
International Journal of Computer Applications (0975 – 8887)

Volume 55– No.5, October 2012

34

Dynamic and Distributed Indexing Architecture in

Search Engine using Grid Computing

M. E. ElAraby

Dept. of Computer
Science, High Institute

for Computers and
Information Systems,

Al Shorouk Academy,
Egypt

M. M. Sakre
Dept. of Computer

Science, High Institute
for Computers and

Information Systems,

Al Shorouk Academy,
Egypt

M. Z. Rashad
Dept. of Computer
Science, Faculty of

Computer and
Information Sciences,

Mansoura University,
Egypt

O. Nomir
Dept. of Computer
Science, Faculty of

Computer and
Information Sciences,

Mansoura University,
Egypt

ABSTRACT

Search engines require computers with high computation

resources for processing to crawl web pages and huge data

storage to store billions of pages collected from the World

Wide Web after parsing and indexing these pages. The

indexer is one of the main components of the search engine

that come intermediate between the crawler and the searcher.

Indexing is the process of organizing the collected data to

facility information retrieval and minimizes the time of query.

Indexing requires huge processing and storage resources, and

the indexing has a high effect on the performance of the

search engine, this effect differs based on the structure and the

process index construction. Distribution of the indexing

process over a cluster of computers in grid computing will

improve the performance through distributing the parsing load

over a number of computers in a grid environment, and

distributing the indexed data over distributed memory

according to terms over a number of computers remotely. Due

to the search engine data collections with frequent changes,

the indexer require dynamic indexing. So the merge of the

distributed and dynamic indexing in architecture over grid

computing will give a better performance utilizing the

available resources without need to computers with high cost

such as supercomputers.

General Terms

Grid Computing, Algorithms, Inverted Index, and World

Wide Web.

Keywords

Indexer, World Wide Web, Search engine, Grid Computing,

Web pages, Secondary index, Main index, Alchemi, Manager,

and Executor.

1. INTRODUCTION
One of the main sources of information is the internet which

is useful for a large number of consumers. The easiest way to

deal with the internet is the search engine. Search engines

work as the mediators between consumers and online

information to search and get information from the World

Wide Web which contains many billions of web pages. So,

components of search engine are an important topic of

research. A search engine has at least three main components:

the crawler, indexer, and searcher [1] as shown in figure 1.

The search engine roll is to gathering the web pages and

indexing them to retrieve easily and faster by user queries.

One of the main components in search engines is the indexing

which consists of steps followed to generate the indexed

pages collection.

Indexing is the act of classifying and providing an index in

order to make items easier to retrieve. Indexing the data set

enables access to large data set, and reduces the access time

while query processing by the way to avoid linearly scanning

the texts for each query is to index the documents in advance.

The crawling in the search engine collects very large number

of web pages in database, then when search query come, it

will take much time to retrieve the required page, so indexing

process in search engine parses, and stores data to facilitate

fast and accurate information retrieval. There are many

different indexing techniques and each one has different

performance and speed. There are two general types of

indexing full-text indexing, and partial-text indexing. Full-text

indexing parses and store all words in the document so it

requires more storage and increases index size, but partial-text

services restrict the depth indexed to reduce index size.

Popular search engines focus on the full-text indexing of

online, natural language documents. [2]

Indexing in search engine is one of the main components of

the search engine, it is an important factor of search engine,

and it is intermediate stage between crawling process and the

searching, so the indexing affects the general performance,

speed, and accuracy of the search engine. The performance of

search engine and underlying indexing techniques is one of

the factors that a critical for usability of text retrieval systems

[3].

