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ABSTRACT 

 A suggested approach is presented in this paper to obtain 

high-resolution images from the fusion and then interpolation 

of Magnetic Resonance (MR) and Computed Tomography 

(CT) images. MR and CT images are fused with either the 

Discrete Wavelet Transform (DWT) or the curvelet transform. 

After that, a least-squares interpolation step is carried out on 

the wavelet sub-bands of the fusion result. Simulation results 

show the feasibility of the fusion process to obtain images 

with more details and the efficiency of interpolation to obtain 

high-resolution images.  

General Terms 

Image processing. 
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1. INTRODUCTION 
Image fusion is considered as an integration of different 

source images to produce an image with higher visual quality 

than the source images. Image fusion is a very important topic 

for a wide variety of applications [1–5]. It has applications in 

medical imaging, remote sensing, and digital photographs. It 

is very important for medical applications, because images of 

different modalities for the same regions are available, and the 

fusion of these images will help in obtaining more useful 

detail information. A further interpolation step on the fused 

images will be important, if certain regions of them need to be 

magnified.  

Medical imaging has become a vital component of a large 

number of applications including diagnosis, research, and 

treatment. In order to provide more accurate clinical 

information for physicians to deal with medical diagnosis and 

evaluation, multimodality medical images are needed such as 

X-ray, CT, MR, Magnetic Resonance Angiography (MRA), 

and Positron Emission Tomography (PET) images [6]. These 

multimodality medical images usually provide 

complementary and occasionally conflicting information. For 

example, the CT image can provide dense structures like 

bones and implants with less distortion, but it cannot detect 

physiological changes, while the MR image can provide 

normal and pathological soft tissues information, but it cannot 

support the bone information. In this case, only one kind of 

image may not be sufficient to provide accurate clinical 

requirements for the physicians. Therefore, the fusion of the 

multimodal medical images is necessary, and it has become a 

promising and very challenging research area in recent years 

[7-10].  

The fusion of MR and CT images of the same region or organ 

would result in an integrated image of much more details. 

Researchers have made some attempts for the fusion of MR 

and CT images. Most of these attempts are directed towards 

the application of the DWT for this purpose [11–13]. Due to 

the limited capability of the DWT to deal with images with 

curved structures, the application of the curvelet transform for 

this purpose gives better results [14]. The application of the 

curvelet transform for the fusion of MR and CT images, and 

an efficient implementation of the inverse interpolation 

techniques to obtain high-resolution versions from the fused 

images, were presented in [15].  

 A digital image interpolation method that is performed in the 

wavelet domain with a least-squares algorithm was presented 

in [16]. This method estimates wavelet coefficients in the 

high-frequency sub-images of the estimated high-resolution 

image from the low-resolution image using a least-squares 

algorithm. An inverse wavelet transform is then performed for 

the synthesis of the HR image. This algorithm is based on 

interpolating each block, separately in an adaptive manner. It 

considers both the mathematical model by which the image is 

acquired and the local activity levels of the block to be 

interpolated, and performs the interpolation in a small number 

of iterations.  

In this paper, we present a comparison between the curvelet 

transform and the wavelet transform for the fusion of MR and 

CT images, and an efficient implementation of the wavelet-

based image interpolation with the least-squares algorithm to 

obtain high-resolution images from the fusion results. The 

paper is organized as follows. Section 2 reviews the wavelet 

fusion technique with concentration on its limitations and also 

the curvelet fusion technique. In section 3, the least-squares 

image interpolation algorithm is reviewed. Section 4 

introduces the suggested wavelet-based image interpolation 

method. Section 5 gives the image quality metrics that can be 

used for quality assessment of fusion and interpolation results. 

Section 6 gives the experimental fusion and interpolation 

results. Finally, section 7 gives the concluding remarks. 

2. THE IMAGE FUSION TECHNIQUES 
Several techniques have been presented for image fusion and 

an overview of these methods is given in [17]. In this paper, 

we will concentrate on the wavelet and the curvelet fusion 

techniques. 

http://www.hindawi.com/journals/asp/2010/579341/#B1
http://www.hindawi.com/journals/asp/2010/579341/#B3
http://www.hindawi.com/journals/asp/2010/579341/#B6
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2.1 Discrete Wavelet Image fusion 
In this sub-section, to better understand the concept and 

procedure of the wavelet-based fusion technique, a schematic 

diagram is given in Figure 1. In general, the basic idea of 

image fusion based on wavelet transform is to perform a 

multi-resolution decomposition on each source image. The 

coefficients of both the low-frequency band (approximation 

band) and high-frequency bands (details bands) of the images 

to be fused are then merged with a certain fusion rule as 

displayed in the middle block of Figure 1. The widely-used 

fusion rule is the maximum selection. This simple rule just 

selects the largest absolute value for each wavelet coefficient 

at each location from the input images as the coefficient at the 

location in the fused image. After that, the fused image is 

obtained by performing the Inverse DWT (IDWT) of the 

corresponding combined wavelet coefficients. Therefore, as 

shown in Figure 1, the detailed fusion steps based on the 

wavelet transform can be summarized below: 

Step 1. The images to be fused must be registered to assure 

that the corresponding pixels are aligned.  

