
International Journal of Computer Applications (0975 – 8887)

Volume 55– No.4, October 2012

30

Representation and Analysis of Object Oriented Graph

(OOG): A Graph Algorithmic Approach

Gitosree Khan

B. P. Poddar Institute of
Management & Technology

137 VIP Road
Kolkata 700052, India

Sabnam Sengupta
B. P. Poddar Institute of

Management & Technology
137 VIP Road

Kolkata 700052, India

Ananya Kanjilal

B. P. Poddar Institute of
Management & Technology

137 VIP Road
Kolkata 700052, India

ABSTRACT
One of the primary concerns of the software industry lies in

producing good quality software within estimated budget and

time. With increased complexity of function rich software

systems being developed and client’s emphasis on quality and

conformance, lot of effort is invested in testing of a software

product. In Object Oriented Graph, the graph data is stored in

the form of a 3 dimensional matrix, i.e. sparse matrix. To

address that problem, an enhancement of Object Oriented

Graph is done, where our result shows a more efficient and

effective Data Structure called Hierarchical Graph Adjacency

List i.e. HGAL in which for each vertex in the graph, a list of

all other vertices which it has an edge to (that vertex's

"adjacency list"). In this paper, we have proposed three

algorithm called Implementation of Hierarchical Graph into

Adjacency List i.e., IHGAL for representation of an OOG to

adjacency list and Identifying Constructs of Hierarchical

Graph i.e. ICHG to identify different constructs and analyze

the OOG ,Test Path Search (TPS) and Traversal of Trace Path

i.e. TTP .On the basis of HGAL data structure our result

shows all best possible paths with minimum test cases and

detect minimum no. of independent paths in line with the

definition of McCabe’s Cyclomatic complexity and measure

the number of test path of different nodes in the OOG for

finding the traceability among different phases of SDLC.

Keywords
Hierarchical graphs, Graph based test path, Graph based Trace

path and Graph based analysis.

1. INTRODUCTION
The size and complexity of the software system increases,

testing becomes an important activity, which is not only

confined to the testing of source code, but, also includes

testing and verification of design and architecture. Designing

effective test cases and identifying effective test suites

consisting of effective test paths has become the prominent

area of research these days. There are many limitations of

UML. Firstly, UML is Visual not formal, so it is not possible

to apply rigorous automated analysis or to execute a UML

model in order to test its behavior, so graph formalism is used

in many works. Secondly, it is not executable because it does

not comprise of any code. Thirdly, UML diagrams depict

different views of the same system. Possible inconsistencies

are found in UML.Since, UML diagrams are not explicitly

traceable, so Graph based analysis is done for traceability.

In our earlier work we have proposed a Graph model OOG to

model the UML artifacts of an object oriented system through

its different phases – requirement analysis, design &

implementation that has been focus in the research work i.e.

referred in [1]. In this work, we model the interrelationships

of artifacts as OOG and implement the OOG to be generically

applicable. We propose a novel data structure called HGAL

for OOG which help an effective storage of graph data in the

memory and based on this data structure an algorithm called

IHGAL is propose for representing the OOG into adjacency

list. Various Graphs based algorithms towards a generic

approach for overall analysis and testing of an object oriented

system like ICHG, TPS and TTP to identify different

constructs and to design effective test cases and calculate test

path and trace path to the different phases of SDLC also. This

is a generic approach that is applicable for all the phases of

SDLC starting from requirement analysis, design, and

implementation. This will also help us in requirement

traceability and verification of consistency among the analysis

and design models both in forward and reverse direction.

2. REVIEW OF RELATED WORK
The OMG initiative MDA has revolutionized the way models

would be used for development. Testing based on UML

models has been lately quite an interesting area of research

where behavioral diagrams like sequence, activity, state charts

and use cases have been generally used. We have classified

the research works into three categories. A) Testing or

verification at the analysis phase, based on activity diagram,

B) Testing or verification at the design phase, based on

sequence diagram, C) Testing or verification based on object

oriented code.

