distance

Movement of

correlation

window

Left image Right image

Pixel under consideration

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

51

 If min == Left

 m--

 if(min == Upleft)

 n—

 m--

}

7. MULTI RESOLUTION METHOD

The methods discussed in earlier sections provided good

speed up and dynamic programming method provided better

results, still, the results are not meeting the real time criteria.

Hence, we make use of multi-resolution [10] images along

with correlation for obtaining more accurate results and better

speed up. In this method, initially we reduce the size of the

image to half.

This reduction of image size as shown in Figure 5 is a

complete data parallel method. In this, we fetch three pixels

from the image and take their mean. These mean values are

then stored. Figure 6 explains the computation of reduction.

Fig 5: Reduced size of image

Numbers of threads released are equal to the number of pixels

in the reduced image. Then we perform correlation on the

reduced image. As the image size is reduced to half, execution

time also reduces considerably. The correlation technique

used is similar to that explained in the previous sections. The

left image is stored in the shared memory and the values from

the right image are fetched from the global memory (Best

possible combination based on performance measurement).

Using equations (5) and (6) for finding the variance and co-

variance, time taken reduces further (optimization to reduce

the computation).At the end of this computation, the disparity

map of half size image is obtained. After getting this value,

maximum disparity value is determined from disparity map of

half size image. This can be done using reduction method in

CUDA. Reduction method calculates local maxima of small

CUDA blocks. At the end, global maximum is obtained by

using local maxima obtained by previous step. The disparity

map obtained is interpolated to the size of the input images.

The interpolation is calculated by the equation (7). This

process is data parallel. Initially, the values in the disparity

map obtained from the reduced images are placed over a

matrix of double its size.

To calculate interpolation on CUDA, we release threads equal

to the product of height of the input image and half the width.

Now, we fill in the gaps width-wise first. Therefore, each

thread computes value for each unfilled pixel. Interpolation is

calculated using equation (9). Once the rows are filled, then

the columns are filled following similar manner. Let us call

the input image is at level 0 and image with half size at level 1

and so on. p(i,j)L is the position of a pixel at level L and d(p)

be the disparity of that particular pixel.

Fig 6: Computation of one pixel value of reduced image by single thread

Fig 7: Interpolation of reduced image to original size

Single

thread

Enlarged image

Computation of values in the gap

along the columns

Single

thread

Computation of values in the

gap along the rows

Enlarged image

Reduced

image
Enlarged image

 One thread

for one pixel

Reduced image

Original image

Full

image

Half

image

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

52

Afterwards, we make use of the interpolated disparity map

(d(p)L) along with the disparity map obtained for the reduced

image and find the cost function. The cost function makes use

of the correlation values obtained from the left and right input

images. Let Ci,j be the cost function and Coi,j be the

correlation values. Let DmL be the maximum value of

disparity obtained at level L. then the cost function [3] can be

given by equation (10).

Where d(i,j)L is the disparity value of level L and d(i,j)L-1 is

the disparity value of level L-1. By multiplying the cost

function with the interpolated disparity map, we obtain the

actual disparities for the input images.

d(p)L = d(p)L-1

+
))(,()1)(,1(

))(,()1(

LjipLjip

LjipLp



 *(d(p(i+1,j)-d(p(i,j))))
(9)

Ci,j = Coi,j +
DmL

LjidLjid |1),(),(|  (10)

This method of implementation takes very less execution time

and gives better and accurate results. A speed up of

approximately 8 times as compared to the shared memory

implementation is obtained.

8. RESULTS DISCUSSION

This section will discuss the performance of all of the

methods discussed so far and some of the fast

implementations available in literature. We have used

NVIDIA GTX 480 on Intel dual core system for all these

experiments. VGA image is used as input (from Middlebury

website [9]) and performance is measured by varying the

maximum disparity range. The block size chosen is 16x16 and

the size of the correlation window is set as 7x7. Execution

time is directly proportional to the maximum allowed

disparity because, as the disparity range increases, number of

pixels to be considered for correlation of a single pixel

increases. When global memory is used, the pixels are fetched

from global memory. As the global memory access is slow,

performance is not very good. In the second method, shared

memory access is used which gives 10 times better

performance compared to the global memory implementation.

Table 1 lists fps achieved using these techniques. Texture

fetch in general is fast. However, the values to be fetched

from the texture memory are not limited to the block size

(non-coalesced memory access). Hence, texture fetch is also

not improving the performance much as shown in Table 1.

