
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

17

A Review of Parallelization Tools and

Introduction to Easypar

Sudhakar Sah

Symbiosis Institute of Research & Innovation (SIRI)
Pune, India

Vinay G. Vaidya
Symbiosis Institute of Research & Innovation (SIRI)

Pune, India

ABSTRACT

Multicore processors have paved the way to increase the

performance of any application by the virtue of benefits of

parallelization. However, exploiting parallelism from a

program is not easy, as it requires parallel programming

expertise. In addition, manual parallelization is a

cumbersome, time consuming and inefficient process. A

number of tools proposed in the past ease the effort of parallel

programming. This paper presents a classification of such

parallelization tools. The classification is based on different

eras of tool development, role playedby these tools in various

parallelization stages, and features provided by parallel

program assistance tools. Classification of tools concludes

with a discussion on requirements of futuristic parallelization

tools. Finally, this paper proposesour on-going work about the

development of a parallel program assistance tool called

EasyPar, which is a parallel program assistance tool.

General Terms

Parallel Processing, Parallelizing Compilers, Multicore

Keywords

Interactive Parallelization, Parallel Program Assist, Automatic

Parallelization, Parallel Programming Tools, Multicore.

1. INTRODUCTION
Parallel programming is not a new concept. In fact, it started

in early 1970s and handful of techniques proposed during that

time are still used [1], [2],. Now, the question does arise in

one’s mind, why is the research focus back on parallel

programming aftermany decades?. Surprisingly, now the

amount of research is much more as compared to its early

1970s research efforts. The answer to this question is that

today general programmers need parallel programming, as

opposed to scientific researchers in the early days.Need of

parallel architecture such as multicore arose due to the

limitations in increasing the clock speed of processorsas per

the famous Moore’s law [3]. The underlying reason of this

limitation is that the heat dissipation increases proportionally

or more by increasing clock speed for constant chip area.

Therefore, the chip manufacturers came up with the multicore

processor having more than one core fabricated on the same

silicon chip. The introduction of multicore theoretically

enabled the speed of a processor by the multiple of number of

available cores. However, invention of multicore processor

further complicated the scenario [4] as most of the legacy

application iswritten in sequential manner and hence are

incapable to utilizing the true power of multicore. This

limitation demands the use of parallel programming.

Unfortunately, most of the programmers are naïve or unaware

of parallel programming concepts [5]. Parallel programming

training is not feasible from cost and time perspective.

Therefore, there is a growing need of tools that can assist in

parallel programming. A number of tools and techniques are

available in literature which targets to ease the parallel

programming. This paper provides a brief review of existing

parallel programming tools. This paper contributes to the

classification of existing tools based on three aspects. First

classification is based on whether the tool was developed

before or after the invention of multicore. We will make it

clear during the review of these tools that there was a

fundamental difference in the way researchers thought, before,

during,and after the multicore era. Program parallelization is a

stepwise process, as explained in section 3. The second

classification places these toolsaccording to theircontribution

during the process of parallelization. Garcia et. al. [6], [7], [8],

have presented similar but limited review and classification of

such tools. However, this review includes most of the

relevant tools proposed in recent times as well as significant

older tools. In addition, these tools are sub classified based on

the parallelization technique; i.e. it supports loop

parallelization, task parallelization or both. The third and final

classification is based on whether the tool provides parallel

programming assistance or not. Section 3 discusses features

and demerits of some of the important tools, and based on the

discussion, we presentthe viewpoint on the requirement of

future parallelization tools. This paper concludes with

explanation of the ongoing work on a tool called EasyPar[9],

[10]. EasyPar is a parallel programming assistance tool that

helpsdevelopers at the time of program development. We

discuss the challenges in the development of tool such as

EasyPar. Finally, methodsto overcome these challenges is

proposed.

2. PARALLELIZATION TECHNIQUES
Parallelization can be achieved in many different ways as

shown in Table 1. This section, presents an overview of these

techniques in this section. Table 1 also compares these tools

qualitatively based on the time required for parallelization,

learning efforts, and efficiency of generated parallel code.

2.1 Automatic Parallelization
Automatic parallelization,[25], [27], [30], [31], [32], [33],

[39], [43], [45], [51], [89] , [98] as the name suggests

adaptstechniques that accept a serial source code and returns a

fully parallelized source code. An intelligent analysis engine

[7], [8] [58], [82], running in the background does the trick of

parallelization. The intelligent engine includes static analysis

of code fordata dependency [59] check among different code

segments. The dependencecheck depends upon the code

semantics and it creates the groupof code segments

withpossibility of concurrent execution. Although, the

technique looks attractive and fascinating, it has inherent

limitations associated with coding style. First reason is that

such tools check for program semantics and not the core logic

of the program (which itself is an open research problem –

“Optimistic parallelism requires abstractions” by Kulkarni

[60]). Therefore, parallelization achieved by the use of this

technique is limited and it misses many possible

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

18

parallelization opportunities. Another limitation of automatic

parallelization tools is that it is limited to target language,

features, platform etc. Nevertheless, automatic parallelization

is very important because it requires less time to convert the

sequential code to parallel code. In addition, it removes the

burden of parallelization fromprogrammer. The degree of

parallelization achieved using this technique solely depends

upon the code and the intelligence of the analysis engine.

Ryder [22] et al has provided a brief review of the work done

in compile-time program analysis.

Table 1:Classification of parallelization techniques

2.2 Semiautomatic Parallelization
Semiautomatic parallelization techniques[7], [8],[44], [62],

[73], [74], [75],[77],[78], [82],[86], [88], [91] do not provide

end-to-end code parallelization option. Such techniques do not

believe in using the application asa black box for

parallelization. It requiresvital information about the

application/code from the programmer or user in order to take

critical parallelization decisions such as, loop count,

information about variable usage, branch prediction

information and so on. Such information may not be available

during static analysis of code (used for automatic

parallelization). Parallelization decisionsthat rely on these

inputs increase the opportunity of exploiting parallelization.

This techniqueproduce the code with high degree of

parallelism compared to the automatic method. However, it

expects programmersto have limited knowledge of

parallelization and mapping those concepts to the program

logic. Such tools are very much useful when the program flow

depends predominantlyupon the user inputs. [29]

2.3 Parallel Programming Languages
Most of the automatic and semi-automatic tools work for

popular languages like C, C++, and FORTRAN etc. However,

these languages are inherentlynot suitable to write concurrent

programs. In the past, many programming languages have

been developed specifically to develop parallel codes. One of

the significant examples of such technique is functional

programming. Functional language is conventionally different

from other languages like C. The programming paradigm

allows writing parallel programseasily. Haskell[34], Erlang

[92], Cilk [93], Go [94] andScala [95] are few examples of

parallel programming languages. Few languages like Jade

[52] also provide the facility of machine independent parallel

programming.However, all of these languages require a

different approach to programming and it is hard for

programmers who are used to thinking and writing sequential

code to think parallel. Thus, these languages have not

progressed to the extent they should have.

2.4 Hardware Support
Conventional memory uses lock based mechanism and

processes can take exclusive lock of writable memory

locations. This prevents other processesthat require reading

from same memory locations to proceed further. This is true

even when the other process reads index where first process

writes. This is a huge bottleneck in concurrent programming

as many process remains in waiting state unnecessarily.

Transactional memory(TM) [35],[87],[96] provides an elegant

solution to this problem. It works on the concept of

transaction inherited from databases. Every process starts its

transaction (independent piece of task) by using private copy

of variables. After some time, all the processes check for

conflict situation. Conflict is a situation where one variable or

memory location has two different private values. In such

situation, processes roll back (cancel) the operation and repeat

it again. In case no conflict is detected, process commits

(completes). An advantage of transaction memory is that any

program can execute concurrently and TM will take care of

concurrent execution. However, the performance of program

penalizes in the presence of large number of conflicts. The

research in TM is still in infancystage and development of

hybrid TM (both software library for TM and hardware TM)

is in progress that will possibly make usage of TMpossible.