2.1 Verification at Analysis phase: Activity

Models
In this section we present the review of some of the research

work on verification of OO systems based on UML activity

diagrams which are used in the analysis phase to detail the use

case flow of events.

The authors in [8] describe a tool that supports verification of

workflow models specified in UML activity diagrams, by

translating an activity diagram into an input format for a

model checker according to a mathematical semantics. With

the model checker, arbitrary propositional requirements can

be checked against the input model. A prototype tool has been

proposed in [6] to derive test scenarios from activity

diagrams. To formalize the behaviors of UML Activity

Diagrams by employing the Hoare's CSP (communicating

sequential processes), an approach to model checking UML

Activity Diagrams during software analysis or design stage

has been proposed in [7]. A method is proposed in [4] to

generate test cases from UML activity diagrams that minimize

the number of test cases generated while deriving all

practically useful test cases by building an I/O explicit activity

diagram from an ordinary UML activity diagram and then

transforming it to a directed graph, from which test cases for

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.4, October 2012

31

the initial activity diagram are derived based on the single

stimulus principle, which helps avoid the state explosion

problem in test generation for a concurrent system. A graph

based approach is done to measure the complexity of

component based architecture in [14].

2.2 Verification at Design phase: Sequence

Models
Graph based methods are used in some to derive test paths,

test cases or ensure scenario coverage in some of the

behavioral diagrams. Graph theory is an area of mathematics

that helps us in using graph based model information to test

applications in many different ways. This section discusses

some of them relevant to our domain of work.

In [9] an integrated approach to generate system level test

cases and assess reliability of a system is proposed. The use

case model is transformed into system sequence diagrams

(SSD) and thereafter into usage graphs. Coverage criteria for

covering all scenarios from the usage graph are proposed

based on which test cases can be designed. In this work,

scenarios are used to identify test paths. Scenarios are

analyzed to identify test cases such that each path is covered.

A graphical model for sequence diagrams named sequence

diagram graphs (SDG) have been developed in [10] which is

closely related to our work and used to generate test cases

from UML design diagrams. The nodes of SDG are

augmented with different information necessary to compose

test vectors. These information are mined from use case

templates, class diagrams and data dictionary. The SDG is

then traversed to generate test cases. However this work

considers one sequence diagram at a time and the relation

between them to realize a requirement is not yet explored.

We have extended this concept further in our work [2] to

define a graphical model for integrating the sequence

diagrams of a system for a particular use case, which will

depict all the scenarios. It is a hierarchical graph where each

node at the top layer is a sequence diagram and in the next

layer is a SDG [10]. We also define a metrics to identify

optimum number of paths in the D-SG as a function of the

number of paths in the individual sequence diagrams. The

paths within a sequence may be derived based on the path

detection methods in [10]. This work in [2] will be

particularly useful to be applied for modeling distributed

systems. Further in [15], we propose Activity Relationship

graph model that depicts the interrelationship of activity

diagrams modeling a use case. We also define a set of metrics

named Use case Scenario Paths (USP) that measures the

minimum number of independent paths in ARG. An algorithm

is proposed to analyze ARG and derive the number of Use

case Scenario Paths. This gives a measure of the number of

test paths for a requirement based on analysis models early in

the life cycle.

2.3 Verification at Implementation phase:

Implementation Models
Software is tested usually to achieve two goals- achieve

quality by detecting and removing defects (debug testing) and

assessing existing quality for measuring reliability

(operational testing). The relationship between the two testing

goals using a probabilistic analysis has been the focus of

research work in [12]. In [13], a probe based testing technique

has been designed that observes the internal details of

execution. Probes are predetermined and rebuilt and test

coverage reports are generated at probe, method, class,

inheritance, regression and dynamic binding levels. In [11], a

combination of use cases and cause effect graphing has lead to

the development of a rigorous approach for acceptance testing

which ensures function coverage as well. In [12] Bixin Li

describes new techniques based on object oriented program

slicing techniques that compute the amount and width of

information flow, correlation coefficient and coupling among

basic components. In [13] dynamic data flow analysis in Java

programs has been presented to detect data flow anomalies.