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.5, October 2012

35

The Crawler Process

The Crawlers

URL Extractor

Indexer

Indexed Pages

Searcher

User

Answer query

URL queue Web pages Index

Figure 1: Search Engine Generic Architecture

There are two major classes of indices for text retrieval were

proposed: a technique based on inverted lists and

superimposed coding scheme proposed in [4] and further

enhanced by several authors, e.g. [5]. Both structures have

certain scalability problems of different nature. The inverted

lists provide good performance for single-keys searches, but

their performance rapidly decreases when the query size

increases, which is important for text retrieval. The

superimposed coding does not depend on the query size, but

depends linearly on the data set size, which potentially implies

hard scalability problems for huge data collections. So the

second technique is hard to the crawled web pages, while the

first technique is the more suitable for the crawled web pages

which is huge data set in search engines to generate the index

data faster.

In last years, many changes exist in the way of perceiving and

using computing, which computing needs processed by

localized computing platforms and infrastructures. This way

has been changed. The change has been caused by the take-up

of commodity computer and network components. As a

consequence of these changes has been the capability for

effective and efficient utilization of widely distributed

resources to fulfill a range of application needs [6]. The

distributed system exists when there are computers that are

interconnected and communicating. The issues in designing,

building and deploying distributed computer systems have

been discussed in many years. The term of the grid computing

was known in the mid 1990s, which refers to a proposed

distributed computing infrastructure for advanced science and

engineering [8, 9]. The grid computing is a special type of

parallel computing which relies on complete computers with

onboard CPU, storage, power supply, network interface, etc.

these computers connected to a network (private, public or the

Internet) by a conventional network interface, such as

Ethernet. A grid has a hardware and software infrastructure

that provides dependable, consistent, pervasive, and

inexpensive access to high-end computational capabilities

[10].

Web pages are collections often very large, so it cannot

perform index construction efficiently on a single machine.

This is particularly true of the World Wide Web content. This

required large computer clusters to construct any reasonably

sized web index. Distributed indexing algorithms are very

important in web search engines for index construction. So,

grid computing introduces a good solution to improve the

performance through utilizing the available resources. Using

indexing algorithm that distributes the process of indexing

over a large computer clusters as MapReduce. The point of a

cluster solves large computing problems on cheap commodity

machines or nodes that are built from standard parts

(processor, memory, and disk) as opposed to on a

supercomputer with specialized hardware [11]. Grid

computing is not only share processing but also share memory

between available resources in a network. Index process is

large processing and also requires huge memory up to

terabyte to store index data, so grid computing will be useful,

and it will introduces a solution without needing to expensive

computers with huge storage.

The web contents are modified frequently with documents

being added, update, or delete. This means that the index

needs to update by adding, update, and delete frequently. The

simplest way is to periodically reconstruct the index from

scratch. This way is a good solution if the number of changes

over time is small and a delay in making new documents

searchable is acceptable and this requires enough resources

are available to construct a new index while the old one is still

available for querying [11]. But this way is not suitable for

World Wide Web content which frequently updated is made

continuously. The best way to make new documents be

included quickly in the query results is to use two indexes,

main index and the secondary index which the secondary

index contains the new document. If any query comes will run

on the main index and the secondary index and merges the

results to get the newest results up to date.

2. Related work
The performance and the time of information retrieval are

affected by a number of factors; the main factors are how this

data set is organized which mean indexing and the frequency

of change in this data set, so there are a number of research

groups that have been working in the field of distributed index

and other focused on dynamic indexing. There are researches

to study changes and dynamics of the web content.

Algorithms and techniques of the indexing are a main point of

researches, where there are proposed new algorithms to serve

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.5, October 2012

36

the problems as the long processing time and the frequency

change, also there are a proposed mergence of the existing

algorithms to improve the performance. Also there are many

research groups that have been working in distributed

computing. These groups have created libraries, middleware

and tools that allow the cooperative use of geographically

distributed resources unified to act as a single powerful

platform for the execution of parallel and distributed

applications. This approach of computing has been known by

several names, such as metacomputing, scalable computing,

global computing, Internet computing and lately as grid

computing [7, 8, 9].

