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ABSTRACT 

Stereo matching technique is used to estimate the depth of 

objects in an image acquired from real time scenes. The basic 

algorithm is not very complex but is computationally 

exhaustive and hinders its usage for real time applications. 

However, this algorithm is highly data parallel and it highly 

suitable for execution on GPGPU (General-purpose graphical 

processing units). In this paper, we are proposing the parallel 

implementation of the fast stereo matching algorithm based on 

correlation of multi-resolution images using CUDA (Compute 

Unified Device Architecture). The performance of this 

implementation is faster than most of the software 

implementations of this method and comparable with FPGA 

implementation and few other optimized methods mentioned 

in the references. This enables the real time usage of stereo 

matching method. We have also provided performance 

comparison and results for different methods of stereo 

matching on CUDA. The paper concludes with analysis of 

results and the reasons of the performance variations. We 

have also given qualitative image data for comparison of 

accuracy of different stereo correspondence methods. 

Keywords 

Correlation; Multi-Resolution images; CUDA; Stereo 

matching. 

1. INTRODUCTION 
There is a continuous need for increase in processing power to 

reduce the execution time of computationally exhaustive 

algorithms. Thus, many chip manufacturers are coming up 

with different architectures for processors to match the 

challenge posed by the applications. GPUs (Graphical 

Processing Units) were mainly used for gaming and imaging 

applications and not for the general-purpose computations. 

NVIDIA had come up with a new technology called CUDA 

(Compute Unified Device Architecture) by adding simple C 

like APIs along with architectural changes to support these 

APIs. These APIs resulted in easy programming on these 

GPUs for general-purpose computation. The current available 

GPUs have around 512 cores (NVIDIA Tesla architecture) 

which can be used for high performance on data parallel 

algorithms.  

The stereo matching algorithm is used to find the depth of 

objects from the reference point in an image taken from real 

scene. Major applications of stereo matching are in the field 

of robotics, 3D scene reconstruction, 3D television. The 

distance of particular object is determined by computing the 

disparity map. Correlation based stereo matching is one of the 

simplest methods for getting disparity map but it is 

computationally exhaustive and takes a lot of time to produce 

results. Hence, in its original form correlation based method 

cannot be used for real time operations.  Correlation based 

method is highly data parallel and suitable candidate for 

CUDA implementation to get speed up. Additionally, an 

implementation using multi-resolution images helps to reduce 

the time of execution further. When this method is 

implemented on GPGPU, it achieves real time performance. 

This paper talks about implementation of different stereo 

matching methods using CUDA and comparison of the 

performance data on various images. 

2. RELATED WORK 
All accelerating the stereo correspondence method is 

mainstream research in this area and many papers have been 

published in stereo matching algorithm describing the 

methods to reduce execution time and using available 

parallelism. K.Sunil Kumar and U.B. Desai [1] have 

developed an approach to integrate different modules in stereo 

matching, which include feature extraction, matching, and 

interpolation. Because this method is computationally 

expensive, they have developed a multi resolution approach to 

solve the problem. Changming Sun [2] has implemented a 

method of reducing the computation time of the algorithm by 

modifying the formulae for calculating the variance and co-

variance. Also, he has used the concept of multi-resolution 

images for improving the accuracy of the disparity map. This 

method also helps to reduce the computational time. Ke Zhu, 

Matthias Butenuth and Pablo D’Angelo [4] have discussed the 

implementation of local and global dense stereo matching 

method in their paper. They have explained the tradeoff 

between the accuracy and execution time on the GPU. They 

have also discussed different parallelization strategies for 

improving the performance. John Congote, Javier 

Barandiaran, InigoBarandiaran and Oscar Ruiz [5] have 

proposed a different implementation of stereo matching using 

dynamic programming to calculate the dense depth maps 

using CUDA architecture and achieved real time performance 

on GPU. They have compared the timing analysis of their 

implementation against CPU implementations and explained 

the scalability property by testing their implementation on 

different GPUs. Andreas Geiger, Martin Roser and Raquel 

Urtasun [6] have explained a novel approach to stereo 

matching of high resolution images. They form a group of 

supportive points and these points are robustly matched for 

finding the disparities. This allows the exploitation of 

disparity space and yields accurate dense reconstruction. 