2.5 Parallel programming APIs
Apart from techniques mentioned above, many programming

APIs are available that support parallel program development.

Out of these, Message Passing Interface (MPI) [1] and Open

MP [2] are few of the most popular and older APIs. These

APIs expect programmers to identify the parallel program

segments and use the APIs for concurrent execution of

program. MCAPI from Multicore association [36] is a suite of

parallel programming APIs for multicore processors. CUDA

(Compute Unified Device Architecture)[37] isa programming

technique to harness massive parallel programming

capabilities of NVIDIA GPGPU (General Purpose Graphical

Processing Unit). CUDA provides specially designed APIs

along with the hardware support that makes parallel

programming easier and fruitful for data parallel programs.

IMAPCAR [20] is also data level parallel architecture that

uses C-like language to develop parallel programs.SWARM

[28] is another tool with programming APIs for multicore.

Intel has recently developed parallel programming APIs

called threading building blocks (TBB) [96] that provides

exclusive constructs to hide the multithreadingrelated burden

from user. Nevertheless, most of these APIs push the burden

of identification of concurrent code to the developer.

3. CLASSIFICATION OF

PARALLELIZATION TOOLS
Parallel programming tools are continuously evolving and the

evolution is highly influenced by the advancement in

hardware. We present three different classifications of parallel

programs in the review work. This sectionhighlights the basis

of theproposed classifications.

3.1Classification based on parallelization

stages
Parallelization process is a systematic process [6] (especially

automatic parallelization) as shown in figure 1. First stage of

the parallelization process is parallelization identification. The

code is parsed and analyzed (static or dynamic dependency

analysis [7], [8], [58], [82], [99]) to search for the code

sections that can be executed concurrently. Apart from

Technique Time Learning Parallelization

Automatic

Parallelization

Low Low Code

dependent

Semi-automatic

Parallelization

Moderate Moderate Code

Dependent

Assistance

tools

High High High

Hardware

Support

High High Very High

Parallel

Languages

High High Very High

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

19

dependency checks, profiling of code is also done to identify

hot spots. Hot spots are the sections of code where code

spends most of its time. Kremlin [6]is one of the most

important data dependence profiler developed in recent times.

This stage is most challenging and complex because of the

variation in code style, type of code, complexity of the

algorithm (static analysis finds it difficult [18]) and lack of

information available during code analysis (data values). This

stage builds the foundation of further stages and next stages

uses the data gathered during identification stage.

Fig 1: Stages of parallelization

Second stage of parallelization is parallelization enablement.

Concurrent code identified during the first stage needs to be

scheduled to execute on different cores/ processors.Enabler

schedules the concurrent code to different cores. It is achieved

by using thread mechanism provided by OS or using of the

shelf APIs like MPI [1], Open MP[2], TBB [96] etc. These

APIs provide simple interfaces and pragmas to take off the

burden of writing multithreaded code. Parallel code developed

until this point may not be optimal and there exists lot of

scope for improvement. In addition, parallelization is

achieved using first two stages without any code

transformation of the code. Code transformation technique

removes the dependency among code segmentsand increases

the possibility of concurrent execution. Prospector [91],

Kremlin[6], Intel Parallel advisor [72],

Cilkview[85]ParaAssist [38]and Alchemist [7]employ code

transformation techniques for improving parallelization

possibilities..

Parallel code generated using above mentioned

techniquesneedverification. The verification stagetests

whether behavior of parallel version of the code is exactly

same asthe serial version or not. This step may involve the

debugging of the parallel code. Tallet et al [83] has proposed a

method to measure the performance of multithreaded

program. Quartz [84] is another tool for performance tuning

of parallel programs. ThreadSanitizer [69], MS concurrency

visualizer [70], Chess [67], Racetrack [66], Ctrigger [65],

Perver, Prism [73], EasyPar[9],[10]and Kismet [79] helps in

verification and debugging of parallel codes. Figure 4

provides the list of tools based on parallelization stages.

3.2Classification based on the Era
We divide the development of parallelization tools into two

eras. We define the tools developed in these two eras as first-

generation (FGT) and second-generation tools (SGT).

3.2.1 First Generation Tools (FGT)
Development of First generation of tools happened before the

invention of multicore. Figure 2 shows a simple example of

loop level parallelization.Every element of array B is added

by 3 and the result is stored in an array A. Array C is

populated by a constant value returned by module(). Both of

these operations can be performed independent of iteration.

Such type of parallelization is termed as loop level

parallelization.

Distributed systems weremainstreamparallel hardware during

the development of FGTs. Since, there was a lot

communication overhead due to data transfer between

distributed machines;vectorization was popular concept at that

time. Vectorization is the technique, whichis used for loop

parallelization. Therefore, most of the parallelization tools

developed during FGT exploited parallelism offered by loops.

Another reason of focus of loops to exploit parallelism is that

parallel processing concept was used predominantly for

scientific applications and simulations. Most of these

applications needed repetitive computation on same data or

same function repeated for multiple times.Very few task

parallelization tools were developed during the first

generation.SUIF [25], [43], RawCC, Polaris [88], CAPO

[101], Para Assist[38],OpenMP [2], MPI [1]are some first

generation tools and most of them focus on loop level

parallelization. However, OpenMP and MPI APIs that enables

parallel code generation can also be used for task level

parallelization.

For(i=0;i<2000;i++) {

A[i]=B[i]+3; //iterations are independent

C[i]=module(3);

}

Fig 2: Loop level parallelization example

int main {

int i, j, k;

i=100;

j=5;

foo(&i); // i is modified in foo()

check(&i);// j is modified in check()

k=finalize(i,j); //dependent on foo() &

check()

}

Fig 3: Example of task level parallelization

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

20

Fig 4: Classification of Parallelization Tools

3.2.1 Second Generation Tools (SGT)
Parallellization tools development scenario completely

changedafter the invention of multi core. Multicore is shared

memory architecture. At present, most machines with 4 to 8

cores are available commonly, though for scientist

applications uses multicores with much more number of

cores. The shared memory architecture comes with an

advantage that the tasks can use common memory during

execution and this lead to the popularity of task level

parallelization. Therefore, programmers or researchers started

developing techniques and tools to divide the program into

concurrent tasks. These tasks may or may not be part of the

loops. As shown in figure 3, function foo() and check()

modifies values of variable i and j respectively. Therefore,

they are candidates for concurrent execution. However,

function finalize() updates values of both i and j, which makes

it impossible to execute concurrently with foo() and check().

Concurrent execution of functions or tasks (group of

statements) is knownas task parallelization.Kulkarni et. al.

talks about parallelization in irregular application [86] which

means both task and loop parallelization, specifically

application which is not easily parallelizable. Some of the

examples of such tools are AutoFuture [80], Prism [73],

Kremlin[6], EasyPar[7], Alchemist[7], VfAnalyst [74] etc.

Some of these tools are explained later in this section.

3.3Graphical Assistance Tools
According to the parallel programming tool categorization

given in section 1, one type falling under these categories

provides the information about program flow and/or

application flow graphically. This section explains techniques

that reduce the programmer’s burden by providing vital

program information graphically that can help to develop high

quality parallel code. Graph based interactive program

analysis tools arefurther dividedinto two categories based on

the information that it generates. [88]

• Static program information – Such tools display the

information about data structure, flow of data, data

dependency etc. This information helps developers to design

their parallel program better.

• Algorithm animation – Program information alone is not

sufficient to develop efficient parallel programs. Programmers

would rather appreciate tools that can provide some glimpse

of application graphically. Kulkarni et. al [60] believes that

optimistic parallelization requires abstractions, means

knowledge about the algorithm and not only the static

information.