Maxim Martynov and Boris Novikov proposed an algorithm

for query evaluation in text retrieval systems based on well-

known inverted lists augmented with additional data structure

and estimate expected performance gains [12]. Justin Zobel,

Alistair Moffat, and Ron Sacks-Davis proposed an inverted

file indexing scheme based on compression. This scheme

allows users to retrieve documents using words occurring in

the documents, sequences of adjacent words, and statistical

ranking techniques. The compression methods chosen ensure

that the storage requirements are small and that dynamic

update is straightforward [13]. Eytan Adar, Jaime Teevan, and

Susan T. Dumais explores the relationship between Web page

content change (obtained from an hourly crawl of over 40K

pages) and people’s revisitation to those pages (collected via a

large scale log analysis of 2.3M users). They identify the

relationship, or resonance, between revisitation behavior and

the amount and type of changes on those pages [14]. A. Gulli

and A. Signorini estimates the size of the public indexable

web at 11.5 billion pages. They also estimate the overlap and

the index size of Google, MSN, Ask/Teoma and Yahoo! [15].

Martin Klein and Michael L. Nelson present the results from

studying the change of titles over time. They take titles from

copies provided by the Internet Archive of randomly sampled

web pages and show the frequency of change as well as the

degree of change in terms of the Levenshtein score [16].

Eytan Adar, Jaime Teevan, Susan T. Dumais, and Jonathan L.

Elsas explores changes in Web content by analyzing a crawl

of 55,000 Web pages, selected to represent different user

visitation patterns. They describe algorithms, analyses, and

models for characterizing changes in Web content, focusing

on both time and structure [17]. Dionysios Logothetis and

Kenneth Yocum explores using indexed data to support

stateful groupwise processing. Access to persistent state is a

key requirement for incremental processing, allowing

operations to incorporate data updates without recomputing

from scratch [18]. Michael Isard, Mihai Budiu, Yuan Yu,

Andrew Birrell, and Dennis Fetterly created a general-purpose

distributed execution engine for coarse-grain data-parallel

applications this engine called Dryad. Dryad is designed to

scale from powerful multi-core single computers, through

small clusters of computers, to data centers with thousands of

computers. The Dryad execution engine handles all the

difficult problems of creating a large distributed, concurrent

application: scheduling the use of computers and their CPUs,

recovering from communication or computer failures, and

transporting data between vertices [19].

3. Alchemi Tool
One of the systems that help in implementing the grid based

applications is Alchemi system. This system supported by

Microsoft windows-based grid computing infrastructure that

plays critical role in the industry-wide adoption of grids due to

the large-scale deployment of windows within enterprises.

This system runs on the Windows operating system in the

.NET Framework [20]. Alchemi provides an API for C# and

C++, and operates in the Windows .NET framework. Alchemi

system is an open source software toolkits which is developed

at the University of Melbourne. This system provides

middleware for creating an enterprise grid computing

environment.

Alchemi consists of two main components. These are the

manager and the executer components. As it is explained in

figure 2, the executor component can be run on many

computers while only one computer runs the manager

component. The manager receives the threads from the client

application and distributes these threads over the connected

executors. The manager stores the execution time and the

executor of each thread [21]. The Microsoft .NET Framework

provides a powerful toolset that can be leveraged for all of

these, in particular support for remote execution,

multithreading, security, asynchronous programming,

disconnected data access, managed execution, and cross-

language development, making it an ideal platform for

middleware grid computing [22].

Figure 2: Alchemi's main components

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.5, October 2012

37

4. Index Architecture

The index operates on the output of the crawler, which the

crawler gathers the pages from the World Wide Web and store

them in the database. The indexer reads the pages and

processes them to generate the index to facility the

information retrieval process and reduce the access time when

any search query comes. The efficiency of index affects the

time required to retrieve the required pages for the user

search's queries. This mean that the index technique used

affects the searcher performance. The proposed system

structure focuses on two main issues: the dynamic indexing

process and the distributed indexing process. The first issue is

the dynamic indexing that serves changes in Web content

where the Web is a dynamic, ever changing collection of

information. The second issue is the distributed indexing

serves the huge data processing of large collection of web

pages which the indexable Web is more than 11.5 billion

pages [15]. The dynamic indexing can be achieved by using a

secondary index beside the main index. The main index

contains the overall index data that have been collected and

indexed before receiving any search query. The secondary

index is responsible of indexing the pages has been crawled

while running the searches where these pages may be new

pages or existed but have been updated so the secondary index

generates index of these pages and stores them temporarily.