Yong Zhao, Gabriel Taubin [7] have used progressive multi 

resolution pipeline, which includes background modeling and 

dense matching with adaptive windows. Their approach is 

mainly used for applications where moving objects are of 

interest. They have achieved 60 frames per second (fps) on an 

800*600 video. Yoshikatsukimura [10] has developed a 

driving support system for safety purpose. Images from a 

camera on the vehicle are used to capture image and stereo 

matching algorithm is used to provide the distance 

information. He uses the multi resolution images and provides 
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the distance information. Jian Sun, Yin Li, Sing Bing Kang 

and Heung-yeung Shum [11] have proposed a method to deal 

with occlusion in dense two frames stereo. They have 

incorporated the visibility constraint in an energy 

minimization framework resulting in a stereo model that treats 

both the left and the right image equally. They use an iterative 

method to determine the minimum value of the energy using 

belief propagation. Sven Forstmann, Yutaka Kanou, Jun 

Ohya, Sven Thuering and Alfred Schmitt [12] have 

implemented stereo matching using dynamic programming to 

achieve real time performance. They have used coarse to fine 

scheme and the MMX extensions in the hardware to increase 

the speed. SirajSabihuddin, JaminIslam and W. James 

MacLean [13] have provided a hardware implementation to 

the stereo matching problem. They have used a pipelined 

architecture i.e. FPGA, which gives almost 200 fps (frames 

per second) performance. RatheeshKalarot and John Morris 

[14] have compared the performance of stereo matching 

algorithm on GPU and FPGA. They have shown that 

performance of stereo matching on FPGA is very good. 

However after a certain disparity value, the FPGA 

implementation does not work.  

    Our paper is to showcase the performance achieved by 

using multi resolution method and to compare the 

performance with other similar implementations. The fps 

achieved by this paper is very high and it is comparable with 

some of the hardware implementations available in the 

literature.  Our implementation is software implementation 

and hence it is not restricted to any disparity range and is 

flexible. 

 

Fig 1: GPGPU Architecture 

3. NVIDIA CUDA 
GPUswere earlier used to get high quality graphics in gaming 

applications. In 2007, NVIDIA introduced a new architecture 

called CUDA (Compute Unified Device Architecture) to 

enable GPU usage for general-purpose computation. CUDA 

provided top level APIs to make program development for 

GPGPUs easier in order to utilize massive parallelization 

powers of GPU. 

Figure 1 shows the hardware architecture of NVIDIA GPGPU 

[8].  The architecture consists of array of multiprocessor 

called symmetric multiprocessor (SM), each having its own 

shared memory and stream processors (SP). NVIDIA GTX 

480 has 15 SM and each SM contains 32 SPs. The code is 

dispatched from CPU to the thread execution manager, which 

schedules these threads to cores. Hence, user is freed from the 

burden of writing code and scheduling it for load balancing. 

Each core can run multiple threads at the same time and hence 

can produce exceptional speed up required for high 

performance computation. Every SM can access large chunk 

of memory called global memory. Global memory size is 

huge but its performance is low as compared to shared 

memory.  Hence, the memory management affects the GPU 

implementation throughput heavily.  An application written 

using CUDA can be seen as a host program which runs on 

CPU in addition to a 'kernel' which is run by multiple threads 

at the same time on different cores of GPGPU. Threads are 

executed in groups, which are called as 'blocks'. Grid is the 

collection of blocks to be executed on the device. Multiple 

threads execute the kernel code at the same time. CUDA 

architecture provides different types of memories like global, 

shared, texture and constant. Performance of the CUDA code 

largely depends on how well the architecture of the GPU 

hasbeen exploited. Some of these techniques are discussed in 

the implementation section. 

4. STEREO MATCHING 

In this paper, we have described stereo matching using 

correlation. The disparity map generated as output of the 

algorithm enables to find distance of the object from the 

reference plane. There are two images viz. left and right 

image of the same environment taken from different camera 

angle. For every pixel in the left image we try to find 

corresponding pixel in the right image. The displacement of 

the pixel position in the right image from the pixel position in 

the left image gives the disparity for that particular pixel. 