A complete parallel program assistance tool requires above

two qualities to cater to the future multicore programming

requirements.

ParaAssist, Program visualization, IBM data explorer,

Animation Choreographer[40], Meander, DEEP [13], GRED

[14], Convit [46], VISO [48], I-Pigs [49] are first generation

graphical assistance tools and Kremlin, Alchemist, Prism,

Kismet, Easypar, Prospector[91]and Intel visualization tools

are some example of second generation tools providing

program visualization.

3.4 Summary of Classification
Figure 4 shows detailed classification of the parallelization

tools based on the three aspects presented in earlier sub

section. Tools listed in boxes with dotted and solid boundary

work onloop and task parallelization techniques respectively.

Tools supporting parallelization for a particular stage out of

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

21

the four mentioned earlier arelistedin boxes on right side at

the same level (loop and task level parallelization tools

separately). It is clear that very few tools were developed in

the first generation that supports the verification of generated

parallel code. Parallel program verification was done using

manual techniques except that in few tools like object based

parallel program assist [38]. This tool was specifically

applicable for object-oriented programs and it informs about

the side effect due to executionof concurrent program in

presence of data dependency.

Graphical assistance toolsusually work on semi-automatic

parallelization techniques. Such tools have two inherent

advantages. First, it gives complete insight about the program,

which helps programmer to write optimized parallel code;This

is not possible in case of automatic parallelization. Second

advantage of using such tools isthat their visual output and

online assistance, proves to a parallel programming trainer.

Graphical assistance tools gradually takes programmer to a

level where he or she can think of developing parallel code

from abstract level information about application [60].

Another classification not mentioned so far is the parallel

programming languages like functional programming, CUDA,

IMAPCAR etc. These languages are shown in the box having

double line boundary. These languages work in fundamentally

different way as compared to other sequential languages.

These languages allow us to write parallel program from

abstraction level instead of writing a program and then

convert it to its parallel counterpart.

Next section will explain some of the important tool t

mentioned in the tool classification.

4. PARALLEL PROCESSING TOOLS
This section discusses some of the existing parallelization

tools and techniques. We have divided this section into two

subsections. First subsection explains the tools and techniques

developed recently (after the invention of multicore, i.e.

second- generation tools). Second subsection explains some of

the tools developed during earlier decades. These tools may

not be in use as of today, however, it is important to discuss

the tools in brief because they are the basis of development of

second-generation tools. We have also mentioned the features

and limitations of each tool.

4.1 Second Generation Tools (SGT)

4.1.1Alchemist
Alchemist [7]is a novel data-dependency analysis and

profiling tool. It does not concentrate just on specific sections

of a code (e.g. loops),rather, it explores possibilityof

parallelism in all parts of the code. Alchemist does not rely on

any specialized hardware or software system support.

Alchemist also provides vital information about the code that

is required for decision related to parallelization. It also

performs code transformation to take care of WAW (write

after write) and WAR (write after read) dependency.

Therefore, it has the potential to help programmers in all four

stages of parallelization and it is applicable to both task and

loop parallelization.

4.1.2 DProf
DProfis a compiler driven approach for thread level

speculative (TLS [64]) parallelization. The main contribution

of DProfis a static model for TLS profitability that is used by

the compiler to select independent tasks. Compiler is used to

automatically perform the program dependent profiling. It

proposes the concept of dependence clustering (region of

iteration space having large independence window) and

independence window (set of consecutive iterations that are

independent of each other).

4.1.3 Prospector
Prospector [91] is a parallel program assistance tool especially

developed for parallelization of loops. Prospector presentsa

technique to reduce the loop level data-dependency by code

instrumentation. In contrast to most of the other tools, which

uses static dependence analysis, prospector uses the dynamic

data dependence profiling. Dynamic data-dependence analysis

technique has a limitation of scalability and it does not work

for programs with large memory footprint. Prospector has

used the compressive memory streams to handle this problem.

Prospector performs sophisticated analysis apart from loop

profiling to get accurate information about parallelization

benefits.

4.1.4 Coarse grain parallelization
Coarse grain parallelization technique [75], [97] is yet another

automatic parallelization technique. It has a distinction that it

searches for code level parallelization. Code is divided into

important segments that incudes loop, functions and others

(code segments containing memory references). This

technique uses the dynamic data dependence analysis.

4.1.5 LoopSampler
LoopSampler [81] Identifies potential parallelism in a

program using loop centric profiling. Loop centric profiling

provides hierarchical view of time spent in loops and loops

nested within it. It involves two concepts, one based on

instrumentation (used extensively in LoopProf) and other

based on sampling approach. Sampling approach is novel

contribution of LoopSampler. Sampling approach has

significantly lower profiling overhead as compared to

LoopProf.

4.1.6 iPAT/OMP

Fig 5: iPAT/OMP

IPAT Parallelizing assistance tool provides critical

parallelization related information (loop centric). The system

uses Omni Open MP compiler and its assistance libraries. The

programming environment is split into two parts. First

window is for program editing and second window displays

the parallelization specific information to the user. User can

also select the code segment for assistance and the tool

displays the dependency information and assistsin resolving

those dependencies.

4.1.6 Capo

CAPO [101] is an interactive parallelization and performance

analysis tool developed by NASA Ames Research Center to

insert OpenMP directive into FORTRAN codes. Paraver,

[101]a performance analysis tool is developed by CEPBA-

UPC to analyze the performance of a parallel program. Capo-

Paraver is a computer aided parallel programming

environment that interfaces CAPO with Paraver. This tool

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

22

assists programmers in complex optimizations of parallel

programs, which is very difficult manually. Capo has an in

built dependency analysis engine for loops which has

additional feature of storing the dependency information in a

database and improving the dependency analysis by using

answers to the questions asked to the user. Paraver consists of

a tracing package and a graphical user interface for examining

the traces. Paraver has the capability to analysis thread level,

task level and hybrid parallel programs. Therefore, this

environment helps user in both data dependency analysis and

the performance analysis. It also takes input from user that

increases the efficiency of parallel program. However, this

tooltargets only the loop level parallelization and not the task

level parallelization (analysis).

Fig6: CAPO parallelization [101]

4.1.7 Kremlin

Kremlin is one of the most significant works on automatic

parallelization in recent times. Kremlin has proposed

hierarchical critical path analysis (HPCA) for the first time,

whichis being used for many of upcoming and existing

profilers. Kremlin is able to exploit parallelism present in a

program, which was not detected using existing critical path

analysis (CPA). Kremlin also provides an OpenMP

parallelism planner, which at times beats even the manual

parallelization in terms of performance. It takes original

source code along with other inputs and produces code

regions that should be parallelized. Kremlin is applicable to

all types of parallelization like task level, thread level,

instruction level etc. Kremlin suffers from a major drawback

(even other similar tools)of accuracy as it uses the dynamic

run time information but Kremlin is able to overcome this

limitation by multiple runs of the same program with different

inputs.

4.1.8Kismet

Kismet [79] is an interesting tool for estimation of parallel

program speed up. The speed up is computed based on the

parallelism available in source code in presence of multiple

constraints like, number of available cores, cache, shared

memory size, synchronization overheads, parallelism types

(Loop level, task level, instruction level) etc.Kismet applies

the dynamic analysis using hierarchical critical path analysis

(HCPA)[6]to determine parallel regions efficiently. HPCA is

modified version of critical path analysis technique (CPA

[47]), which is in use for quite a long time. It consists of two

major components, one the self-parallelism profiler and

second, the speed up predictor. Self-parallelism profiler

instruments the code to obtain profiling information and to

remove false dependencies in loops. Speed up predictor uses

the profiling information from self-parallelism profiler and

other hardware specific information to estimate the execution

time of each code region. All the information from above sub

blocks is used to geta consolidated speed up estimation.