When the secondary index reached to the predefined limit, it

merges its contents with the main index. When any query

comes to the searcher, it sends the query to the main and the

secondary index and merges the results of them together to get

the result with the latest updates. The figure 3 shows the Top

level structure of the search engine with the dynamic index.

This structure represented in this figure focuses on the index

parts, and its relationship with the others parts of the search

engine. The secondary index works while running the system

and receiving queries to the searcher. Before receiving any

query from searchers while the preparation of the system the

main index works alone.

The distributed index achieved by distributing the documents

over a set of computers. The proposed architecture to achieve

the distributed index consists of a set of computers distributed

and one master computer to manage the other computers and

distribute the documents over them. Each computer pares the

document that has been received from the master and

generates the inverted index list of the document then returns

the inverted index list back to the master computer; this

supports data-parallel indexing. The overall index lists are

returned to the master computer, so the memory required to

store the index dictionary is very huge memory. The master

computer distributes the received lists according to term,

where the master computer is connected to other computers in

a network with large memory disk and each computer

contains an index repository of a set of terms. The master

computer sends each subset of the index lists according to

terms to a specified computer that contains set of terms, and

then this computer merges the received index lists with the

existed lists in its database. This architecture distributes the

load of processing while parsing by distributing the

documents over set of computers, then distributes the memory

or the storage by distributing the terms over other set of

computers.

Grid computing is a good mechanism to support parallel

execution mode using the available resources and minimize

the execution cost. So the distributed indexing can be

implemented using the environment of the grid computing.

The grid computing has a master node that controls the

available resources in the grid computing. The crawled

documents are passed to the master node of the grid then the

master distributes the documents over the available computers

in the grid, and receives returned inverted list of each

computer. The master is responsible of distributing the

returned inverted index according to terms over a number of

computers connected to it. Therefore any query comes from

the searcher of the search engine to the master computer of

the grid; the master computer will send the query to a

specified computer to search in it about the query's keyword.

User

Result

Query

Query Result

Web
Page

Web

Page

Index List

Result

Query Result

Query

Crawler

Collection

of

documents

Secondary index
Main Index

Parser

Index

Parser

Main Index

Query publish & Merging Results

Searcher

Figure 3: Top level structure of the Dynamic Index

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.5, October 2012

38

This distribution of index according to terms has a positive

impact on the performance of the searcher of the search

engine. The figure 4 shows distribution of the parsing load

and distribution of the index storage over the computers as

mentioned previously.

It is very useful merging the dynamic index architecture with

the distributed index architecture to get the advantages of the

dynamic index and the distributed index without needing to

resources with a specific capabilities or expensive servers.

This can be achieved by using the grid computing to provide

available resources in a network. The dynamic index achieved

by specifying a computer come its role while running the

search engine. This computer read the documents that crawled

from web while running the search engine, parses them and

generates the inverted index list of these documents. When the

index repository reaches to a specified size, the computer send

the index content to the master computer of the grid to

distribute the index list according to the terms and send them

to the computers of the indexes.

The distributed index come its role in the start stage to

distribute the load of parsing document over a set of available

computers in the grid computing and its role continues to

distribute the index according to terms over a set of computers

predefined to store the index of all pages that have been

crawled and what will comes while the search engine is

running. The figure 5 views the architecture of the distributed

index and the dynamic index in one architecture design. This

architecture shows that there is a computer responsible of

publishing the query and merging the returned result. The

computer of query publishing and merging results sends the

query to the specified computer according to the terms of the

query and also sends the query to the computer of the

secondary index. The computer of query publishing and

merging results receives the results and merges them with a

high priority to the result of the secondary index and return

the result of merging to the searcher.