Bertolino et al. Al presents a generalized algorithm in [13]

that generates a set of paths that covers every arc in the

program flow graph for branch testing of program code. In [3,

5] we have proposed an extension of McCabe’s CFG by

Extended Control Flow Graph (ECFG).

Based on the reviewed works, we represent an OOG graph in

our work using the adjacency list which is addressing the

problem that arises in the previous research work, i.e., in

OOG, the graph data is stored in the form of a 3 dimensional

matrix. But, that was a sparse matrix, where, most of the cells

hold the value null, which is wastage of resources. So, in this

work the OOG in the form of adjacency list will help to detect

all possible number of path and nodes in each path in that

graph such that all nodes are covered and we describe each

path along with the order of the node. An algorithm is

proposed based on the data structure to identify the different

constructs of OOG, where the different constructs are

explained.

In this work, we use Graph theoretic techniques to model an

object-oriented software system and proposed Graph based

algorithms towards a generic approach for overall analysis

and testing of an object oriented system. These works propose

a graph based framework to ensure design effective test cases

and calculate different test path with possible cases. As the

use cases that capture a functional requirement are sometimes

related by different relationships, and as the flow of events of

use case is depicted visually using activity diagram, different

activity diagrams are also related. This is a generic approach

that is applicable for all the phases of SDLC starting from

requirement analysis, design, and implementation phase.

3. SCOPE OF WORK
Object Oriented Graph (OOG) is a graphical representation of

the UML diagrams used in different phases of SDLC. In this

paper, we propose an efficient data structure HGAL to

represent OOG and two algorithms ICHG and TPS for

identifying different constructs of OOG and test paths

respectively. The rest of the paper is organized as follows:

In section V, we discuss a data structure HGAL to represent

an OOG graph into adjacency list and on the basis of this data

structure an algorithm IHGAL is designed in the same section

which will help to find the no. of paths and nodes in each path

of that graph such that all nodes are covered and we describe

each path along with the order of the nodes. An algorithm

called Identifying Constructs of Hierarchical Graph i.e. ICHG

is proposed based on the data structure HGAL in section V, to

identify the different constructs of OOG, where the different

constructs among the nodes are discussed. Based on HGAL

Data Structure also, we propose an algorithm TPS i.e. Test

Path Search in section VI, in order to determine the minimum

number of test paths covering all the nodes, that gives a

measure of the number of test path for a requirement based on

analysis models early in the SDLC. Designing minimum

number of test cases that will cover maximum number of

nodes in the OOG is of utmost importance. This would be a

generic approach to each phase of SDLC modeled by the

layers of OOG. In section VII, we discuss the trace path for

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.4, October 2012

32

which an algorithm called Traversal of Trace Path i.e. TTP is

implemented. This will also help us in requirement

traceability and verification of consistency among the analysis

and design models both in forward and reverse direction.

4. OBJECT ORIENTED GRAPH

(OOG) & ITS ENHANCEMENT

Testing based on UML models has been lately quite an

interesting area of research where behavioral diagrams like

sequence, activity, state charts and use cases have been

generally used. In our earlier work [1] a graphical model –

Object Oriented Graph (OOG) was proposed for object

oriented software development life cycle. This graphical

model can be applied for different phases of SDLC-

requirement analysis, design, and implementation. We here

briefly describe the features of OOG.

4.1 OOG Features

1. It is a multilayered graph which comprises of a

graph at each level.

2. At each level, the graph comprises of nodes and directed

edges.

3. The graphs at different levels are interconnected with

each other in this order G0 G1 G2 G3

4. The significance of nodes and edges are different in

each level. E.g. at L=1, the nodes of G1 represent activity

diagrams, at L=2, nodes of G2 represent sequence

diagrams, nodes of G3 represent methods of a class.