The first three methods do not meet the real time performance

criteria. Dynamic programming is a different and fast

approach to stereo matching as mentioned in previous section.

However, it gives almost real time performance, which is

around 30 fps. The multi-resolution method is the most

efficient method giving more accurate results and real time

performance. Multi-resolution method gives 3 times better

performance compared to the dynamic programming method

and 6 times better compared to correlation method using

shared memory.

 Table 2 gives details of the performance comparison of

different methods available in literature. The multi-resolution

implementation gives real time performance and proves to be

faster than the state of art implementations present today. The

progressive multi resolution implementation also gives real

time performance. The progressive multi resolution method is

used only for foreground objects and achieves 60 fps at 250

disparities as shown in Table 2. In our multi-resolution

implementation, we find the disparity of the entire input

image. Even though it processes the entire image, it gives real

time performance (maximum 120 fps for maximum disparity

60 and 66 fps for Dmax - 150). Few other methods involving

hardware implementation on FPGA is also included in Table

2. These methods perform better than the CUDA

implementation proposed by us but lack in flexibility provided

by software implementation. Also one of the papers suggests

that FPGA implementation for disparity more than 256 is not

feasible [14].

Fig 8: Comparative graph of different techniques

Disparity

Time for execution

 (fps)

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

53

Table 1.Performance comparison of different methods

Method
Image

size

Disparity

Range

Time

(ms)
FPS

Correlation

(Global

Memory)

640x480

60

100

150

800

1100

1400

1.25

0.9

0.71

Correlation

(Shared

Memory)

640x480

60

100

150

70

95

120

15

11

9

Correlation

(Texture fetch)
640x480

60

100

150

120

165

200

9

6

5

Dynamic

Programming
640x480

60

100

150

35

47

55

29

22

18

Multi resolution 640x480

60

100

150

11

14

18

120

91

66

The algorithm was tested on images available in the

Middlebury database [9]. Figure 10 shows the results using

different approaches of stereo matching. Figure 10 (c) and 10

(d) shows the output of multi-resolution and simple

correlation method where, multi-resolution accuracy is more

compared to simple correlation. Figure 10(f) shows the result

of the dynamic programming method, which takes care of

occluded, objects as well. Figure 10(e) is the result obtained

by SAD implementation, which is less accurate as compared

to the dynamic programming method.

We have tested our implementation on sample images from

Middlebury website [9].We have obtained high speed up as

compared to other implementations. We have obtained more

accurate results as compared to the methods mentioned in

Table 1. When the disparity is low we have very high

performance. However, as the value of disparity goes on

increasing the performance degrades. However, it still

provides the performance for real time applications.

Fig 9: Performance Comparison of different techniques mentioned in Table 2

 (a) (b) (c)

 (d) (e) (f)

Fig 10: (a) Input left image (b) ground truth (c) multi resolution (d) simple correlation(e) SAD (f) Dynamic programming

9. CONCLUSION
Different implementations of stereo matching algorithm on

GPGPU have been discussed in this paper. Correlation based

method for stereo matching is simple and data parallel. This

paper gives comparative analysis of different implementation

of correlation method on CUDA and the impact of these

methods on performance is discussed. Performance of global

memory implementation is slower than shared memory

implementation by a factor of 10. Texture fetch did not result

in faster execution as opposed to the expectation because of

the reasons explained in implementation section. Finally, to

achieve high performance and better accuracy, multi-

resolution method is used. This implementation resulted in

very high speed up (6 times compared to shared memory

implementation) and also provides better accuracy over the

traditional correlation methods. The performance analysis has

0 20 40 60 80 100 120

CUDA Multi resolution

Progressive Multi-Resolution[7]

Efficient Large-Scale Stereo Matching[6]

Real time stereo- Dynamic Programming [12]

Dynamic Programming approach [13]

real time stereo- FPGA [14]

real time stereo- GPU [14]

performance in fps

m

e

t

h

o

d

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

54

been done for these methods and it is found that the method of

stereo matching using multi-resolution images gives better

accuracy as compared to others and also gives real time

performance. In addition, multi resolution method on CUDA

outperforms most of the implementations available in

literature. The reason behind this speedup is the optimization

provided by multi resolution concept and the GPUs massive

parallel processing power. The performance of the multi

resolution method can be compared to the implementations on

GPUs and FPGA as mentioned in the literature. However, in

the FPGA implementation the algorithm cannot be

implemented beyond a particular value of disparity.