5. Implementation
Alchemi system provides a Software Development Kit (SDK)

that includes a Dynamic Link Library (DLL) that supports

multithreaded applications; it is used to implement the

proposed architecture of the index using the grid system.

The architecture is implemented by C# programming

language as it is supported by Alchemi. It is designed a master

class that play the role of the controller in the architecture,

which get the documents from the crawled documents

database, distributes the documents over the available

computers in the grid, and receives the results of each

computer in the grid as a list of keywords in form of a token

as shown in the programming model in figure 6. The token is

an object of a class contain the keyword, document Id, and a

number refers to the frequency of the kerword in the

document. Each computer in the grid receives the document

from the master, parses the document, groups the words of the

document and generates a token for each keyword with the

document Identifier and the frequency of the keyword in the

document that will help while ranking in the searcher part in

the search engine.

The master classifies the tokens according to the first

character of the keyword to distribute the index while store

according to the keyword. There are five computers with SQL

server and contain the database of index each one store a

specific set of keywords as the following:

R

R
Q

I

I

Q
R

Documents

D

I

PC1

Parser 1

PCn

Parser n

Master

Computer

(Grid

Master)

D

I

Collection

of

Document

PCm
Index m

PC1
Index 1

Q

Searcher

Figure 4: Simple distributed index structure. (R) Result, (Q) Query, (D) Document

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.5, October 2012

39

- Computer #1 stores the keywords starts with

characters A, B, C, D, E,

- Computer #2 stores the keywords starts with

characters F, G, H, I, J,

- Computer #3 stores the keywords starts with

characters K, L, M, N, O,

- Computer #4 stores the keywords starts with

characters P, Q, R, S, T,

- Computer #5 stores the keywords starts with

characters U, V, W, X, Y, Z.

R
Q

R

Q

I

D

I

D

I

D

Posting

List
Q

Secondary Computer

R

D
I

D

D

D

Q

R

D

Master

Computer

(Grid

Master)

Collection

of

Document

Searcher
Query publish

& Merging

Results

Index Parser

PC1

Parser 1

PCn

Parser n

PCm
Index m

PC1
Index 1

Figure 5: block Diagram of dynamic distributed index (D) Document, (Q) Query, (R) Result

Document

Document

List of tokens

List of tokens

Document

Main Class
Collection

of

Document

PC1

PCn

Parser Class

U, V, W, X, Y, Z

Index 5

A, B, C, D, E

Index 1

P, Q, R, S, T

Index 4

K, L, M, N, O

Index 5

F, G, H, I, J

Index 2

Token

Token

Parser Class

Figure 6: programming module

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.5, October 2012

40

The programming code of the overall architecture exists in the

master computer and the other computers in the grid only

contain Alchemi Executor program. It is important to run

Alchemi components before running the application. First, run

the Alchemi Manager in the master computer as in figure 7,

and then run the Achemi Executor in the available computers

as in figure 8 to connect the computers to the master computer

and schedule the available executors in the grid environment.

Figure 7: Alchemi Manager Form

Figure 8: Alchemi Executor Form

6. Results and Evaluation
The used testbed consists of seven personal computers with

1GB RAM and Intel CPU 2.3, Alchemi executer program is

installed on five computers as in Figure 8, and Alchemi

manager program is installed on only one computer as in

Figure 7, where SQL server 2008 is installed. Run the

manager computer and one or more executor nodes and

connect them to the manager node that is configured when

constructing a desktop grid in Alchemi as show in Figure 9,

the figure shows the executer table in the Alchemi database

which store the details of each executer. When the application

runs it generate a set of threads of type GThread. These

threads are submitted to the manager to distribute them over

the available computers. These threads are stored in the

threads table in Alchemi database as in Figure 10.