Fig 1: the Graph based Layered Framework: OOG

5. There may be different ways in which nodes are

connected for each of which an edge is drawn. This

depends upon the manner in which the diagrams are

interleaved. The next section discusses the constructs of

OOG and its significance corresponding to each different

case of node connectivity for the different levels.

6. The edges drawn to represent connection/relation

between nodes are of different types like – firm edge,

dotted edge, to model different cases of connectivity.

7. The nature of the OOG e.g. the out-degree and in-degree

of nodes, the depth depends upon the manner in which

the nodes i.e. the diagrams are being called or referred.

8. Since the OOG has different meanings in different levels

depending on its context of use, we assign different

names to the graph models for each level. They are –

(a) Use Case Relationship Graph (URG) at Level-0.

(b) Activity Diagram Graph (ARG) at Level-1.

(c) Distributed Scenario Graph (D-SG) at Level-2.

(d) Extended Control Flow Graph (ECFG) at Level-3.

4.2 Notations and terms used

We define certain terms and notations that we will be using in

this paper and their relationship based on the features of OOG

discussed in the previous subsection.

1. OOG: Object Oriented Graph comprising of several activity

diagrams

2. ARG: Activity Relationship Graph comprising of several

activity diagrams

3. D-SG: Distributed Scenario Graph comprising of several

sequence diagrams.

4. E-CFG: Extended Control Flow Graph comprising methods

of classes and their connectivity.

Table 1: Nodes and its corresponding adjacency list

5. OOG ENHANCEMENTS

In this section we propose an efficient and effective data

structures called Hierarchical Graph Adjacency List i.e.

HGAL to represent OOG. Using this we can navigate OOG

easily and derive different constructs, requirement trace path

and test paths as well.

5.1 Hierarchical Graph Adjacency List:

HGAL

We use adjacency list for representation of the OOG, for

storing a linked list of adjacent vertices for each vertex. The

following shows the OOG and its corresponding adjacency

list HGAL:

Fig 2: OOG Graph

2

4

3

5

1

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.4, October 2012

33

In Fig 2, we have a directed OOG graph with five vertices,

namely [1, 2, 3, 4, and 5]. For each vertex we keep a linked

list of vertices that are adjacent to it. Each of the nodes of the

OOG is connected by either firm edge or by dotted edges.

Each adjacent nodes connected by firm edge, whose values

stored as 1, and the nodes connected by dotted edge, the value

is stored as 0.The corresponding data structure HGAL for

representing the OOG into adjacency list is shown in Fig 2a.

A Hierarchical Graph Adjacency List is a data structure for

representing hierarchical OOG graph. In HGAL we keep, for

each vertex in the graph, a list of all other vertices which it

has an edge to (that node’s "adjacency list”. In Table 1, we

show the nodes of OOG and their corresponding adjacency

list.

 Fig 2a: List Representation of OOG: HGAL

The adjacency-list representation of the OOG is shown in Fig

2a & table 1.The arrow (->) means a link in a list. Since, the

node 1->node 2, node1->3, by dotted edge, so vertex value is

stored as 1,and the rest of the node in the graph is connected

by node 1 by firm edges, its vertex value is stored as 0 in the

list as it is depicted in the diagram. In this representation the n

rows of the adjacency matrix are represented as n linked lists.

There is one list for each vertex in OOG. The nodes in list I

represent the vertices that are adjacent from vertex i. Each

node has at least two fields: VERTEX and LINK. The

VERTEX fields contain the indices of the vertices adjacent to

vertex i. The adjacency list for OOG is shown above. Each list

has a head node. The head nodes are sequential providing

easy random access to the adjacency list for any particular

vertex.

5.2 Algorithm for Implementation of

Hierarchical Graph into Adjacency List:

IHGAL

Fig 3(A): Nodes which forms the part of the Graph, 3(B):

Node which forms the part of the adjacency list

In Fig 3(A), nodes are having three fields. Firstly, vertex_val

which stored the indices of the vertices adjacent to vertex i,

secondly, down field represent the next adjacent node of the

current vertex that is shown by red pointer, and thirdly, the

next field represent the next node of the graph i.e. is

represented by black pointer.