Therefore, we can say that the GPU’s massive processing

power can provide dramatic change in data parallel

algorithm’s performance.

10. ACKNOWLEDGMENT

Our sincere thanks to the CREST team in KPIT, Pune, India,

and LG-PRI team in South Korea, for their support to improve

the quality of this paper. This project was partially funded by

LG Inc., South Korea.

Table 2.Performance Comparison

Method Image Size Disparity Performance (fps)

CUDA Multi resolution 640x480 150 66

Progressive Multi-Resolution

Adaptive Windows [7]
800x600 250 60

Efficient Large-Scale Stereo Matching[6] 1382x512 100 2

Fast Stereo Matching Method [2] 512x512 60 0.25

Multi resolution scheme for stereo correspondence using correlation

techniques [3]
320x240 60 0.2

Real time stereo by Dynamic Programming [12] 640x480 128 5.38

Dynamic Programming approach to high frame rate stereo correspondence.

A pipelined architecture on FPGA [13]

640x480

(pipe)

640x480

(ppipe)

128

128

99.20

49.24

Comparison of FPGA and GPU implementation for real time stereo vision

[14]
640x480 128

GPU – 55

FPGA- 80

 (a) (b) (c)

 (a) (b) (c)

 (a) (b) (c)

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

55

 (a) (b) (c)

Fig 10: a) Input left image b) Ground truth c) Disparity map by multi resolution algorithm

11. REFERENCES
[1] Sunil Kumar, K., Desai, B., U. 1994.“New Algorithm for

3D Surface Description and Binocular Stereo Using

Integration”,journal of Franklin Institute, Volume 331,

Issue 5, September 1994, Pages 531–554.

[2] Sun, Changming.1997.Fast Stereo Matching Method.In

Digital Image Computing: Techniques and Applications.

[3] Satorre,Rossana.,Compan, Patricia., Botia, Antonio.,

Rizo, Ramon.Multi Resolution Scheme for Stereo

Correspondence using Correlation Techniques.

University of Alicante.

[4] Zhu, Ke.,Butenuth, Matthias., D’Angelo, Pablo.2010.

Comparison of Dense Stereo Using CUDA.ECCV,

Workshop `Computer Vision on GPUs´.

[5] Congote, John.,Barandiaran, Javier., Barandiaran, Inigo.,

Ruiz, Oscar.2009. Real Time Dense Stereo Matching

with Dynamic Programming in CUDA.CEIG’09, San

Sebastián.

[6] Geiger, Andreas.,Roser, Martin., Urtasun, Raquel.2010.

Efficient Large Scale Stereo Matching. In

ProceedingACCV'10 Proceedings of the 10th Asian

conference on Computer vision - Volume Part I, Pages

25-38.

[7] Zhao, Yong.,Taubin, Gabriel.“Real Time High

Definition Stereo on GPGPU using Progressive Multi

Resolution Adaptive Windows”, Journal Image and

Vision Computing, Volume 29 Issue 6, May, 2011,

Pages 420-432.

[8] NVIDIA Corporation., 2008. NVIDIA CUDA

Programming Guide. Technical Report. California. USA.

[9] Middlebury Stereo Website (05.2010).

(http://vision.middlebury.edu/stereo/).

[10] Kimura, Yoshikatsu., A Stereo Matching Method using

Multi Resolution Images. R&D Review of Toyota CRDL

Vol. 36 NO.1 (2001.3).

[11] Sun, Jian., Li, Yin., Bing Kang, Sing., Shum, Heung-

Yeung. 2005. Symmetric Stereo Matching for Occlusion

Handling in proceedings CVPR '05 Proceedings of the

2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR'05) - Volume 2 -

Volume 02, Pages 399 – 406.

[12] Forstmann, Sven.,Kanou, Yutuka., Ohya, Jun., Thuering,

Sven., Schmitt, Alfred.2004. Real Time Stereo by

Dynamic Programming, in Computer Vision and Pattern

Recognition Workshop, 2004.CVPRW '04.

[13] Sabihuddin, Siraj., Islam, Jamin., MacLean, James. W.

2008.Dynamic Programming Approach to High Frame

Rate Stereo Correspondence: APipelined Architecture

Implemented on a Field Programmable Gate Array, in

Electrical and Computer Engineering,CCECE’08.

[14] Kalraot, Ratheesh., Morris, John.2010. Comparison of

FPGA and GPU Implementation of Real Time Stereo

Vision, in Computer Vision and Pattern Recognition

Workshops (CVPRW), IEEE Computer Society.