Though the tool talks about task and loop parallelization, it

concentrates more on the loop parallelization offered by the

program. Figure 6 shows sample output produced by Kismet.

It is important to know that the maximum speed up is

achieved for a four-core processor.Speed up is proportional to

the number of cores up to four cores. However, speed up

remains same when the program is executed on more number

of cores and this follow the Amdahl’s law [23].

Figure 6 : Typical output of Kismet [79]

4.1.8 Cilk++

Cilk++ [85], [92]concurrency platform helps programmer to

use simple constructs in a program to parallelize a program.

Cilk++ implements its own scheduler that takes care of parent

child processes to be executed on different cores of multicore

processor. However, Identification of parallelization in a code

and synchronization point is responsibility of the programmer.

Hence, this tool is parallelization enabler.

4.1.9 Holistic approach for automatic

parallelization

Another parallelization approach uses profiling based

dependency analysis [15] instead of using static code analysis

method as shown in figure 7. Static analysis seems to be

inefficient for parallelism identification and generation of

parallel code. After identification of parallel segments,

machine learning based mapping is used to generate OpenMP

annotated parallel code. The approach works for loop level

parallelization and not for the course grain task level parallel

code segments.

Fig 7 : Holistic approach for automatic parallelization [15]

4.1.10 Polaris
Polaris [88] is another loop level parallelization tool that uses

variety of loop dependency tests and loop transformation

techniques to develop effective parallel code. It uses standard

tests like equality test, GCD tests [99] for simple and linear

cross iteration dependency. However, many real life code

segments also contain nonlinear cross iteration dependency.

Polaris solves this problem by using separate test called range

test [88], which uses computer algebra and data range

information to detect cross iteration dependency.

4.1.11 SD3
SD3 [8]presents a scalable approach to the data-dependence

Profiling. Most of the data-dependence profiling techniques

try to improve the accuracy of analysis with the help of user

inputs or run time profiling. However, these techniques suffer

from two major drawbacks; runtime overhead and the

memory overhead. SD3 solves this problem by parallelizing

the dependency analysis on multicore and achievesspeed up of

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

23

above 9x over the earlier efforts. Similarly, the tool

compresses the memory access exhibiting stride pattern and

improves the memory consumption by 20x. Authors have

contributed to the parallel algorithm design of data

dependency profiling to overcome scalability problems.

4.1.12 Prism
Prism [73] is a commercially available parallelization tool

(from Critical Blue) that supports the development of parallel

programs on multiple fronts. First, it provides a profiler to

detect the hot spots based on the time consumed and

frequency of the code segment. After identifying the hot

spots, prism can show the data dependencefor taking

parallelization decisions quickly. Code segments/functionscan

be selected for parallel execution and prism can show actual

benefits of concurrent execution. Finally, the tool provides the

facility to verify parallel code by providing information

related to data races, dependency remaining in the parallel

code segments etc. Prism supports in all stages of

parallelization and it works for both taskas well as data

parallelization. In addition, it serves as both automatic as well

as assistance tool for developing parallel code.

4.1.13 AutoFuture
Autofuture [80] takes a completely different approach to

concurrent execution of independent segment of codes. Two

concurrent code segments executes with the help of

synchronization points. However, insertion of synchronization

points makes the code less readable. Autofutureproposesan

elegant way to instead of using synchronization points. It

executes two independent sections asynchronously and stores

the result of the first one in a placeholder called ‘future’ [80].

This avoids the need of synchronization point by just the

insertion of simple constructs. Figure 8 shows the concept

used by Autofuture with the help of a simple example (use of

‘async’).

4.1.14 Vector Fabrics
Vector fabrics [74] is another commercially available tool

(from Pareon) that gives insight information about the

program which is crucial for writing highly optimized parallel

code. The tool performs data- dependency analysis, convert it

to parallel code for a particular architecture and then informs

about the global performance data as well platform specific

information like cache statistics. It also collects information

about thread waiting overheads and provides suggestions

onreducing these overheads. Last but not the least, the tool

provides detailed guidance about code transformation to

increase parallelization benefits and reduce other platform

specific overheads. Vector fabrics isuseful for programmers

with or without parallel programming expertise.

Fig 8 : Autofuture parallelization concept [80]

4.1.15 Pluto
Pluto [45] is a tool for source-to-source transformation of

sequential code using available parallelism and locality. Pluto

uses the polyhedral analysis, which is one of the most

efficient loop parallelization, and transformation techniques

developed in recent times. Most of the previous generation

loop- parallelization tools (Before the advent of multicores)

used standard loop dependency tests like GCD, Banerjee tests

[99]. Earlier tests failed to identify parallelism available in

loops due in presence of complex dependencies. Pluto emits

the parallel code instrumented with OpenMP [2] constructs.

Though polyhedral transformation was in use for some time, it

lacked scalability and practicability. Pluto has improved the

polyhedral transformation method [45] and solved earlier

problems by developing a compiler that is capable of fully

automatic parallelization.

4.1.16 Par4All
Par4All [11]is an automatic parallelizing and optimizing

compiler for C and FORTRAN programs. It is based on PIPS

(Parallelization Infrastructure for Parallel Systems) [100]

source-to-source compiler framework. The ‘p4a’ is the basic

script interface to produce parallel code from user sources. It

takes C or FORTRAN source files and generates OpenMP [2]

or CUDA [37] output to run on shared memory multicore

processor or GPGPU respectively.

4.1.17 Cetus
Cetus[12] is a source-to-source transformation tool for

programs written in C language. It also provides basic

infrastructure to write automatic parallelization tools. Cetus

currently implements parallelization techniques like are

privatization, reduction variables recognition and r variable

substitution. Cetus enables automatic parallelization by using

data dependence analysis with the Banerjee-Wolfe

inequalities [99], array, and scalar privatization.

4.1.18 S2P
The S2P [91] tool is commercially available(developed by

KPIT Cummins) fully automatic parallelization tool that

considers loops as well as tasks for parallelization. S2P is

applicable for parallelization of legacy C program without any

manual intervention. S2P performs the program analysis,

identification of parallel segments and scheduling them to

available cores of a multi core processor.

4.2 First Generation Tools (FGT)

4.2.1 Automatic and Interactive Parallelization
Kathryn et. al. [62] proposed an interactive technique for loop

parallelization. This technique points out the inability of

automatic parallelization technique due to the lack of

information available at the time of static analysis. Interactive

parallelization adds human insight, seeks important

information, and receives it from the users to improve the

parallelization results. The tool is called Parascope Editor

(PED) and it provides option for user inputs to increase the

chances of parallelization and to increase the accuracy of the

analysis. To begin, the user selects potentially parallelizable

loop and PED runs complete analysis and displays the

dependencies in visual form as shown in figure. Based on the

program understanding, user can mark some of those

dependencies as false dependency. PED runs the analysis

again based on user inputs and presents the parallelization

report. Parallelizable loops without any ambiguity are marked

as proven. The loop identified as non-parallelizable due to

over conservative analysis is marked as pending. User

analyzes the code and based on the program understanding

mark the pending loops as accepted. Loops that are marked as

pending are transformed according to the dependency inputs.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

24

Users just need to put assertions and the tool takes care of the

transformations. Hence, it reduces lot of effort. Two types of

transformations, loop embedding and loop extraction is

proposed that helps in improving performance. PED uses the

incremental analysis approach as it carries out the data

dependency analysis multiple times by the user. Participation

of user in parallelization decision increases the accuracy of

this system. However, it requires user to understand certain

concept of parallelization and data dependency.