The IHGAL algorithm is as follows:

Step-1: Initialize the list which holds the nodes of the graph

that are connected by firm/dotted edges.

Step-2: Make the list that holds the graph, having all the

vertices in the graph

 Step-3: For every vertex in that list do the following -

 a. find the adjacent vertices, if any

 b. add that vertex in the adjacency list for this current

vertex

The implementation of Linked list Representation is shown in

Fig 4

Different

Nodes of

HGAL

Link
Nodes’ Adjacency

list

node 1 adjacent to (->)

node 2

node 3

node 4

node 5

node 2 adjacent to (->) node 4

node 3 adjacent to (->) node 5

node 4 adjacent to (->) node 5

2 3 5 4

4

5

5

1

2

3

4

5

Set of nodes Node’s Adjacency list

struct adj_node /*the NODE which forms the part of the

adjacency list; look at Fig [B]*/

{

char vertex_val;

struct adj_node *adj_next; /*red pointer*/

};

struct node /*the NODE which forms the part of the

Graph; In refer to Fig [A]*/

{

char vertex_val;

struct adj_node *down;

struct node *next; /*black pointer*/

};

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.4, October 2012

34

Fig 4 : Linked list Representation

5.3 Identifying Constructs of Hierarchical

Graph: ICHG
We discuss the generic algorithm for identifying different

constructs of OOG based on the adjacency list representation.

The OOG manifests itself as ARG, D-SG and ECFG [2, 3 and

5] in the later phases. In all these layers we use HGAL data

structures for representation of the graphs. To identify

constructs of OOG an algorithm ICHG is proposed, which is

applicable in other phases of SDLC. In this section, we

discuss the different cases that may arise in OOG and the

algorithm to identify them.

Case 1: Nodes of OOG in sequence

This refers to nodes which have in-degree and out-degree

equal to one. Nodes are connected to each other one after the

other by firm edges in the OOG. If node N1 and N2 are in

sequence, it means that the events or steps in N2 follow events

or steps of N1.

Fig 5: Nodes of OOG in sequence

 From the adjacency list, a set of nodes connected by firm

lines denotes the group of nodes in sequence. This is

identified by the black color arrow in the adjacency list of

OOG. This can be easily identified from adjacency list where

the following algorithm holds true.

 1. for (i=0; i<p; i++);

 2. p=a[i];

 3. Cnt =0;

 4. while (p)

 5. {

 6. Cnt++;

Then a[i] is in sequence, where a[i] is the starting address of

the list Cnt is the counter which counts the no of nodes in the

list

Case 2: Nodes of OOG connected with more than one node

This refers to the case where the out-degree is more than one.

Nodes are connected to each other by firm edges in the OOG.

If node N1 calls N2, N3, N4, then the OOG will depict firm

edges from N1 to each of N2, N3 and N4. It means that N2,

N3 N4 are parallel and are connected to N1 at different points

of its flow. The significance is different in different levels i.e.

in ARG, D-SG and ECFG.

Fig 6: Nodes of OOG connected with more than one node

This can be identified from adjacency list where the following

algorithm holds true.

1. for (i=0; i<p; i++);

2. P=a[i];

3. while (p)

4. {

5. Cnt++;

6. p=p->next;

7. }

8. If (cnt>2)

9. Then a[i] is calling

Where a[i] is the starting address of the list, next is the next

node

Cnt is the counter which counts the no of nodes in the list

Case 3: Nodes of OOG being called/referred more than once

 N1

N2

 N1

N2 N3 N4

struct node *graph;

while (aux_ptr != NULL)

{

printf ("Is there any edge between %c and %c ",aux_ptr-

>vertex_val, cur_vertex->vertex_val);

scanf("%d", &edge); /*step-2: part-A*/

if (edge == 1) /*step-2: part - B*/

if (adj_cur == NULL)