Disparity map is a set of disparity values of each point in left 

image from right image. 
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Fig 2: Pixel position in left and right image 

As shown in the Figure 2, we are considering the pixel 

highlighted in the left image and trying to find the pixel in the 

right image, which has the maximum correlation with pixel 

under consideration. The corresponding matching pixel in 

right image is highlighted in Figure 2. Thus, distance between 

the pixels in the left and right image gives the disparity of 

particular pixel of left image. Let ‘L(i,j)’ represent any pixel 

in the left image and ‘R(i,j)’ represent any pixel in right 

image. Let Co(i,j) represent the correlation value, Cov(i,j) be 

the covariance, Var(i,j) be the variance, La be the mean value 

for the left image and Ra be the mean value for the right 

image, then we can find correlation by[2]. 

Co(i,j)(L,R) =   
)Var(i,j)(R)Var(i,j)(L

,R)Cov(i,j)(L

*
(1) 
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The variance and co-variance takes a lot of time to compute as 

per equation (2), (3) and (4). Hence, it needs modifications 

(optimization) to reduce the computational time. The modified 

form of covariance and variance [2] is shown by equation (5) 

and (6) respectively. 

Cov(i,j)(L,R)=  









Wli

Wlim

Wwj

Wwjn

ndmRnmL ),(*),( - 

                                     (2*Wl+1)*(2*Ww+1)La*Ra(5) 

 

(5) 

Var2
(i,j)(L)=  









Wli

Wlim

Wwj

Wwjn

nmL ),((
2 – 

(2*Wl+1)*(2*Ww+1)La(6) 

 

(6) 

                               

Fig 3: Correlation by single thread for each pixel

An exhaustive search is performed on the right image until the 

maximum value of correlation is not found for the particular 

pixel. However, this search is limited to the maximum value 

of disparity set. The correlation can be performed by using 

kernels of different sizes viz. 3*3, 5*5, 7*7. This algorithm is 

highly data parallel. The correlation of each pixel can be 

computed with a single thread and hence all the pixels can be 

computed in parallel. In addition, computation of the disparity 

for each pixel can be performed in parallel. 

5. STEREO MATCHINGUSING 

CORRELATION 

In this section, we will describe different parallelization 

strategies and architectural optimization applied to the 

correlation method on CUDA to improve the performance. 

5.1 Global Memory Implementation 

In the first method, we load both the left and right images in 

the global memory. A correlation window is chosen for e.g. 

3*3 and parallel threads compute correlation of each pixel in 

left image with multiple pixels in right image. Each thread 

fetches values from the left image in the correlation window 

and performs correlation with the corresponding pixels from 

the right image. The values of correlation are calculated for 

one pixel in the left image by shifting the correlation window 

in the right image. Figure 4 explains the movement of the 

correlation window for right image. The correlation is 

calculated using equations (1)-(6). The amount of shift of the 

window in the right image is determined by fixing the 

maximum allowed disparity in advance. 
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Fig 4: Movement of correlation window for the pixel under consideration 

Each thread stores the maximum value of correlation 

computed by comparing it with the previously calculated 

values and stores the distance at which the maximum value is 

obtained. The value of the distance gives us the disparity map 

for the image. Disparity map is used to determine the distance 

of the object from the reference plane by using other 

information related to camera positions. This implementation 

is simple and results in high speed up compared to the CPU 

implementation but global memory access is very slow and 

hence overall speed up is not up to the mark. 

5.2 Shared Memory Implementation 

In the second method, we store the left image in the shared 

memory and the right image is fetched from the global 

memory. The advantage of the second method over the first is 

that, in the left image there is memory access repetition. 

Fetching values from shared memory is very fast and results 

in reduction in execution time. Right image cannot be stored 

in shared memory because number of pixels to be fetched 

from the right image exceeds the maximum storage capacity 

of shared memory. Thus, the values to be computed from the 

right image would have to be fetched from the shared memory 

of other blocks (non-coalesced memory access) which would 

take more time to fetch. The execution of correlation is the 

same as that explained in the previous implementation. Each 

thread is used to compute the correlation values of single pixel 

and to calculate its disparity value. A speed up of almost 8 to 

10 times is obtained by utilization of the shared memory for 

storing the left image. 