Figure 9: Achemi Executors connected to manager

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.5, October 2012

41

Figure 10: The Threads table in the alchemi database

If only one computer is available, and the indexing occurred

sequentially then the total time is

 T = X * (+)

 X Be number of documents,

 Time of parsing one document,

 Time of merging the document keywords with the other

index

 But if (N) nodes are available, then total time is

 T =

 +(X *)

 Be the number of executor computers.

Thus, by increasing the number of Executor computers, the

indexing time will decrease, proportionally to the number of

executor nodes in the Grid. This is evident in the results that

shown in Table 1 and the graph in Figure 11.

The results of running the application number of times with

different number of executors up to five executors, and

different numbers of documents in each experiment. The

numbers of the executors, the numbers of the documents that

run on the application and the results of running the

application in seconds are stored in the table 1. The different

experiments show that there is a clear reduction and

improvement in the execution time of the indexing process

using distributed indexing technique as shown in figure 11.

Table 1. Table captions should be placed above the table

no. of Pages 50 100 200 300 400 500

2 Executor 41 83 168 249 337 417

2 Executor 18 35 71 108 142 179

3 Executor 14 29 59 88 119 146

4 Executor 12 24 49 74 99 124

5 Executor 10 20 41 61 81 103

Figure 11: Execution time using varying number of executors enabled

0

50

100

150

200

250

300

350

400

450

50 100 200 300 400 500

Executor 1

Executor 2

Executor 3

Executor 4

Executor 5

Ti
m

e
in

 s
ec

o
n

d
(s

ec
)

No. of parsed document

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.5, October 2012

42

This evaluation of distributed indexing occurred through

calculating of the execution time and view the time reduction

by distributing the parsing process but there is also another

benefits of this architecture that will affect the performance of

the search process by distribute the index through the key

words instead of searching in all index, search in a subset of

the index based on the first character of the keyword of the

query.

The performance of the dynamic index tested by make some

changes in set of documents in the crawled documents in the

database then run a search query on the index database after

two minutes, the returned documents affects by retrieve the

new version of documents that have been changed in the

crawled pages in the database.

7. Conclusion and Future Work
In this paper, an architecture of distributed index proposed

using grid computing. This architecture have the advantages

of distributed index according to document while parsing the

document to extract the terms form document and the

advantages of distributed index according to terms while

storing the index and utilizing the available resources in a grid

without needing to a huge storage. Distribution while parsing

the document to extract terms achieved using grid computing

technique. This architecture eliminates the needs to computers

with high speed processing such as supercomputer and also

eliminates the needs to computers with huge storage in one

place. Also this architecture give a better performance while

searching instead of searching in all data indexed the master

node will identify smaller scope of data based on the query

keyword. The paper maintained the dynamic index in the

proposed architecture by specifying a computer continuously

to index the updates in the crawled document and transfer the

index to the master node to distribute it.

In future work, it is planned to look into dynamic load

balancing algorithm, optimizing the performance of the

searching, and using grid computing to enhance the

performance of the other search engine components such as

Page Ranking and building a complete search engine

components based on the grid computing.

8. REFERENCES
[1] S. Brin and L. Page, "The Anatomy of a Large-Scale

Hypertextual Web Search Engine", Computer Networks

and ISDN Systems, 30(1–7):107–117, April 1998.

[2] Clarke, C., Cormack, and G., “Dynamic Inverted Indexes

for a Distributed Full-Text Retrieval System”, TechRep

MT-95-01, University of Waterloo, February 1995.

[3] G. Huck, F. Moser, and Erich J. Neuhold, “Integration

and handling of hypermedia information as a challenge

for multimedia and federated database systems”, In Proc.

Of the Second Intnl. Workshop on Advances in

Databases and Information Systems - ADBIS’95, pages

183–194, Moscow, June 27–30 1995.

[4] C. Faloutsos and S. Christodoulakis, “Signature files: an

access method for documents and its analytical

performance evaluation”. ACM Trans. on Database

Systems, 4(2):267–288, 1984.