{

adj_cur = (struct adj_node *) malloc (sizeof (adj_node));

adj_cur ->vertex_val = aux_ptr->vertex_val;

adj_cur -> adj_next = NULL;

}

else

{

new = (struct adj_node *) malloc (sizeof (adj_node));

new -> vertex_val = aux_ptr ->vertex_val;

adj_cur ->adj_next = new;

adj_cur = new;

adj_cur ->adj_next = NULL;

}

aux_ptr = aux_ptr ->next;

}

cur_vertex = cur_vertex ->next ;}

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.4, October 2012

35

This refers to the case where in-degree of nodes is more than

one. Nodes are connected to each other by dotted edges in the

OOG. If node N1, N2, N3 calls N4, then the OOG will depict

firm edges from N1, N2, and N3 to N4. It means that N2, N3

N4 separately are connected to N1 at different points of their

flow. The significance is different in different levels i.e. in

ARG, D-SG and ECFG.

Fig 7: Nodes of OOG being called/referred more than once

This can be identified from adjacency list where the following

algorithm holds true.

1. for (i=0; i<p; i++);

2. p=a[i];

3. Cnt=0;

4. while (p)

5. {

6. If (p->data==x)

7. Cnt++;

8.}

9. If (cnt>1)

10. Then x is called

 Where a[i] is the starting address of the list

Cnt is the counter which counts the no of nodes in the list

Case 4: Nodes of OOG in iteration/recursion

This refers to the case where a single node or a group of nodes

is cyclically called or used. Cases where a group of nodes are

in iteration, the group may be connected in any of the other

three connections – sequence, calling multiple nodes, called

from multiple nodes. Following Figures show visually the

different constructs of an OOG.

Fig 7: Nodes of OOG in iteration/recursion (a) Single

Node N1; (b) Group of Nodes (N1-N2 in sequence); (c) N1

embedding/calling N2;One Node in iteration/recursion

1. for (i=0; i<p; i++);

2. q=p=a[i];

3. While (p)

4. {

5. If (q->data==p->data)

6. Cnt++;

7. P=p->next;

8.}

9. If (cnt>2)

10. a[i] is self recursion

A node of OOG (i.e., ARG, D-SG, and ECFG) may be

connected in more than one ways. This is considered at the

time of test path calculation.

6. ALGORITHM FOR IDENTIFYING

TEST PATHS IN OOG: TEST PATH

SEARCH (TPS)
Algorithm Test Path Search is used to identify minimum test

paths of OOG in each phase of SDLC.The ECFG, D-SG, and

ARG comprises of 2 layers. By applying depth-first search

algorithm, we can traverse minimum no of independent test

paths of OOG in each phase of SDLC.

The depth-first traversal technique is defined using an

algorithm dftraverse(s) that visits all nodes reachable from s.

We assume an algorithm visit (nd) that visits a node nd and a

function visited (nd) that returns TRUE if nd has already

visited and FALSE otherwise. This is best implemented by a

flag in each node. Visit sets the field to TRUE. To execute the

traversal, the field is first set FALSE for all nodes. The

traversal algorithm also assumes the function select with no

parameters to select an arbitrary unvisited node. select returns

null if all nodes have been visited.

1. for (every node nd)

2. Visited (nd) = FALSE;

3. s=a pointer to the starting node for the traversal;

4. While (s! =NULL) [

5. Dftraverse(s);

6. S=select ();

 7. /* end while */

Note that starting node s is specified for the traversal. This

node becomes the root of the first tree in the spanning forest.