4.2.2 Object Based Parallel Programming Assist
Most of the work in automatic or incremental programming

concentrates on the C like languages and these techniques are

not applicable for object-based languages. One of the premier

works by Hvannberg and Krishnamoorthy[38]on interactive

parallelization focuses on the object oriented code at the time

of program development.

Object based parallel programming assistant targets the

problems faced by programmers during development of object

based parallel programs. The tool gives the programmer an

opportunity to increase the parallelization by utilizing its

intelligence as well as the programmer’s knowledge about the

program (interactively). This process enhances user’s

knowledge about parallel programming (serves as a trainer).

Object as defined by [26] is something that consists of data

and modules that can operate on the data. The usual way of

writing object-based program is to define the class and create

the object to invoke functions within the class. This process is

invariably sequential but the assistant frees users to follow the

steps and object can be used without completely defining it.

Assistant partitions the program to enable concurrent

execution. Following are the three types of partitioning used

in assistant

o Methods partitioning – Partition potentially

parallelization methods within a class.

o Object partitioning – Partitioning the function calls

within the function called by one object.

o Task partitioning – Partitioning the statements like loops

and blocks that can be executed in parallel

Fig9: Partitioning in parallel programming assistant based

on objects

As shown in figure 9, when Class A is being defined, the

assistant checks whether FunctionA1 () and FunctionA2 () are

independent or not. This process repeats for all the classes like

class B. The assistant changes the partitioning based on the

added dependency. At the end, it prepares the parallel blocks.

FunctionA1 calls classes from object B and by prior

partitioning of class B functions, functionA1 can again be

partitioned into one or more parallel blocks. This is known as

object partitioning. Finally, FunctionB1 defines one loop and

as the statements of loops are entered, the assistant figures out

whether the addition of statements is hindering parallelization

or not. For example, first statement within the loop is clearly

iteration independent. As soon as second statement with

function call from class A is added, assistant needs to confirm

whether this statement is affecting the parallelism of loop or

not. In case it is affecting the parallelism, assistant suggests

the possible transformations that can convert this loop to a

parallel block again.

This tool is a very good step towards assisting programmers

for parallel program development. It takes extra burden from

programmer to check dependencies and provides early

information about statements that reduces the degree of

parallelism in the program.

4.2.3 Animation Choreographer
Animation Choreographer [40] is a tool to visualize the

parallel program execution and provides feasible alternatives

of program execution to increase the temporal perspectives of

the parallel program. Animation Choreographer is one of the

features of PARADE (PARrallel Animation Development

Environment).

4.2.4 DEEP Development Environment
DEEP [13] is a development environment that consists of set

of tools for parallel programming. The tools include editor,

analyzer, and debugger to assist in parallel program

development. DEEP supports High Performance FORTRAN

(HPF) for developing data parallel programs using MPI and

FORTRAN and C programs for shared memory architecture.

DEEP programming environment contains configurable

panels (similar to window) where, each panel contains

viewers to provide the static and dynamic information about

the program. DEEP program view provides both static and

dynamic information about the program. Static information

includes information about number of variables, functions,

parallel loops and some optimization information. However,

dynamic information provides the call graph, number of

loops, loop count, profiling information etc. On top level, the

information provided is in compact form. However, clicking

on the field of interest provides detailed information that can

help in parallel program analysis and design. DEEP also

provides a unique way to represent program graphically.

Separate rectangle represents each module in the program and

each pixel in the rectangle represents individual line of

program. The graphical view also provides indentation in

lines to account for loops, conditional blocks etc. This whole

view of program also uses color codes where colors vary from

blue to red. Red color symbolizes the message-passing

requirement and unsuitability for parallelism and blue

symbolizes the parallel code segment. DEEP also provides a

load balancing display to generate information whether

processor is utilized for message passing frequency or for

processing. Apart from above mentioned specific features,

DEEP also provides generic features like code abstraction

viewer, symbol viewer and performance viewer that provides

detailed information about the program flow, data locality and

performance of the program.

4.2.5 PTP-PLDT
PTP and PLDT tools, [24] developed by IBM to provide

parallel programming assistance tools in eclipse environment.

Assistance tools such as hover and content assistant aims to

identify artifacts in parallel program developed using MPI,

Open MP, and LAPI. Static-analysistools are used to

performance Open MP concurrency analysis and MPI barrier

analysis to detect deadlocks.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

25

4.2.6 GRED
GRED [14] is the graphical editor for graphical programming

environment GRADE (Graphical Application Development

Environment). GRADE aims to provide easy to use and

effective tool to develop general message passing application

for heterogeneous architecture. GRED editor is used to

develop application using GRAPNEL programming language

that is based on message passing paradigm. The program

development in GRAPNEL becomes easy by use of GRED.

Every process is defined graphically as box in the editor.

These processes are kept under same group as one single unit,

whenever similar message passing is required. The program

design is divided into three levels. At top most level, program

all the components are drawn along with the interaction

among them. Middle level design focuses on the message

passing requirements. Lowest level design focuses low-level

codes for each process. Based on these levels, GRED offers

three windows called application window, process window

and text editor window respectively. In short, this tool hides

the lower level abstractions about parallel programming from

programmers. This assumes that the programmer has a

minimum expertise in parallel programming and the target is

to train such programmer through the visual program

development approach adapted by GRED.

4.2.7 VISO
Visual Occam (VISO) is a visual programming language for

parallel or concurrent programming. VISO uses the graphical

syntax based on Occam language. Semantics of VISO is

represented in petri net and process calculus. VISO creates

processes that have no shared data. Communication among

these processes happens by the use of message passing. There

are three abstraction levels and separate window represents

each level. The three levels are known as system, process, and

statement. System window represents all theprocess and

communication among these processes. Process window uses

separate window to show process and the statements that each

process uses. Statement window eventually shows the details

of statements which is used in processes.

4.2.7 The SUIF compiler

The SUIF compiler [25] is first of its kind, automatic

sequential to parallel code conversion tool for C and

FORTRAN language. It was developed to automatically

convert sequential dense matrix computations, written in C or

FORTRAN, to parallel code for machines with shared

memory. The SUIF compiler includesmultiple optimizations

passes for program analysis. The analysis includes symbolic

analysis, parallelism and locality analysis, communication and

synchronization analysis and code generation.

5. EASYPAR
This section describes our ongoing work on the parallel

program assistance tool called EasyPar[9], [10]. This tool is

named as “EASYPAR” – a combination of EASY

development of PARallel codes. As the name suggests, this

tool eases parallel programming by providing assistance

during the development of program. Figure 11 shows the

working methodology of EasyPar. EasyPar consists of two

major components, first an IDE (Integrated Development

Environment) and second, an Intelligent analysis engine to

detect dependency between code segments which is under

development. IDE provides a window to write serial code and

shows vital information about concurrency to the user.

Additionally, it does all the analysis required for automatic

parallelization and suggests that code that can be executed on

different cores. It is an interactive tool that takes input from

user about the program as all the information is not available

during static analysis. Such information from user is very

much helpful in taking parallelization related decision.

Finally, developer gets a concurrent program with different

segments segregated on to different cores along with the

inserted synchronization constructs. The static code analysis is

the heart of any automatic parallelization technique.

Automatic parallelization of the code is an old research area

and many researchers have published their benchmarking

work in this area. We have already discussed a number of

such tools available in literature or available commercially.

There are many techniques that propose the analysis of code

during development like incremental parsing [21],

incremental dependency analysis [53],[54],[55], incremental

profiling [19],[41],[16], incremental flow graph analysis

[17],[42], and so on. Still, identifying and updating data

dependency information dynamically, while the code is in

development phase poses many challenges. In addition, the

analysis is performed in the background when programmer is

developing the code and he/she wants to be unperturbed due

to the background analysis. EasyPar attempts to solve this

problem by employing two novel techniques.

