
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

6

UML Modeling of Generic Agent Database Approach

under Distributed Computing Environment

Vipin Saxena, PhD.
Department of Computer Science

B.B. Ambedkar University
(A Central University)

Rae Barely Road, Lucknow-25, U.P.
(India)

 Nimesh Mishra
Department of Computer Science

B.B. Ambedkar University
(A Central University)

Rae Barely Road, Lucknow-25, U.P.
(India)

ABSTRACT

Due to presence of high speed bandwidth network called as

National Knowledge Network (NKN) environment, the

communication between the two computer systems by

message passing and data transmission techniques have

improved significantly. The existence of heterogeneous

network environment has different configuration supporting

network. In such type of networks, the process execution

depends upon several factors related with the hardware like

cpu speed, clock rate, memory size, etc. and software events

like execution scenario of processes based on software

programming and database approach results in a best optimum

performance of the network. One of such kind of approach

has been proposed by the authors and a model has been

designed for the general process execution concept through

distributed database agent supported in distributed computing

environment to obtain optimum process execution. This

approach has been designed by considering two phases; one

phase based on the client node and other is based on controller

system. The model has been created by the use of well known

Unified Modeling Language (UML) and UML class, sequence

and activity diagrams are designed.

General Terms

Generic System, Distributed Approach

Keywords

Performance, Distributed Database, Distributed Computing,

Agent, Generic, UML Class, Sequence, Activity Diagrams.

1. INTRODUCTION
Emphasis is given on performance of process execution over a

high speed distributed computing environment. Execution of a

process needs several factors like cpu cycle, clock rate,

processing speed, throughput required, scheduling scheme,

process priority, process size, etc. These factors have

individual importance towards the process execution. Lots of

research work has already been done to improve the

performance execution of the process. But these works are

generally based on some specific criteria of the above

mentioned factors. In the proposed work, authors have

proposed a new fully generic approach which is based on all

the aforesaid factors and proposed a model in which the

general factors are responsible for the process execution in the

form of agent program for a distributed database which has
been created related to the several important factors as

mentioned above. Several factors related with process

execution are well explained by Hwang[1]. These factors are

like cpu cycle, clock rate, throughput required, etc. Generic

approach has also been applied on the designing of network

architecture [2]. Distributed computing environment has been

discussed and several models have been proposed for the

process execution in the distributed computing environment

[3]. Proper process scheduling is the most important task as it

decides which process should be allowed to use the resources

and for how much time in such a manner that there should not

occur any type of conflict or deadlock [4-5]. Process is

attached with a Process Control Box called as PCB [6]. The
life cycle of the process is explained by Milenkovic. One of

major aspects of the process execution in distributed

computing environment is the performance issue. Load

balancing has been described in order to perform the process

execution in the distributed computing environment [7].

Generic approach has also been applied in the distributed

database concept in order to check the integrity constraint [8]

through the use of agent based approach. Transactions

management in real time distributed computing system is also

one of the issues in heterogeneous networked computing

environment. A new approach to manage the transactions in

dynamic ways has been elaborated and dynamic intelligent

agent has been created which keeps tracks of timing of the

transactions [9]. Performance Evaluation of well known

object-oriented programming languages on dual core also on

Pentium processors has been done and results have obtained

that reports performance estimation for object-oriented

software systems [10-11]. Observation of literature states that

first time Unified Modeling Language (UML) is proposed in

the year 2002 for parallel and distributed applications i.e. in

the field of Advanced Computer Architecture by Pllana and

Fahringer [12, 13]. Along with this object-management group,

OMG [14, 15] group has released UML specification after the

development of various kinds of UML diagrams by Booch et

al. [16, 17]. The present work is the motivation from the

literature and idea to develop a new kind of generic approach

for the process execution based on distributed database

concept. Authors have proposed an agent base concept which

collects the hardware configuration of the interconnected

heterogeneous systems and also there is a distributed database

approach which records the data regarding the need of the

user’s processes. The whole database structure is kept under

the distributed network environment. There is a controller

which performs the task of manipulation of database fields
and current configuration status of the process which is going

to be executed.

2. BACKGROUND

2.1 Distributed Computing
The network architecture has been classified into two phased

i.e. centralized and distributed approach of computing.

Distributed approach is complex but it is most robust and has

high reliability in comparison of the centralized system.