The following is a recursive algorithm for dftraverse(s), using

the routines firstsucc and nextsucc

1. /* visit all nodes reachable from s */

2. Visit(s);

3. /* traverse all unvisited successors of s */

4. Firstsucc(s, yptr, nd);

5. while (yptr! = NULL) {

6. if (visited (nd) == FALSE)

7. dtraverse (nd);

8. nextsucc(s, yptr, nd);

9.} /*end while */

If it is known that every node in the graph is reachable from

the starting node s, the spanning forest is a single spanning

tree and the while loop and select are not required in the

traversal algorithm, since every node is visited in a single call

to dtraverse. A depth-first traversal, as it name indicates,

traverse a single path of the graph as far as it can go (that is,

until it visits a node with no successors or a node all of whose

successors have already been visited).It then resumes at the

last node on the path just traversed that has an unvisited

successors and begins traversing a new path emanating from

that node.

In linked representation, nextsucc is implemented as follows.

(We assume arc arcptr field in each header node and ndptr and

nextarc fields in each arc node.)

1. yptr =nextarc (yptr0;

2. ynode = (yptr == NULL)? NULL: ndptr (yptr);

3. Firstsucc is implemented by

Yptr =arcptr (X);

 N1 N2 N3

N4

N1 N1

N2 N2

N1

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.4, October 2012

36

4. ynode = (yptr ==NULL)? NULL: ndptr (yptr);

Note that if e is the number of edges (arcs) in the graph and n

the number of graph nodes/n is the average number of arcs

emanating from a given node. Traversing the successors of a

particular node by this method is therefore O (e/n) on the

average. This is one of the advantages of the adjacency list

representation.

The following are the steps to display all possible test path of

the OOG in different phases of SDLC

1. Algorithm To print-test path-using array of elements

(arrData, n, k)

2. {

3. item=arrData [k-1];

4. for (i=k-1; i< n-1; i++)

5. arrData [i] =arrData [i+1];

6. n=n-1;

7. return item;

8. }

In this algorithm, the size of the array represents the number

of nodes in OOG. Here arrData [] is a one dimensional array

with n number of nodes. Node item is to be deleted from the

kth position of the array during traversing. The arrays of

elements representing the node structure will display each

time on traversal the graph, and each representation of array is

the all possible test path starting from source node to

destination node.

7. ALGORITHM TO DERIVE THE

TRACE PATH OF OOG: TRAVERSAL

OF TRACE PATH (TTP)
The following are the steps of algorithm for finding the trace

path for the entire Object Oriented Graph. Here, by using the

doubly linked list the graph is traversed in both the way.

Algorithm to find-trace-path using DLLNodes (ptrStart)

1. {DLLNode *ptrTemp;

2. ptrTemp=ptrStart;

3. iCount=0;

4. while (ptrTemp ! = NULL)

5. {

6. print (ptrTemp-.>iData);

7. iCount = iCount + 1;

8. ptrTemp = ptrTemp ->ptrRight;

9. }

10. return (iCount);}

8. CONCLUSION
Graph Based Analysis of Object Oriented System models at

different phases of software development life cycle is a

prominent area of research. In this paper, we propose an

approach to represent the OOG in the form of adjacency list in

order to address the previous problem of research of a suitable

and efficient data structure to represent the graph. A generic

algorithm is also proposed to identify the different constructs

of the nodes of the OOG graph and for finding the test paths

by considering all best possible paths with minimum test

cases. For each layer it refers to test paths and for entire OOG

the path refers to trace path. This approach improves the

requirement traceability and verification of consistency

among the analysis and design models both in forward and

reverse direction. Requirement traceability in different phases

of software development, consistency verification, designing

effective test cases in different phases of SDLC can be done

and the levels or extents of the properties can be measured in

an automated manner. This approach would help analysis of

object oriented system to be more efficient and less complex.

9. REFERENCES
[1] Ananya Kanjilal, Sabnam Sengupta, Swapan

Bhattacharya, “A Graph Model for Analysis of OO

Systems”, Horizons of Computer Research, Vol 1, Nova

Publishers, 2008.

[2] Ananya Kanjilal, Goutam Kanjilal, Swapan

Bhattacharya, “Integration of Design in Distributed

Development using D-Scenario Graph”, Third

International Conference on Global Software

Engineering (ICGSE‟08), Bangalore, India, pp 141-150,

August 17-20, 2008.