5.1 Parallel data dependency analysis

Fig 10: Strategies to handle the real time performance

(Green blocks)

Static program analysis primarily includes the side effect

analysis (SEA) [57], alias analysis [56] and loop analysis [81].

Alias analysis and SEA consumes most of the time due to its

iterative nature. Most of the compilers use very lightweight

conservative algorithm to reduce analysis time. The

exhaustive SEA is computationally expensive and makes it

less practical. SAE study suggests that although it is

computationally intensive, redesigning it to a Data Parallel

(DP) version will make it efficient. In addition, the GPGPU

available in current generation desktops with massive parallel

processing power is best suited for DP algorithms. We have

implemented the one such SEA algorithm on GPGPU and

achieved very high speed up[9]. Figure 10 shows the

performance improvement of SEA algorithm on GPGPU

compared to CPU. Most of the static analysis algorithms are

iterative in nature. DP algorithms reduce the time of execution

as well as the number of iteration [9]. Therefore, our approach

enables real time analysis of code, which is required for tools

such as EasyPar. To the best of our knowledge, this is the first

attempt that uses GPUs and data parallel algorithm to improve

the performance of data-dependency analysis algorithm.

0

100

200

300

MP3 TSP

Ti
m

e
(S

ec
s)

DP-SEA Performance

CPU

GPU

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

26

5.3 Database based compiler
As shown in Fig 11, code written in the IDE is passedthrough

a parser.Parser creates an abstract syntax tree (AST) of the

code, which possesses all the vital information about the

program. Dependency analysis uses AST information and

accordingly identifies concurrent sections of code. We

propose a significantmodificationin method for construction

of AST. Usage of database management system (DBMS)

concept can reduce the time for searchinginformation related

to program. In addition, modification of databasebased on the

search criteria is easier and faster (using database queries) as

compared to data structures. This is very important

improvementas compared to other automatic parallelization

tools because this tool analyzes the code during development

and it needs to modify the AST accordingly. To the best of

our knowledge,very few of the existing compilers uses the

database concept for storage and analysis of program. CAPO

[102] also uses database in program analysis but it is just used

to store dependence information. Database based compiler

also allows scalableprogram analysis.

Fig 11: Strategies to handle the real time performance

(Green blocks)

6. CONCLUSION
This paper discusses the issues of parallel programming, need

of parallel programming tools, available tools and their

limitationsWe have presented a detailed classification of the

parallelization tools based on three different aspects i.e. the

era of tool development, stages where the tool is useful and

whether it is graphic assistance tool or not. We have explained

the requirement of future parallelization tools based on the

explanation of existing tools and future requirements. Easy

par is a step towards development of a tool that can overcome

the challenges posed by existing tools. The biggest challenge

in development of such assistance tool is the performance of

dependency analysis algorithms. Asthe program analysis runs

intermittently, it is very important that user is unperturbed

because of this analysis. Otherwise, it would become

frustrating to the user. We have proposed two techniques to

overcome the time complexity of dependence analysis. The

first approach is to design parallel dependency algorithm

running on GPU. Another approach is to create a database

instead of data structures. This allows incremental, faster, and

scalable concurrency analysis. It is evident that a number of

tools are available that help development of parallel programs.

Some of them convert existing tools to parallel code and some

provide parallel programming techniques for developing new

parallel programs. However, very few toolssupport

programmers during the development of a program. Tools

such as EasyPar, Kremlin, Kismet, S2P would be very

important to increase the parallel programming capabilities

among future programmers.

7. ACKNOWLEDGMENTS
Our sincere thanks to CREST team at KPIT Cummins for

their constant support and ideas to improve the work in this

paper.

8. REFERENCES
[1] Official home page Message Passing Interface (MPI)

Available : www.mpi-forum.org/

[2] official home page - Open MP, Available :

www.openmp.org

[3] Sutter, H., “The free lunch is over,” Dr. Dobb’s Journal,

vol. 30, March 2005

[4] Per Stenstrom, The Paradigm Shift to MultiCores:

Opportunities and Challenges, Appl. Comput. Math.

(2007) 253-257

[5] VivekSarkar, Programming challenges for multicore

Parallel systems, Presentation for Computer Science

Department, Rice University. http://www.rice.edu

[6] McKinsley, Karthryn S. Automatic and Interactive

Parallelization, PhD. Thesis, Computer Science, Rice

University. Houston, Texas (1994) 12-32.

[7] Tournavitis, G. and Franke, B., “Semi-automatic

extraction and exploitation of hierarchical pipeline

parallelism using profiling information,” in Proceedings

of the 19th international conference on Parallel

architectures and compilation techniques, PACT ’10,

(New York, NY, USA), pp. 377–388, ACM, 2010.

[8] Minjang Kim, dynamic program analysis algorithms to

assist parallelization, PhD. thesis proposal, Georgia

Institute of Technology, 2011. pp 5-28.

[9] S. Sah and VinayG. Vaidya, Paradyn: A Dynamic

Parallel Programming Tool, ICDCN, 12th International

Conference on Distributed Computing and Networking,

PhD forum (2010)

[10] ParMA - Parallel Programming for Multi-core

Architectures, Available : http://www.parma-itea2.org

[11] Par4All homepage : URL : http://www.par4all.org

[12] Chirag Dave, HansangBae, Seung-Jai Min, Seyong Lee,

Rudolf Eigenmann, and Samuel Midkiff, "cetus: a

sourceto-source compiler infrastructure for multicores",

Computer, Vol. 42, no. 12, pp. 36-42, Dec. 2009,

doi:10.1109/MC.2009.385

[13] B.Q. Warber, C.R. Brode and F. L. Orlando, DEEP: a

development environment for parallel programs., Parallel

Processing Symposium, IPPS/SPDP (1998) 588-593.

[14] Peter Kacsuk, Gabor Dozsa, TiborFadgyas, Robert

Lovas, “The GRED Graphical Editor for the GRADE

Parallel Program Development Environment”, Budapest,

Hungary : MTA-SZTAKI Computer and Automation

Research Institute, Hungarian Academy of Science.

[15] G. Tournavitis, Z. Wang, B. Franke,M. O'Boyle,

"Towards a holistic approach to auto-parallelization:

integrating profile-driven parallelism detection and

machine-learning based mapping", PLDI '09, pp 177-

187.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

27

[16] Karl Fuerlinger, Michael Gerndt, Jack Dongarra, On

Using Incremental Profiling for the Performance

Analysis of Shared Memory Parallel Applications,

Lecture Notes in Computer Sciences, (2007) 62-71

[17] Andrew R. Bernat, Barton P. Miller, “Incremental Call-

Path Profiling”, Computer Sciences Department,

University of Wisconsin. Madison, WI

[18] CathalBoogerd, Leon Moonen, “On the Use of Data

Flow Analysis in Static Profiling”, Software

EvolutionResearch Lab, Delft University of Technology.

The Netherlands

[19] “On Using Incremental Profiling for the Performance

Analysis of Shared Memory Parallel Applications”,

Innovative Computing Laboratory”, Department of

Computer Science, University of Tennessee. Technical

Report

[20] NEC IMAPCAR Technical Document – www.nec.com

[21] Graham, Wagner and Susan, Efficient and Flexible

Incremental Parsing, ACM Transactions of Programming

Languages and Systems, Vol. 20 (1998)

[22] Barbara G. Ryder, A Position Paper on Compiler Time

Program Analysis, Computer Science Dept., Rutgers

University (1997)

[23] Amdahl, Gene, "Validity of the Single Processor

Approach to Achieving Large-Scale Computing

Capabilities". AFIPS Conference Proceedings, 1967, pp

483-485.

[24] Beth Tibbitts, PTP - PLDT Parallel Language

Development Tools Overview, Status & Plans. Technical

Report by IBM, (2007)

[25] S. P. Amarasinghe, J. M. Anderson, M. S. Lam and C.