Distributed approach is transparent to that of end user but in

this, the process execution takes place in a fully distributed

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

7

manner, i.e. request given by a program in one node collects

information from the other node and results the final output is

given on the first node and distributed approach is elaborated

in the following figure:

`

` `

`

Distributed Computing

Environment

Fig 1: Distributed computing environment

2.2 Process
A process is explained in the form of subtask, subprogram,

collection of lines of code, macro or subroutine, etc. The

entire process is controlled by its id called as Process_ID.

Detail information of process and its different status is stored

in a data structure known as Process Control Block. Whenever

a process gets activated its PCB is also created and helps in

keeping track of process till the completion of job in form of

process termination. The attributes and operations on process

are grouped together and put in the form of UML class as

represented in following figure 2:

PROCESS

Process_ID: Integer

Process_Size: Integer

Process_Priority: Integer

Process_In_Time: String

Process_Out_Time: String

Process_Create()

Process_Ready()

Process_Execute()

Process_Suspended()

Process_Resume()

Process_Terminate()

Fig 2: Class diagram of process

2.3 Distributed Database
Pleas Distributed database is considered as a database

management in which whole of the database is stored on

multiple computers which are interconnected with each other.

This distributed database concept is implemented in two

different manners one is by replication, here (copies of data)

are created and placed on several nodes and other is in the

form of fragments in which parts of a relation are kept at

different locations. Fragments can be done in two different

manners. Vertical Fragments i.e. subset of columns and

horizontal fragment i.e. subset of tuples. All this

implementation of distributed database concept is kept

transparent to the users. Distributed database approach is one

of the very important aspects concerned with the proposed

generic approach model. A generic database is created and is

designed here in such a way that it is distributed throughout

the distributed computing environment.

3. GENERIC APPROACH
In the proposed approach, authors have studied the different

aspects of the process execution which individually affect the

execution of the process. These factors are classified into two

classes one is related with the hardware configuration like

speed of processors, CPU cycle, clock rate, memory status,

etc. and other class factors may include, process priority,

process size, cpu scheduling, scheme, etc. In the current

approach authors have designed a generic database through an

agent program which stores the different process affecting

factors. According to this generic database status, the process

is allocated to the servers for execution. In the proposed

approach, each agent program keeps on updating their nodes

database. A controller program is present which is

periodically interrupted by the nodes and is informed about

the node status. The controller also plays the role of getting

information about the process status. Once the favorable node

status and process status are obtained by the controller then

the selective process is propagated to get executed on that

favorable node. This proposed generic approach is thus

considered to be a approach which results in a load balancing

under the distributed environment and its generic nature can

be applied and implemented in all the cases whatever manner

the user wants to executes the process. In this approach it has

been considered that we have to create a general database

which may be in a shared manner among the entire network

cluster node or this database may have replica copies to

support the distributed computing concept. The status of each

node can be categorized into the following manner like ready

waiting executing state along with its hardware configuration,

etc. By looking this information of the database of the nodes,

the controller used to send the new coming process to get

executed on the specific ready node which is ready to execute

the process according to user’s requirement.

4. PROPOSED MODEL
The proposed model as shown in the figure.3 illustrates the

whole functioning of the generic approach model for process

execution in distributed computing approach. In this model a

cluster of interconnected nodes is taken. An agent based

collector is present which collects the configuration status

ofeach node and stores it into the database. Generated process

from the nodes which are in need of resources to get executed

are also traced through the controller system for their primary

status like size, priority, memory, programming language

behavior, etc and then are classified into appropriate groups

according to the user’s requirements. These classified

processes are passed to the controller which further compares

these processes with the created database which retains the

configuration status of the nodes. The whole process results in

the appropriate nodes selection for the appropriate process to

get executed.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

8

Fig 3: Process execution model for generic approach

5. UML MODELING FOR PROPOSED

GENERIC DATABASE APPROACH

5.1 UML Class Diagram

Communication in distributed computing environment takes

place by message passing mechanism in the form of signals.

Proposed UML class model for the generic database concept

for process execution is shown as in figure 4. In the proposed

UML class diagram, Controller class is the main class and is

responsible for controlling the whole functioning. Controller

class interacts directly with Agent class, Fitness_ Comparator

class and the Process_Scattered class along with User class

and Process class. Process class interacts consecutively with

the Environment class, Configuration class, Process_Detail

class and with the Filteration_Block class. The Environment

class, Configuration class and Process_Detail class performed

the task of setting the criteria of process and then the

processes are classified with the Filteration_Block class which

interacts with the User class. Server class interacts with the

Controller class and Agent class which collect the current

status of the configuration of the nodes.