5.3 Shared Memory and Texture Fetch 

Implementation 

 In this approach of implementing stereo matching algorithm 

using correlation, we can make use of texture memory 

available in the GPGPU. Fetching data from texture memory 

is advantageous when there is a fixed pattern of data access. 

This implementation makes use of 1D texture for storing the 

image. Here, we store the left image in the shared memory 

and the right image in the texture memory. We make use of 

1D texture fetch to get the values. The reason for using 1D 

fetch is because of the need of the algorithm. The values to be 

used for correlation from the right image for a pixel in the left 

image are along the row in which the pixel lies. The method 

to find the correlation is similar to that explained in previous 

section. Each thread is used to calculate the disparity of a 

single pixel in the left image. Thus, all the pixels are 

computed in parallel. The difference is just that the values are 

fetched from shared memory and texture memory for left and 

right image respectively. The performance of this 

implementation is low as compared to the 

previousimplementation where the right image is stored in the 

global memory. This is because the values to be fetched are 

not located within the same block (non-coalesced memory 

access). Thus, we have to fetch it from other blocks, which 

cause the delay in fetching it. 

6. DYNAMIC PROGRAMMING 

METHOD 

Dynamic programming method for stereo matching falls 

under semi global method as it considers the cost of 

neighboring pixels for cost computation of current pixel. 

Dynamic programming is NP hard problem.  

Consider, Il – left image and Ir – right image 

6.1 Cost computation and aggregation 

For each pixel of one scan line, cost matrix Ds is with size 

WxDmax is created where W is width of image and Dmax is 

maximum allowed disparity. 

Ds(x,d) = SAD(x,d) + min(Є + Ds(x-1, d-1), Ds(x-1,d),  

Є+ Ds(x,d+1)) 

(7) 

Where, SAD(x,d)  = abs(Il(x,y) – Ir(x+d,y)) 

and y - scan line 

(8) 

6.2 Minimum path computation 

Once Ds is created for each scan line, it is traversed from end 

and min cost path is followed. Based on the min path, 

disparity for each pixel in a particular scan line is computed. 

This is explained with the help of following pseudo code.In 

this process, the path is stored in one variable which can be 

used for disparity map computation. We are not discussing the 

CUDA implementation of dynamic programming in detail 

because it is out of the scope of this paper. This 

implementation was running at 28 fps. 

m = width and n – Dmax 

 

while( m != 1 && n != 1) 

{ 

 Min = min(Up, Upleft, Left)   

 If min == Up 

  N -- 
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 If min == Left  

 m--     

 if(min == Upleft) 

 n— 

 m--  

} 

 

7. MULTI RESOLUTION METHOD 

The methods discussed in earlier sections provided good 

speed up and dynamic programming method provided better 

results, still, the results are not meeting the real time criteria. 

Hence, we make use of multi-resolution [10] images along 

with correlation for obtaining more accurate results and better 

speed up. In this method, initially we reduce the size of the 

image to half. 

This reduction of image size as shown in Figure 5 is a 

complete data parallel method. In this, we fetch three pixels 

from the image and take their mean. These mean values are 

then stored. Figure 6 explains the computation of reduction. 

 

Fig 5: Reduced size of image 

Numbers of threads released are equal to the number of pixels 

in the reduced image. Then we perform correlation on the 

reduced image. As the image size is reduced to half, execution 

time also reduces considerably. The correlation technique 

used is similar to that explained in the previous sections. The 

left image is stored in the shared memory and the values from 

the right image are fetched from the global memory (Best 

possible combination based on performance measurement). 

Using equations (5) and (6) for finding the variance and co-

variance, time taken reduces further (optimization to reduce 

the computation).At the end of this computation, the disparity 

map of half size image is obtained. After getting this value, 

maximum disparity value is determined from disparity map of 

half size image. This can be done using reduction method in 

CUDA. Reduction method calculates local maxima of small 

CUDA blocks. At the end, global maximum is obtained by 

using local maxima obtained by previous step. The disparity 

map obtained is interpolated to the size of the input images. 

The interpolation is calculated by the equation (7). This 

process is data parallel. Initially, the values in the disparity 

map obtained from the reduced images are placed over a 

matrix of double its size. 

