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ABSTRACT 

Wireless indoor positioning systems have become very 

popular in recent years. These systems have been successfully 

used in many applications such as asset tracking and 

inventory management. Three typical location estimation 

schemes of triangulation, scene analysis, and proximity are 

analyzed. And also location fingerprinting in detail since it is 

used in most current system or solutions. This project focuses 

on the localization using Received Signal Strength (RSS) in 

dense multipath indoor environments. A dynamic system 

approach is proposed in the fingerprinting module, where the 

location is estimated from the state instead from RSS directly. 

The state is reconstructed from a temporal sequence of RSS 

samples by incorporating a proper memory structure based on 

Taken’s embedded theory. Then, a more accurate state-

location correlation is estimated because the impact of the 

temporal variation due to multipath is considered.  
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1. INTRODUCTION 
In todays day to day life the emergency services , demand for 

knowledge of location has increased drasticalnly [1], [2]. 

Among different techniques a popular indoor positioning 

technique to date is a two-stage location fingerprinting [3], 

[4]. Recently, so many number of fingerprinting systems are 

developed based on Received Signal Strength (RSS) of the 

radio in Wireless Local Area Networks (WLANs) in order to 

avoid extra costs [5]–[8]. This design involves a database 

called radio map that stores pre-recorded RSS at reference 

positions. Then, the location is inferred by comparing a new 

RSS with the offline constructed radio fingerprints [5], [9]. 

However, the signal propagation in indoor environments is 

extremely complex and RSSs are usually varying with time 

even at a fixed location [10]. These temporal variations, incur 

a characteristic mismatch between the fingerprints and the 

online observation, and thus, result in various degrees of 

accuracy degradation [11]–[13].Many studies have addressed 

the issues of RSS variations. For example, the history of either 

estimates or fingerprints is utilized in probabilistic approaches 

to reduce its impact by averaging within a certain period [11], 

[14]. The radio map is temporally adapted to the current 

environment by in using sensors [15]. Some works utilized a 

power delay profile to represent the multipath [16]–[18].  

 

Whatever, the delay may not directly reflect the multipath in 

WLANs because the operation is dependent on the user’s 

behavior to avoid the collision. 

The time-varying property of RSS is caused due to number of 

reasons such as the multipath, shadow fading effect and how 

the terminal is held [19], [20]. We propose a dynamic system 

approach into the fingerprinting module to exploit the 

characteristic of the multipath effect. The concept of a 

dynamic system has been exploited in many applications such 

as Kalman filter [21]. The former smoothes the measurements 

while the later multiplies the observed probability of each 

state. In contrast, our approach adopts Taken’s embedded 

theory [23]. The output of our dynamic system not only 
depends on the input but also the state information of the 

system. The state can be reconstructed from a sequence of 

observations of the dynamic system. To model a dynamic 

system, the model needs to be equipped with the 𝑚𝑒𝑚𝑜𝑟𝑦 

[22]. By incorporating memory architecture into the 

positioning system, the location information is then exploited 

in the projected embedded dimension which is constructed by 

the temporal trajectory of a sequence of RSS observations of 

multiple access points (APs). 

In this approach, the novel in the sense that the impact of the 

temporal fluctuations due to multipath is taken into 

consideration. This is motivated by the physical properties of 

the multipath propagation, where a new observation is 

actually involving the past samples. In other words, the spatial 

correlation is estimated between a states in the embedded 

dimension reconstructed from a temporal trajectory instead 

from RSS directly. In our positioning system, the kernel-based 

function is used to exploit the correlation. The experiments, 

performed in a real WLAN environment, demonstrate the 

usefulness of our approach to significant performance 

improvements. 

 

2. MULTIPATH PROPAGATION IN 

DYNAMIC SYSTEM 
In general, the measured RSS in a multipath induced 

environment can be written as  

x(𝑡)=

1

0

N

T





 𝛼(𝜏)⋅ℎ(𝜏)⋅[𝑠(𝑡−𝜏)]𝑒𝑗𝜙(𝜏)+𝑔(𝑡),  where x(𝑡) means 

the RSS observation at time 𝑡 and ℎ(𝜏) and 𝜙(𝜏), respectively, 

represent the amplitude and relative phase of the delayed 

multipath components. The total number of delayed paths is 

equal to 𝑁-1. α(𝜏) is a binary function that controls the on-off 

activity of the corresponding multipath filter ℎ(𝜏), 𝑠(𝑡) is the 

ideal signal in a free space and 𝜏 is the time delay. 
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Figure 1.The system flow of dynamic approach utilizing the projected memory 

 

g(𝑡) is the communication noise, and in general, this noise 

contains everything not included in the summation term 

representing the multipath model. Clearly, the observation of 

RSS is in fact involving the previous samples with different 

weights. More precisely, each observation at time 𝑡 is the 

weighted linear combination of the past s(𝑡-𝜏) and the 

corresponding multipath gain 𝐻(𝜏) = ℎ(𝜏)𝛼(𝜏)𝑒𝑗𝜙(𝜏) . That is, 

the location information has strong relationship with respect 

to the temporal sequence of RSSs. 