W. Tseng, An Overview of the SUIF Compiler for

Scalable Parallel Machines, Seventh SIAM Conference

on Parallel Processing for Scientific Computing (1995)

[26] R.J. Abbott, Integrated Approach to Software

Development. John Wiley and Sons (1986)

[27] Ravichandran K.M., Bhaskar P, Annamalai. S.P. and Dr.

A.P. Shanthi, Automatic Inter-procesural Parallelism,

Department of Computer Science, College of

Engineering, Guindy, Anna University

[28] David A. Bader, Rucheek H. Sangani , Introduction to

SWARM Software and Algorithms for Running on

Multicore processors, Tutorial, Georgia Institute of

Technology Available- http://multicore-

swarm.sourceforge.net

[29] Ashwin Kumar, Aasish Kumar Pappu, Sarath Kumar, K.,

SudipSanyal, “Hybrid Approach for Parallelization of

Sequential Code with Function Level and Block Level

Parallelization”, Parallel Computing in Electrical

Engineering, (2006)

[30] W. Ambrus, A Framework for Automatic Parallelization

of Sequential Programs, Proceedings of the 7th

International Conference on Volume 2 (2003) 11-13

[31] M. Girkar and C. Polychronopoulos, Automatic

Extraction of Functional Parallelism from Ordinary

Programs, IEEE Transactions on Parallel and Distributed

Systems (1992)

[32] Manish Gupta, SayakMukhopadhyay, Navin Sinha,

,Automatic Parallelization of Recursive Procedures,

Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques, (1999) 139 –

148

[33] R. Rugina and M. Rinard, Automatic Parallelization of

Divide and Conquer Algorithms, In Proc. ACM

SIGPLAN Symposium on Principles and Practices of

Parallel Programming, Atlanta, GA (1999)

[34] John Hughes , Why Functional Programming Matters

Institutionen for Datavetenskap, Chalmers

TekniskaHogskolaGteborg, SWEDEN, Circulated as

Chalmers memo (1984)

[35] NirSavit, Dan Touitou, Software Transactional Memory,

ACM-PODC, Ottawa Ontario, CA, 1995

[36] Official Website : “The Multicore Association”, http://

www.multicore-association.org/

[37] NVIDIA Corporation.: NVIDIA CUDA Programming

Guide. Technical Report. California. USA. (2008)

[38] E.T. Hvannberg, M.S. Krishnamoorthy, An Object-based

Parallel Programming Assistant, Proceeedings of the

ACM SIGPLAN Workshop on Object-Based Concurrent

Programming. Vols. 24, Issue 4, (1998) 200-202

[39] Sudhakar Sah, Vinay G. Vaidya, A GPU Based Novel

Design of Side Effect Analysis, ICOMEC, Goa, India,

(2011) 137-143

[40] Eileen Kraemer, John T. Stasko, Towards Flexible

Control of the Temporal Mapping from Concurrent

Program Events to Animations. Graphics, Technical

Report-Visualization and Usability Center, Georgia

Institute of Technology. Atlanta, GA (1994)

[41] Karl Fuerlinger, Michael Gerndt, Jack Dongarra, On

Using Incremental Profiling for the Performance

Analysis of Shared Memory Parallel Applications,

Lecture notes in Computer science, Springer, Berlin,

Volume 4641 62-71

[42] U. Ismail, “Incremental call-graph construction for the

eclipse IDE”, University of Waterloo Technical Report

No. CS-2009-07, David R. Cheriton School of Computer

Science, University of Waterloo, Waterloo, ON, Canada

[43] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R.

Murphy, S.-W. Liao, and E. Bu. “Maximizing

multiprocessor performance with the SUIF compiler”,

IEEE Computer, (1996)

[44] Saturnino Garcia, DonghwanJeon, Chris Louie,

Sravanthi Kota Venkata, and Michael Bedford Taylor,

Bridging the Parallelization Gap: Automating Parallelism

Discovery and Planning, HotPar, 2nd USENIX workshop

on hot topics in parallelism, Poster presentation (2010)

[45] U. Bondhugula, A. Hartono, J. Ramanujam, and P.

Sadayappan, A Practical Automatic Polyhedral

Parallelizer and Locality Optimizer, Programming

Language Design and Implementation, Vol. 43, Issue 6,

(2008) http://pluto-compiler.sourceforge.net/

[46] Hannu-MattiJärvinen, MikkoTiusanen, and Antti T.

x`Virtanen, Convit, a Tool for Learning Concurrent

Programming, Software Systems Institute, Department of

Information Science Tampere University of Technology,

Finland

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

28

[47] M. Kumar. “Measuring parallelism in computation-

intensive scientific/engineering applications.” IEEE

TOC, Sep 1988.

[48] Muhammed S. Al-Mulhem, Concurrent programming in

VISO, Concurrency : Practice and Experience

Concurrency, Pract. Exper. (2000) 281–288

[49] Pong M. I-pigs: An Interactive Graphical Environment

for Concurrent Programming, Computer Journal (1991)

320 330

[50] Kramer J, Magee J, Ng K, “Graphical configuration

programming", Computer 1989; 22(10):53–65.

[51] V. Sarkar,“Automatic partitioning of a program

dependence graph into parallel tasks”, In IBM Journal of

Research and Development, pages 779–804, 1991.

[52] M. C. Rinard, D. J. Scales, and M. S. Lam. “Jade: A

High-Level, Machine-Independent Language for Parallel

Programming”. IEEE Computer, 26(6):pp 28–38, 1993.

[53] T. J. Marlowe and B. G. Ryder, “An Efficient Hybrid

Algorithm for Incremental Data Flow Analysis”, In

Conference Record of the Seventeenth Annual ACM

Symposium on Principles of Programming Languages.

(1990) 184–196

[54] J. Yur, and B.G. Ryder, Incremental analysis of the

MOD problem for C. Laboratory for Computer Science

Research Technical Report LCSR-TR-254, Department

of Computer Science, Rutgers University (1995)

[55] B. G. Ryder and M. C. Paull, “Incremental Data Flow

Analysis Algorithms”, ACM Transactions on

Programming Languages and Systems. (1988) 1–50

[56] Cooper, D. Keith, K. Kennedy, Fast Interprocedural

Alias Analysis. Principles of Programming Language,

Austin TX, (1989) 49-59

[57] K.D. Cooper and K. Kennedy, Interprocedural Side-

effect Analysis. ACM SIGPLAN Notices, Vol 39, Issue

4, (2004) 217-228

[58] Z. Li, P.C. Yew and C. Zhu, An Efficient Data

Dependence Analysis for Parallelizing Compilers, IEEE

Transactions on Parallel and Distributed Systems,

Volume 1, Issue 1. (1990) 26-34

[59] D. Cooper, Keith, and K. Kennedy, “Efficient

Computation of Flow Insensitive Interprocedural

Summary”,Proc of SIGPLAN ' 84 Symp. On Compiler

Constr., Montreal, Quebec, Vol. 19, No. 6 (June 1984)

247-258

[60] Intel Parallel Advisor, Available :

http://software.intel.com/en-us/articles/intel-parallel-

advisor/

[61] M. Kulkarni, K. Pingali, B. Walter,G. Ramanarayanan,

K. Bala, and L. P. Chew. “Optimistic Parallelism

Requires Abstractions”, In PLDI’07, pages 211–222.

[62] C. Upson, The Application Visualiation System: A

Computational Environment for Scientific Visualization,

IEEECOmputer Graphics and Applications, Vol. 9

(1989) 30-42.

[63] Ronsse, M. and De Bosschere, K., “Recplay: a fully

integrated practical record/replay system,” ACM Trans.