[5] A. Kent, R. Sacks-Davies, and K. Ramamohanarao, “A

superimposed coding scheme based on multiple block

descriptor files for indexing very large databases”. In

Proc. 14 conf. VLDB, pages 351–359, 1988.

[6] Ahmar Abbas, Book: "GRID COMPUTING: A Practical

Guide to Technology and Application", ISBN: 1-58450-

276-2, Charles River Media Inc, 2004.

[7] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of

the grid: Enabling scalable virtual organizations”,

International Journal of High Performance Computing

Applications Fall 2001 15: 200-222.

[8] I. Foster, C. Kesselman, J. M. Nick, S. Tuecke, “The

Physiology of the Grid: An Open Grid Services

Architecture for Distributed Systems Integration”, Global

Grid Forum, June 22, 2002.

[9] F. Berman, G. Fox, and T. Hey, Book: “Grid Computing:

Making the Global Infrastructure a Reality”, published

March 2003.

[10] Foster, I. and Kesselman, C. (eds.), The Grid2: Blueprint

for a New Computing Infrastructure. Morgan Kaufmann,

1999.

[11] C. D. Manning, P. Raghavan, and H. Schutze, Book:

“Introduction to Information Retrieval”, Cambridge

University Press 2008.

[12] M. Martynov and B. Novikov, “An Indexing Algorithm

for Text Retrieval”, Proceedings of the International

Workshop on Advances in Databases and Information

Systems (ADBIS’96). Moscow, September 10–13, 1996.

[13] J. Zobel, A. Moffat, and R. Sacks-Davis, “An Efficient

Indexing Technique for Full-Text Database Systems”,

Proceedings of the 18th VLDB Conference Vancouver,

British Columbia, Canada 1992.

[14] E. Adar, J. Teevan, and S. T. Dumais, “Resonance on the

Web: Web Dynamics and Revisitation Patterns”, ACM

978-1-60558-246-7/08/04, Boston, MA, USA, April 4–9,

2009.

[15] A. Gulli and A. Signorini, “The Indexable Web is More

than 11.5 billion pages”, ACM 1595930515/05/0005,

Chiba, Japan , May 10–14, 2005.

[16] M. Klein and M. L. Nelson. “Investigating the Change of

Web Pages’ Titles Over Time”, InDP’09, Austin, TX,

USA, June 19, 2009.

[17] E. Adar, J. Teevan, S. T. Dumais, and J. L. Elsas, “The

Web Changes Everything: Understanding the Dynamics

of Web Content”, ACM 978-1-60558-390-7, WSDM’09,

Barcelona, Spain, February 9-12, 2009.

[18] D. Logothetis and K. Yocum, “Data Indexing for

Stateful, Large-scale Data Processing”, ACM, NetDB

’09 Big Sky, MT USA, 2009.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,

“Dryad: Distributed Data-Parallel Programs from

Sequential Building Blocks”, ACM 978-1-59593-636-

3/07/0003, Lisboa, Portugal, March 21–23, 2007.

[20] A. Luther et al, “Peer-to-peer grid computing and a

.NET-based Alchemi framework”, High performance

computing: paradigm and infrastructure, Laurence Yang

and Minyi Guo (eds), Chap 21, 403-429, Wiley Press,

New Jersey, USA, June 2005.

[21] A. Luther, R. Buyya, R. Ranjan and S. Venugopal,

“Alchemi: A .NET-based Grid Computing Framework

and its Integration into Global Grids”, Technical Report,

GRIDS-TR-2003-8, Grid Computing and Distributed

Systems Laboratory, University of Melbourne, Australia.

[22] K. Nadiminti, Yi-Feng Chiu, N. Teoh, A. Luther, S.

Venugopal, and R. Buyya, ExcelGrid: A .NET Plug-in

for Outsourcing Excel Spreadsheet Workload to

Enterprise and Global Grids, Proceedings of the 12th

International Conference on Advanced Computing and

Communication, ADCOM 2004, December 15-18, 2004.