Most of current fingerprinting solutions are static in the sense 

that the location is estimated from only a single measurement 

as ℜ𝐷 → ℜ2 [3]. Such a solution can be formulated as p̂ (𝑡)= 

F{x(𝑡)}, where x(𝑡) ∈ ℜ𝐷 is observed RSS from 𝐷 APs at time 

𝑡, p̂ (𝑡) ∈ ℜ2 represents the 2𝐷 Cartesian coordinate of the 

estimated position and F is a RSS-position mapping function. 

Such characteristics motivates us that the location information 

should be extracted by first applying the inverse function 

H−1(𝜏). In this way, the positioning solution can be modified 

as p̂ (𝑡) = F {H−1 [x(𝑡)]}, where H−1 represents the inverse 

multipath effect with multiple dimensions, it can be modeled 

as a finite impulse response (FIR) or an infinite impulse 

response (IIR) filter from the signal processing perspective 

[24].  

After taking such characteristics into consideration, this paper 

presents a dynamic system approach incorporating 

probabilistic functions to location fingerprinting in WLAN . 

Dynamic systems are different from static systems in the 

sense that the former have memory. The output of a dynamic 

system not only depends on the input but also the state 

information of the system. Memory elements preserve the 

state information. In order to preserve the state information, 

we propose to introduce 𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑚𝑒𝑚𝑜𝑟𝑦 [23], [25] into 

the fingerprinting module in order to model the dynamic 

characteristics of the multipath effect. According to Takens’  

 

 

 

embedded theorem [22], the state of a dynamic system can be 

reconstructed from a sequence of  observations of the system.  

To model a dynamic system, the model needs to be equipped 

with the 𝑚𝑒𝑚𝑜𝑟𝑦 The simplest memory element is the unit 

time delay, which has the transfer function 𝐻(𝑧) = 𝑧−1. The 

simplest memory architecture is the tapped delay line, which 

consists of a series of k time delays. Resolution refers to the 

degree to which information concerning the individual 

elements of the input sequences is saved. A low-resolution 

memory holds coarse information about the input data. The 

depth of the memory refers to how far into the past the 

memory holds the input information. For the tapped delay 

line, the depth is the number of delay units and the resolution 

is 1. 

 

3. ADVANCEPOSITING ALGORITHM 

FOR DYNAMIC FINGERPRINTING 
The advance positioning algorithm is based on the concept of 

dynamic systems and machine learning techniques. This 

approach differs from the traditional fingerprinting 

approaches in the following two aspects. First, the states are 

reconstructed from the projected embedded memory 

(temporal trajectory) of observation x(𝑡) by a transfer function 

𝐻(𝑧). Second, the spatial correlation is estimated between the 

reconstructed states with the memory depth 𝑁. In other words, 

the system inputs are not only a current observation, but rather 

a reconstructed state. In this section, we describe how to 

construct the dynamic systems based on the probabilistic-

based approaches.  

The measured RSS x(𝑑, 𝑡) be defined for 𝑡  in the temporal 

dimension and for 𝑑  in the AP spatial domain. The inverse 

multipath H−1 can be viewed as a temporal filter1, the 

memory structure can be generally represented as the 

combination of filter input 𝑥(𝑑, 𝑡) and the previous filter 

output. Let  the memory depth is 𝑁, the filter output states 

y(𝑑, 𝑡) can be obtained by the following equation: 
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In this 𝑦(𝑑, 𝑡) is the filter output at time 𝑡 and from the 𝑑th 

AP, and 𝑎𝑑𝑛 and 𝑏𝑑𝑛 are, respectively, the filter coefficients 

weighting the previous outputs and inputs. For the notation 

purpose, let Y be the matrix form representing the 

reconstructions with 𝑁 memory depths and 𝐷 APs. 