Comput. Syst., vol. 17, no. 2, pp. 133–152,1999.

[64] Steffan, J. G., Colohan, C. B., Zhai, A., and Mowry, T.

C., “A scalable approach to thread-level speculation,” in

Proceedings of the 27th annual international symposium

on Computer architecture, ISCA ’00, (New York, NY,

USA), pp. 1–12, ACM, 2000.

[65] Park, S., Lu, S., and Zhou, Y., “Ctrigger: exposing

atomicity violation bugs from their hiding places,” in

Proceeding of the 14th international conference on

Architectural support for programming languages and

operating systems, ASPLOS ’09, (New York, NY, USA),

pp. 25–36, ACM, 2009.

[66] Yu, Y., Rodeheffer, T., and Chen, W., “Racetrack:

efficient detection of data race conditions via adaptive

tracking,” in Proceedings of the twentieth ACM

symposium on Operating systems principles, SOSP ’05,

(New York, NY, USA), pp. 221–234, ACM, 2005

[67] Microsoft, CHESS: Find and Reproduce Heisenbugs in

Concurrent Programs. http://research.microsoft.com/en-

us/projects/chess/

[68] Intel Corporation, Intel Parallel Inspector.

http://software.intel.com/en-us/articles/intel-parallel-

inspector/

[69] Serebryany, K. and Iskhodzhanov, T., “ThreadSanitizer:

data race detection in practice,” in Proceedings of the

Workshop on Binary Instrumentation and Applications,

WBIA ’09, (New York, NY, USA), pp. 62–71, ACM,

2009.

[70] Microsoft, Concurrency Visualizer

http://msdn.microsoft.com/en-us/library/dd537632.aspx/

[71] Intel Corporation, Intel Parallel Amplifier.

http://software.intel.com/en-us/articles/intel-parallel-

amplifier/

[72] Intel Corporation, Intel Parallel Advisor.

http://software.intel.com/en-us/articles/intel-parallel-

advisor/

[73] Prism: an analysis exploration and verification

environment for software implementation and

optimization on multicore architectures from

CriticalBlue.http://www.criticalblue.com

[74] vfAnalyst: Analyze your sequential C code to create an

optimized parallel implementation from

VectorFabrics,http://www.vectorfabrics.com/

[75] Rul, S., Vandierendonck, H., and De Bosschere, K.,

“Extracting coarse-grain parallelism in general-purpose

programs”,PPoPP ’08, (New York, NY, USA), pp. 281–

282, ACM, 2008

[76] Zhang, X., Navabi, A., and Jagannathan, S., “Alchemist:

A transparent dependence distance profiling

infrastructure,” in Proceedings of the 7th annual

IEEE/ACM International Symposium on Code

Generation and Optimization, CGO ’09, (Washington,

DC, USA), pp. 47–58, IEEE Computer Society, 2009

[77] B. Lucas, G. D. Abraham, N. S. Collins, D. A. Epstein,

D. L. Gresh, K. P. McAuliffe, An Architecture for a

Scientific Visualization System, IEEE Computer Society

Press Proceedings of Visualization (1992)

[78] Das, D. and Wu, P., “Experiences of using a dependence

profiler to assist parallelization for multi-cores,” in

IPDPS Workshops, pp. 1–8, 2010.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.12, October 2012

29

[79] Jeon, D., Garcia, S., Louie, C., and Taylor, M. B.,

“Kismet: parallel speedup estimates for serial programs,”

in Proceedings of the 2011 ACM international

conference on Object oriented programming systems

languages and applications, OOPSLA ’11, (New York,

NY, USA), pp. 519–536, ACM, 2011.

[80] KorbinianMolitorisz, JochenSchimmel, Frank Otto,

Automatic Parallelization Using AutoFutures,

Automatic Parallelization Using AutoFutures, Multicore

Software Engineering, Performance, and Tools, Lecture

Notes in Computer Science Volume 7303, 2012, pp 78-

81

[81] Moseley, T., Connors, D. A., Grunwald, D., and Peri, R.,

“Identifying potential parallelism via loop-centric

profiling,” in Proceedings of the 4th international

conference on Computing frontiers, CF ’07, (New York,

NY, USA), pp. 143–152, ACM, 2007.

[82] Das, D. and Wu, P., “Experiences of using a dependence

profiler to assist parallelization for multi-cores,” in

IPDPS Workshops, pp. 1–8, 2010

[83] N. R. Tallent, and J. M. Mellor Crummey. “Effective

performance measurement and analysis of multithreaded

applications.” In PPoPP ’09: Proceedings of the ACM

SIGPLAN symposium on Principles and practice of

parallel program- ming, 2009.

[84] T. E. Anderson, and E. D. Lazowska. “Quartz: A tool for

tuning parallel program performance.” In SIGMETRICS,

vol. 18, 1990

[85] Y. He, C. Leiserson, and W. Leiserson. “The Cilkview

Scalability Analyzer.” In SPAA ’10, Proceedings of the

Symposium on Parallelism in Algorithms and

Architectures, 2010

[86] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C.

Casc¸aval. “How much parallelism is there in irregular

applications?” In PPoPP ’09: 2009

[87] T. Harris and K. Fraser,“Language Support for

Lightweight Transactions”, In OOPSLA’03, pages 388–

402, 2003

[88] William F. Appelbe, John T. Stasko, Eileen Kraemer,

“Applying Program Visualization Techniques to Aid

Parallel and Distributed Program Development.”, Dept.

of Computer Science, Georgia Institute of Technology.

Atlanta, GA, Technical Report. GIT-CC 91/31 (1993)

[89] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J.

Hoeflinger, and T. Lawrence. “Parallel programming

with Polaris”, IEEE Computer (2002)

[90] M. Kim, H. Kim, and C.-K.Luk. “SD3: A scalable

approach to dynamic data-dependence profiling.”

Microarchitecture, IEEE/ACM International Symposium

on, 2010

[91] Aditi Athavale, Priti Ranadive, M. N. Babu, Prasad

Pawar, Sudhakar Sah, Vinay G. Vaidya, Chaitanya

Rajguru, "Automatic Sequential to Parallel Code

Conversion - The S2P Tool and Performance Analysis",

Journal of Computing, GSTF, Oct 2011.

[92] Official homepage, Cilk project – MIT homepage

Available : www.supertech.csail.mit.edu/cilk/

[93] Official homepage, Erlang programming language

homepage, Available : www.erlang.org

[94] Official homepage, Go Programming language :

Available : www.golang.org

[95] Official homepage, Haskell programming language,

Avaiable : www.haskell.org

[96] Intel Corporation, Intel Threading Building Blocks.

http://www.threadingbuildingblocks.org/

[97] M. W. Hall, B. R. Murphy, S. P. Amarasinghe, S. Liao,

and M. S. Lam. “Interprocedural Analysis for

Parallelization”, In LCPC’06, pp 61–80

[98] Saturnino Garcia, DonghwanJeon, Chris Louie,

Sravanthi Kota Venkata, and Michael Bedford

Taylor,”Bridging the Parallelization Gap: Automating

Parallelism Discovery and Planning”, HotPar, 2nd

USENIX workshop on hot topics in parallelism, Poster

presentation, 2010.

[99] U. Banerjee, “Dependence Analysis for

Supercomputing”, Kluwer Academic Publishers,

Norwell, MA, 1988

[100] http://www.cri.ensmp.fr/pips/, accessed Oct 2011

[101] Gabriele Jost, Haoqiang Jin, Jesus Labarta, and

JuditGimenez, "Interfacing Computer Aided

Parallelization and Performance Analysis", ICCS'03

International conference on Computational science, 2003

pp 181-190

[102] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C.

Zhang.Software Behavior Oriented Parallelization. In

PLDI’07, pages 223–234, San Diego, CA