Step 2. These images are decomposed into the wavelet 

domain.  

Step 3. A certain fusion rule is performed to produce the 

transform coefficients of the fused image.  

Step 4. The fused image is constructed by performing an 

inverse wavelet transform based on the combined 

transform coefficients from Step 3. 

The most frequently used rule is the maximum-

frequency rule, which selects the maximum coefficients from 

the wavelet transformed images [13]. Then, the inverse 

wavelet transform 
1  is computed, and the fused image 

),( yxI  is reconstructed [5]: 

1

1 2( , ) ( ( ( ( , )), ( ( , )))).I x y I x y I x y    (1) 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig 1 Wavelet fusion. 

 

For long curved edges, the wavelet transform has limited 

accuracy for edge localization. So, there is an alternative 

approach, which has a high accuracy of curve localization 

such as the curvelet transform [14]. 

2.2 Curvelet Image Fusion 
The DWT has been one of the most famous tools for image 

and signal analysis, because of its advantageous property that 

helps to localize point singularities in a signal or an image. 

One major disadvantage of the DWT in image processing is 

that it gives a large number of coefficients in all scales 

corresponding to the edges of the image. So, in order to 

exactly  reconstruct the edges in an image,  several 

coefficients are required in order to exactly reconstruct the 

edges in an image. This makes the DWT inefficient for 

handling long curved edges. Recent approaches such as the 

ridgelet transform and the curvelet transform are more 

efficient in handling long linear and curvilinear singularities 

in an image [18–22]. 

 In the curvelet transform, the Additive Wavelet Transform 

(AWT) is used instead of the DWT to decompose the image 

into different sub-bands called the detail planes and the 

approximation plane, and each sub-band of the detail planes is 

then partitioned into small tiles. Then, the ridgelet transform 

is applied on each tile [23]. In this way, the image edges can 

be represented efficiently by the ridgelet transform, because 

the image edges will now be almost like small straight lines. 

Thus, the curvelet transform is considered as an effectively 

extension of the ridgelet transform to detect curved edges. The 

algorithm of the curvelet transform can be summarized in the 

following steps [18–24]: 

1. The image is split up into three sub-bands ∆1, ∆2, ∆3, and 

P3 using the AWT, see Figure 2.  

2. The sub-bands ∆1, ∆2, and  ∆3 are divided into small 

blocks called tiles. 

3. The discrete ridgelet transform is performed on each tile 

of the sub-bands ∆1, ∆2, and  ∆3. 

                                                                                            P3 

                                                                                      

                                                                                       C1 
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Fig 2 Curvelet transform. 

Figure 3 shows a schematic diagram of the curvelet transform 

steps. A detailed description of these steps is presented in the 

following sub-sections. 

The steps of the curvelet fusion approach of MR and CT 

images [14] can be summarized as follows: 

1. The MR and the CT images are registered. 

2. The AWT is performed to spilt both images into 

three sub-bands. 

3. Tiling is performed on the sub-bands 1, ∆2, and 3 

of each image.  

4. The maximum-frequency fusion rule is used for the 

fusion of the ridgelet transforms of the tiled sub-

bands. 

5. An inverse curvelet transform is performed by the 

AWT reconstruction as shown in Figure 4. 

6. A post-processing step can be performed by using a 

high-pass filter to sharpen the fusion result, if there 

is some blurring due to the approximation of the 

digital ridgelet transform. 

7. These steps are expected to merge the details in 

both images into a single image with much more 

quality. 
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The objective of post processing is to enhance edges in 

the fusion results.  This step can be accomplished 

through the use of a high-pass filter mask  HF such as 

[23]:  

 

       

0 1 0

1 5 1

0 1 0

FH

 
 

  
 
                                                 (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3 AWT decomposition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4 AWT reconstruction. 