SERVER

AGENT

FITNESS_COMPARATOR

CONTROLLER

USER

ENVIRONMENT CONFIGURATION PROCESS_DETAIL

PROCESS

FILTRATION_BLOCK

PROCESS_SCATTERED

Fig 3: Process execution model for generic approach

5.2 UML Sequence Diagram

In the proposed generic approach, Process object interacts

with the Controller object and informs its execution behavior.

Controller object also collects the configurations detail of the

node through Agent object which is responsible for getting the

hardware configuration of the interconnected nodes. The

Controller classifies the processes according to their specified

S1

S2

S3

S4

S5

Controller Process_Classifier

Classified_Process

Database

Agent_Program

P1

P2

P3

P4

p5

.

.

.

Pn

.

.

Pn

S6

S7

….

Sn

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

9

criteria by interacting with the Filtration_Block object through

User object. Then, the entire Controller compares the process

current status with the record provided by the Agent and then

the fittest process scenario is obtained by the Fitness_Block

object.

PROCESS CONTROLLER AGENT SERVER USER_BLOCK FILTERATION_BLOCK FITNESS_BLOCK

Process_Submit

Update_Status

Configuration_Status

Select_Classify Create_Classify

Compare_Fitness

Fitness_Process_Assign

Status_Updated

Informed

Status_Updated

Classifed Classified

Fittest_Process

Executed

Execution_Performed

Updating

Status_Informed

Classify

Comparing

Executing

Colllect_Status

Fig 5: UML sequence diagram for generic approach

6. EXPERIMENTAL STUDY
Authors have used the generic approach for process execution

in a very efficient manner. The whole mechanism is based on

two aspects of the distributed computing environment. These

are the creation of the general database which keep the record

of hardware configuration of nodes and creation of the data

structure using controller which collects the process status. In

the experimental study of the proposed approach a cluster of

20 interconnected network systems, having different hardware

configuration has been selected which form a distributed

network environment. Let S1, S2, S3,….., Sn are the set of

servers interconnected with each other. First of all an agent

module program is loaded by default in the operating system

of each server. A general database has been created by this

agent program by recording the configuration status of each of

these servers individually. Along with this a controller

program also executes, that collects the information of the

processes going to be executed. Then the controller evaluates

the status of the generic distributed database record with that

of the processes behavior and finally allocates the process to

the appropriate node for its execution. In the proposed

approach authors have tried to provide generic approach for

the process execution according to generic criteria of program

behavior as set by the programmer. Execution time i.e. CPU

time is calculated by controller according to above discussed

parameters for appropriate process allocation at node where it

could get executed.

The CPU time i.e. execution time is given as

 T=IC*CPI*γ ….. (I)

Where CPI is given as

 CPI=(p+m*k) ……. (II)

T =CPU time

IC = Instructions count of program code

γ =Processor cycle time

CPI=Cycles per instruction needed

p =Processor cycle needed for instruction decode and execute

m =Number of memory references needed

k =Ratio between memory cycle and processor cycle

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

10

Table 1. Execution time evaluation of VC# and JAVA

7. GRAPHICAL ANALYSIS OF

PROCESS EXECUTION
Authors have performed the experimental study for the two

selected languages. A simple program written in both the

languages has been designed and is tested in the system. The

execution time of different lines of code of the program code

in both the languages is calculated and shown above in table1.

The graph is also represented in figures 6 and 7 which show

the degradation of execution time of one of language as lines

of code increases as compared with that of other. As a result

of this analysis, it can be predicted easily that after

comparison of execution behavior of programs designed with

different programming platform and with different hardware

configuration, one can select such a scenario of nodes which

will result in best performance according to users

requirements based on hardware configuration and the

software program behavior. From this case study and the

proposed approach it is clear that the execution time also

depends on the language efficiency as well as on hardware

efficiency.

Fig6: Comparative performance of VC# and Java

 (102 and 103) lines of code.

Fig7: Comparative performance of VC# and Java

(103 and 104) lines of code.

The above proposed approach results in best performance of

process execution based on user’s requirements. This is only

possible if one can classify the program behavior based on

different aspects of users need when the program is generated

and before it is really executed. One such factor which is

responsible for the process execution time is its CPI

calculation which if calculated at the time of program

compilation could easily detect the program behavior. The

proposed approach is based on such concepts that if have

prediction of process execution time before its execution can

be done then we can easily proceed the process to get

executed on node which are more suitable for them taking into

account of future throughput of the whole process execution.