[3] Swapan Bhattacharya and Ananya Kanjilal “Code Based

Analysis of Object Oriented Systems”, Journal of

Computer Science & Technology JCST, Vol 21, No. 6,

pp 965-972, November 2006.

[4] Paolo Baldan, Andrea Corradini and Fabio Gadducci

Specifying and Verifying UML Activity Diagrams Via

Graph Transformation Lecture Notes in Computer

Science Springer Berlin / Heidelberg 18-33Volume

3267/2005.

[5] Ananya Kanjilal, Goutam Kanjilal and Swapan

Bhattacharya, “Extended Control Flow graph: An

empirical approach”, Proceedings of CIT'03, Sixth

International Conference on Information Technology,

Bhubaneswar, India, December 22-25, 2003, page 151-

156.

[6] Dong Xu Wei Liu Zongtian Liu Philbert, N., “Tool

Support to Deriving Test Scenarios from UML Activity

Diagrams”, International Symposium on Information

Science and Engineering (ISISE, 2008) '08, pp 73-76,

20-22 Dec. 2008.

[7] Dong Xu, Philbert, N., Zongtian Liu, Wei Liu,

“Towards Formalizing UML Activity Diagrams in CSP”,

International Symposium on Computer Science and

Computational Technology, 2008. ISCSCT '08, pp. 450 -

453 20-22 Dec. 2008

[8] Eshuis, R. Wieringa, R. , Tool support for verifying

UML activity diagrams IEEE Transactions on Software

Engineering, Volume: 30 , Issue: 7 pp437 - 447 July

2004

[9] Debasish Kundu, Monalisa Sarma, Debasis Samanta, “A

Novel Approach to System Testing and Reliability

Assessment Using Use Case Model”, 1st Indian Software

Engineering Conference (ISEC), Hyderabad, India, Feb

20-21, 2008

[10] Monalisa Sarma, Debasish Kundu, Rajib Mall,

“Automatic Test Case generation from UML Sequence

diagrams”, Proceedings of International Conference on

Advanced Computing and Communications, ADCOM

2007, Guwahati, India, pp 60-67, December 18-21, 2007.

[11] Robert Binder, “Testing Object-Oriented Systems:

Models, Patterns and Tools”, Addison-Wesley, pp 582-

583, 1999.

[12] W.J Lloyd, M.B Rosson, J.D Arthur, “Effectiveness of

elicitation techniques in distributed requirement

engineering”, Proceedings of IEEE Joint International

Conference on Requirements Engineering”, Essen,

Germany, pp. 311-318, September 9-13, 2002.

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.4, October 2012

37

[13] A. Bertolino, M. Marre , “Automatic Generation of Path

Covers Based on the Control Flow Analysis of Computer

Programs"”, IEEE Transactions on Software

Engineering, pp. 885-899, December 1994.

[14] Sabnam Sengupta, Ananya Kanjilal, Swapan

Bhattacharya: Measuring complexity of component

based architecture: a graph based approach. ACM

SIGSOFT Software Engineering Notes 36(1): 1-10,

2011.

[15] Ananya Kanjilal, Sabnam Sengupta, Swapan

Bhattacharya: Scenario path identification for distributed

systems: A graph based approach. International

Symposium on Rapid System Prototyping 2010: 1-8.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kanjilal:Ananya.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bhattacharya:Swapan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bhattacharya:Swapan.html
http://www.informatik.uni-trier.de/~ley/db/journals/sigsoft/sigsoft36.html#SenguptaKB11
http://www.informatik.uni-trier.de/~ley/db/journals/sigsoft/sigsoft36.html#SenguptaKB11
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kanjilal:Ananya.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bhattacharya:Swapan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bhattacharya:Swapan.html
http://www.informatik.uni-trier.de/~ley/db/conf/rsp/rsp2010.html#KanjilalSB10
http://www.informatik.uni-trier.de/~ley/db/conf/rsp/rsp2010.html#KanjilalSB10