To calculate interpolation on CUDA, we release threads equal 

to the product of height of the input image and half the width. 

Now, we fill in the gaps width-wise first. Therefore, each 

thread computes value for each unfilled pixel. Interpolation is 

calculated using equation (9). Once the rows are filled, then 

the columns are filled following similar manner. Let us call 

the input image is at level 0 and image with half size at level 1 

and so on. p(i,j)L is the position of a pixel at level L  and d(p) 

be the disparity of that particular pixel. 

                                              

Fig 6: Computation of one pixel value of reduced image by single thread 

                 

Fig 7: Interpolation of reduced image to original size 
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Afterwards, we make use of the interpolated disparity map 

(d(p)L ) along with the disparity map obtained for the reduced 

image and find the cost function. The cost function makes use 

of the correlation values obtained from the left and right input 

images. Let Ci,j be the cost function and Coi,j be the 

correlation values. Let DmL be the maximum value of 

disparity obtained at level L. then the cost function [3] can be 

given by equation (10). 

Where d(i,j)L is the disparity value of level L and d(i,j)L-1 is 

the disparity value of level L-1. By multiplying the cost 

function with the interpolated disparity map, we obtain the 

actual disparities for the input images. 

d(p)L = d(p)L-1 

+
))(,()1)(,1(

))(,()1(

LjipLjip

LjipLp



 *(d(p(i+1,j)-d(p(i,j)))) 
(9) 

Ci,j  =    Coi,j   +   
DmL

LjidLjid |1),(),(|   (10) 

This method of implementation takes very less execution time 

and gives better and accurate results. A speed up of 

approximately 8 times as compared to the shared memory 

implementation is obtained. 

8. RESULTS DISCUSSION 

This section will discuss the performance of all of the 

methods discussed so far and some of the fast 

implementations available in literature.  We have used 

NVIDIA GTX 480 on Intel dual core system for all these 

experiments. VGA image is used as input (from Middlebury 

website [9]) and performance is measured by varying the 

maximum disparity range. The block size chosen is 16x16 and 

the size of the correlation window is set as 7x7. Execution 

time is directly proportional to the maximum allowed 

disparity because, as the disparity range increases, number of 

pixels to be considered for correlation of a single pixel 

increases. When global memory is used, the pixels are fetched 

from global memory. As the global memory access is slow, 

performance is not very good. In the second method, shared 

memory access is used which gives 10 times better 

performance compared to the global memory implementation. 

Table 1 lists fps achieved using these techniques. Texture 

fetch in general is fast. However, the values to be fetched 

from the texture memory are not limited to the block size 

(non-coalesced memory access). Hence, texture fetch is also 

not improving the performance much as shown in Table 1. 

The first three methods do not meet the real time performance 

criteria. Dynamic programming is a different and fast 

approach to stereo matching as mentioned in previous section. 

However, it gives almost real time performance, which is 

around 30 fps. The multi-resolution method is the most 

efficient method giving more accurate results and real time 

performance. Multi-resolution method gives 3 times better 

performance compared to the dynamic programming method 

and 6 times better compared to correlation method using 

shared memory.  

      Table 2 gives details of the performance comparison of 

different methods available in literature. The multi-resolution 

implementation gives real time performance and proves to be 

faster than the state of art implementations present today. The 

progressive multi resolution implementation also gives real 

time performance. The progressive multi resolution method is 

used only for foreground objects and achieves 60 fps at 250 

disparities as shown in Table 2. In our multi-resolution 

implementation, we find the disparity of the entire input 

image. Even though it processes the entire image, it gives real 

time performance (maximum 120 fps for maximum disparity 

60 and 66 fps for Dmax - 150). Few other methods involving 

hardware implementation on FPGA is also included in Table 

2. These methods perform better than the CUDA 

implementation proposed by us but lack in flexibility provided 

by software implementation. Also one of the papers suggests 

that FPGA implementation for disparity more than 256 is not 

feasible [14]. 