8. CONCLUDING REMARKS
The proposed approach of the generic database system is very

useful approach which results in a very commonly operated

distributed database supportive approach for process

execution. Generally the approaches that have been already

proposed are specific based on some specific criteria but the

present approach provides flexibility to the users that they just

have to set this requirement and according to their need they

could get best optimum process execution scenario to obtain

the best optimum solution of their domain. This approach is

also very efficient because although the network configuration

goes on changing day by day and will keep on going changing

but by this approach process execution can be efficiently done

by providing generic features of this approach which will

itself be a very stable concept of process execution based on

the users need.

9. REFERENCES
[1] Hwang K. Advance Computer Architecture, 4th ed, Tata

McGraw Hill, Reprint 2004, pp. 80-88.

[2] Takabatake T., Kaneko K. and Ito H., HCC Generalized

Hierarchical Completely- Connected Networks, IEICE

TRANS. INF. & SYST., Vol. E83-D, NO.6 June 2000.

[3] Liu M.L., Distributed Computing Principles and

Applications, Pearson Education, 2003, pp. 25-26.

Language VC# JAVA

Lines of Code 102 103 104 102 103 104

Execution Time

in Milliseconds

78 390 1500 96 406 3703

78 359 1890 93 406 3718

93 390 1500 94 390 3781

93 375 1921 93 390 3703

78 375 1468 92 407 3766

Avg. Execution
Time

84 377.8 1655.8 93.6 399.8 3734.2

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

11

[4] Tanenbaum A.S., Distributed Operating Systems,

Prentice Hall, 1995.

[5] Siberschatz A. and Galvin P. B., Operating Systems

Concepts, 5th ed, John Wiley & Sons, Inc, 2000.

[6] Milenkovic M., Operating Systems Concepts and

Design, Tata Mcgraw-Hill, 1997, pp. 46-58.

[7] Alakeel, A.M., A Guide to Dynamic Load Balancing in

Distributed Computer Systems, IJCSNS International

Journal of Computer Science and Network Security,

Vol.10 No.6, pages 153-160, June 2010.

[8] Madiraju P. and Sunderraman R., A Mobile Agent

Approach for Global Database Constraint Checking,

ACM Symposium on Applied Computing, 2004.

[9] Singh, Y.J., Singh Y.S., Gaikwad A. and Mehrotra, S.C. ,

Dynamic management of transactions in distributed real-

time processing system, International journal of database

management systems (IJDMS), vol.2, No.2,May 2010,

[10] Saxena, V. and Shrivastava,M., UML Design for

Performance Evaluation of Object Oriented Programs on

Dual Core Processors, International Journal of Computer

Theory and Engineering, Vol. 1, No. 4, 1793-8201.

October2009

[11] Saxena, V and Arora, D,. “Performance Evaluation for

Object Oriented Software Systems” , SIGSOFT Software

Engineering Notes, March 2009, Volume 34, Number 2.

[12] Saxena, V. and Shrivastava, M., “Performance

Evaluation of Non-Linear Pipeline through UML”,

International Journal of Computer and Electrical

Engineering,Vol.2, No.5, pp.860-866, October, 2010.

[13] Pllana S. and Fahringer T., On Customizing the UML for

Modeling Performance Oriented Applications. In

<<UML>>, Model Engineering Concepts and Tools,

Springer-Verlag., Dresden, Germany 2002.

[14] Pllana S. and Fahringer T., UML-based Modeling of

Performance-oriented Parallel and Distributed

Applications. Proceedings of the Winter Simulation

Conference, Vol. 1, Issue. 8–11, Dec. 2002, pp 497–505.

[15] OMG, 2001, Unified Modeling Language Specification.

Available: http://www.omg.org. (Accessed on 15th Jan.

2012).

[16] OMG, 2002, OMG XML Metadata Interchange (XMI)

Specification. Available: http://www.omg.org. (Accessed

on 15th Jan 2012).

[17] Booch G., Rumbaugh J. and Jacobson I., The Unified

Modeling Language User Guide, Addison Wesley,

Reading, MA, 1999.

[18] Booch G., Rumbaugh J. and Jacobson I., The Unified

Modeling Language User Guide, Twelfth Indian Reprint,

Pearson, 2004.

http://www.omg.org/
http://www.omg.org/