Y=

(1, ) (1, 1)

  (2)
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For probabilistic-based approaches, the positioning in a 

dynamic system can be formulated as follows:  

  r

1

ˆ ( ) , ( ( )) .                 (3)
R

r

r

p t Y H p p 


              

where Y is the reconstructed states from the  online 

measurements, pr ∈ ℜ2 is the coordinate of the 𝑟-th reference 

position and the value of 𝑅 is the number of available 

reference locations. The weighting function 𝑤 means the 

probability interpolating the 𝑅 reference positions, Φ(𝑝𝑟) 
represents the collected fingerprints at pr, and H(Φ(pr)) means 

that all the fingerprints are passing through the same transfer 

function. H(Φ(pr)) = [yr(1); ⋅ ⋅ ⋅ ; yr(L)] where L means the 

number of collected fingerprints and yr∈ ℜD is RSS from D 

APs and at location pr. A matrix form of H(Φ(pr)) is defined 

as: 
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Since the weighting function 𝛚 is obtained between the state 

pattern Y and the fingerprints H(Φ(pr)), the proposed 

approach is dynamic. A special case of the dynamic approach 

occurs when N=1, which can be viewed as a static 

fingerprinting solution. That is, only the current observation is 

available for inputs of the estimation module. 

 The system flow of the proposed dynamic fingerprinting 

system is plotted in Fig. 1. During the offline stage, the states 

of the radio map are reconstructed by the same H(Z) and the 

required parameters are prepared for location estimation. 

During the online stage, a sequence of consecutive samples 

are utilized to obtain the state information Y. Then the state 

location correlation is estimated depending on the selected 

probabilistic approaches. The probabilistic approaches treats 

RSS at each location as a statistical random variable [14], 

[26]. In this article, the kernel-based methods are used here to 

exploit the probabilistic weighting (⋅) [27].  

Before applying kernel-based techniques, the consecutive 

samples in the radio map are passed through the selected 𝐻(𝑧) 

into a sequence of reconstructed states.  

This way, 𝐿−N state vectors with the same memory structure, 

denoted as S𝑟, are generated for each location p𝑟. Then, the 

kernel function can be performed on each state vector due to a 

dimension agreement as follows: 

 
1

,
1

, ( ( )) ( ( ))    (5)
L N

r

i

Y H p i
L N

 







K Y S   

where K is the kernel function calculating the nonlinear 

distance between Y and each  S𝑟(𝑖). Considering the 

normalization, the kernel function becomes: 

( ( ))
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The commonly used Gaussian kernel is adopted in our 

approach, we obtain  
2

r

2

1

ˆY-S ( )1
( , ( )) exp( )

2
  (7)
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where 𝜎 is an adjustable parameter and the operation ||(⋅)|| 
represents the norm function as: 

 

2

r

1

r

0 1

ˆY-S ( ) Y,S ( ) ( , ) ( , 1)  (8)
N D

r

d

i i y d t y d


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where <> indicates a typical inner product function.  

 

4. PERFORMANCE EVALUTION  

 

Figure2: Comparison of positioning accuracy based on 

different methods. 
 

From figure2 it is clearly that the state information is 

reconstructed to more accurately the spatial correlation in the 

proposed dynamic approach. By incorporating the memory 

architecture and estimating between a state, the performance 

is significantly enhanced since the temporal variation due to 

multipath is taken into consideration. That is why my 

approach achieves the better performance than the traditional 

approaches.  
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Figure 3: Effect of the number of training fingerprints 𝐿 

on the accuracy within a short distance 

 

 

Figure 4: Performance impact of the memory depths 𝑁 on 

accuracy within a short distance. 

The number of training fingerprints and the depths of 

memory. Figure3 and Figure4 shows the effect of different 

number of training fingerprints L per reference location. we 

can seen, the dynamic approach improves the accuracy with 

all values of L. We learn that our approach has the advantage 

of using the fewest fingerprints to achieve the same accuracy. 

 

5. CONCLUSION 
The multipath propagation property inspires us that the 

location information is highly related to a temporal sequence 

of RSS samples. Thus, a novel dynamic system approach is 

developed into the WLAN fingerprinting module, where the 

output not only depends on current RSS, but also the state 

information of the system.  

By incorporating a memory structure, the state information is 

reconstructed from a temporal sequence of RSS samples. The  

spatial correlation is then estimated from a state in the 

projected embedded dimension instead from RSS directly.  

In this method, we use the kernel-based function to exploit the 

correlation and compare with other state-based methods. The 

experiments are performed by collecting realistic RSS data in 

an indoor WLAN environment.  

The results show that the positioning accuracy is significantly 

improved with the use of a dynamic system approach. The 

results support the conclusion that the temporal fluctuation 

due to multipath is taken into consideration in our algorithm. 
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