 

Fig 8: Comparative graph of different techniques 

Disparity 

Time for execution       

              (fps) 
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Table 1.Performance comparison of different methods 

Method 
Image 

size 

Disparity 

Range 

Time 

(ms) 
FPS 

Correlation 

(Global 

Memory) 

640x480 

60 

100 

150 

800 

1100 

1400 

1.25 

0.9 

0.71 

Correlation 

(Shared 

Memory) 

640x480 

60 

100 

150 

70 

95 

120 

15 

11 

9 

Correlation 

(Texture fetch) 
640x480 

60 

100 

150 

120 

165 

200 

9 

6 

5 

Dynamic 

Programming 
640x480 

60 

100 

150 

35 

47 

55 

29 

22 

18 

Multi resolution 640x480 

60 

100 

150 

11 

14 

18 

120 

91 

66 

 

The algorithm was tested on images available in the 

Middlebury database [9].  Figure 10 shows the results using 

different approaches of stereo matching. Figure 10 (c) and 10 

(d) shows the output of multi-resolution and simple 

correlation method where, multi-resolution accuracy is more 

compared to simple correlation. Figure 10(f) shows the result 

of the dynamic programming method, which takes care of 

occluded, objects as well. Figure 10(e) is the result obtained 

by SAD implementation, which is less accurate as compared 

to the dynamic programming method. 

We have tested our implementation on sample images from 

Middlebury website [9].We have obtained high speed up as 

compared to other implementations. We have obtained more 

accurate results as compared to the methods mentioned in 

Table 1. When the disparity is low we have very high 

performance. However, as the value of disparity goes on 

increasing the performance degrades. However, it still 

provides the performance for real time applications.

 

Fig 9: Performance Comparison of different techniques mentioned in Table 2 

 
                      (a)                           (b)                             (c) 

 
                                                                     (d)                              (e)                               (f) 

Fig 10: (a) Input left image (b) ground truth (c) multi resolution (d) simple correlation(e) SAD (f) Dynamic programming 

9. CONCLUSION 
Different implementations of stereo matching algorithm on 

GPGPU have been discussed in this paper. Correlation based 

method for stereo matching is simple and data parallel.  This 

paper gives comparative analysis of different implementation 

of correlation method on CUDA and the impact of these 

methods on performance is discussed. Performance of global 

memory implementation is slower than shared memory 

implementation by a factor of 10. Texture fetch did not result 

in faster execution as opposed to the expectation because of 

the reasons explained in implementation section. Finally, to 

achieve high performance and better accuracy, multi-

resolution method is used. This implementation resulted in 

very high speed up (6 times compared to shared memory 

implementation) and also provides better accuracy over the 

traditional correlation methods. The performance analysis has 
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been done for these methods and it is found that the method of 

stereo matching using multi-resolution images gives better 

accuracy as compared to others and also gives real time 

performance. In addition, multi resolution method on CUDA 

outperforms most of the implementations available in 

literature. The reason behind this speedup is the optimization 

provided by multi resolution concept and the GPUs massive 

parallel processing power. The performance of the multi 

resolution method can be compared to the implementations on 

GPUs and FPGA as mentioned in the literature. However, in 

the FPGA implementation the algorithm cannot be 

implemented beyond a particular value of disparity. 

Therefore, we can say that the GPU’s massive processing 

power can provide dramatic change in data parallel 

algorithm’s performance. 
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Table 2.Performance Comparison 

Method Image Size Disparity Performance (fps) 

CUDA Multi resolution 640x480 150 66 

Progressive Multi-Resolution 

Adaptive Windows [7] 
800x600 250 60 

Efficient Large-Scale Stereo Matching[6] 1382x512 100 2 

Fast Stereo Matching Method [2] 512x512 60 0.25 

Multi resolution scheme for stereo correspondence using correlation 

techniques [3] 
320x240 60 0.2 

Real time stereo by Dynamic Programming [12] 640x480 128 5.38 

Dynamic Programming approach to high frame rate stereo correspondence. 

A pipelined architecture on FPGA [13] 

640x480 

(pipe) 

640x480 

(ppipe) 

128 

128 

99.20 

49.24 

Comparison of FPGA and GPU implementation for real time stereo vision 

[14] 
640x480 128 

GPU – 55 

FPGA- 80 
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Fig 10: a) Input left image b) Ground truth c) Disparity map by multi resolution algorithm 
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