3. ADAPTIVE LEAST-SQUARES IMAGE 

INTERPOLATION  
In the adaptive least-squares interpolation algorithm, the 

image to be interpolated is divided into small overlapping 

blocks of size MM, and the objective is to obtain an 

interpolated version of each block of size NN. The relation 

between the available LR and the estimated HR block is given 

by [25]: 

ji,ji, Wgf ˆ                                                                        (3)    

where ji,g and ji,f̂  are the M21 and N21  

lexicographically-ordered  low-resolution, and the estimated 

high-resolution blocks at position (i,j), respectively. W  is the  

N2M2  weight matrix required to obtain the high-resolution 

block from the low-resolution block. This matrix is required 

to be adaptive from block to block to accommodate for the 

local activity levels of each block. By using Eq. 3, we can get 

the least-squares solution by minimizing the Mean Square 

Error (MSE) of estimation as follows : 

22
ˆ

ji,ji,ji,ji, WgfffΨ                                      (4) 

Differentiating both sides of Eq.(4) with respect to W  gives: 

t))(ˆ(2
ji,ji,ji,

gff
W

Ψ





                                               (5) 

This minimization leads directly to the following 

solution for W as follows : 

tkk

k

kkk ))(ˆ(1

ji,ji,ji,
gffW

W

Ψ
WW 












           (6) 

  
where   is a constant and   is the convergence parameter.       

      Using the above equation in estimating the weight matrix 

W  requires the samples of the original high-resolution block 

ji,
f  to be known, which is not practical. The following 

equation relates the available low-resolution block to the 

original high-resolution block. 

jiji ,, Dfg                                                                             (7)               

The matrix D , which is called the decimation 

matrix, is of size M2N2 . Thus, the following cost function 

needs to be minimized [12]: 

  2

ji,ji, ffDΦ ˆ                                                               (8) 

The above equation means minimizing the MSE 

between the available low-resolution block and a down-

sampled version of the estimated high-resolution block. This 

leads to: 

22
ˆ

ji,ji,ji,ji, DWggfDgΦ                               (9) 

Differentiating Eq. (9) with respect to W  and 

using Eq.(3) leads to: 

tt ))(ˆ(2
ji,ji,ji,

gfDgD
W

Φ





                                   (10) 

Using Eq.(10) , the weight matrix can be adapted 

using the following equation: 

tkkt

k

kkk ))(ˆ(1

ji,ji,ji,
gfDgDW

W

Φ
WW 












    (11)                                            

The adaptation of Eq.(11) can be easily performed, 

since it does not require the original high-resolution block to 

be known a priori. 

4. WAVELET IMAGE INTERPOLATION 
The wavelet-based image interpolation method [16] depends 

on the decomposition of the low-resolution image into an 

approximation component and three detail components.  The 

available low-resolution image is considered as the 

approximation component of the required high-resolution 

image. The detail components of the high-resolution image 

are derived from the detail components of the low-resolution 

image with a least-squares algorithm. The terms 
ji,

g   and 

ji,
f̂   in Eq. (11) represent the blocks of the detail sub-bands of 

the low-resolution image, and the blocks of the detail sub-

bands of the estimated high-resolution sub-bands. The 

interpolation algorithm will be implemented in an iterative 

manner to reduce the MSE between the original and 
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interpolated images. Figure (5) shows the proposed 

interpolation method. 
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                                                                       interpolation  
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 Fig 5 Wavelet- based image interpolation with a least-

squares algorithm.  

4. IMAGE QUALITY METRICES 
In our study, subjective assessment of image quality is 

performed by measuring the Peak Signal-to-Noise Ratio  

(PSNR) of  the interpolated images: 

   
2

1 1

, ,
M N

i j

R i j F i j

RMSE
M N

 

  






                    (12) 

 

where R(i,j) is the original image and F(i,j) is the 

reconstructed image. The smaller the value of the Root Mean 

Square Error (RMSE), the better the fusion performance. The 

formula for PSNR is given by [26]: 

  2 2

max10 logPSNR f RMSE 
                        (13)  

 where maxf
 is the maximum gray-scale value of the pixels in 

the  reconstructed image. The higher the value of the PSNR, 

the better the performance of the used algorithm.  

Another quantitative measured is the similarity of edges 

(S) [14]. The steps for calculating this similarity are as 

follows: 

1. Edge detection of the reconstructed image using a 

suitable edge detector such as the Canny detector. 

2. Edge detection of the original image. 

3. Estimation of the ratio between the similar edge 

pixels between the reconstructed image and the 

original image and the total number of edge pixels. 

 

5. RESULTS AND DISCUSSION 
In this section, two different experiments are carried out to 

apply the wavelet-based image interpolation with the least-

squares algorithm to the original CT image, the original MR 

image, and the fused MR and CT images by both the wavelet 

and curvelet fusion techniques. 

Unfortunately, in image interpolation, there is no reference 

image to measure the PSNR values and the similarity values 

of the obtained results with it. To solve this problem and 

compare between the interpolation of the original images and 

the interpolation of the fused image [16], we can decimate the 

original MR, and CT images prior to fusion and compare with 

these original images.  

 In our two experiments we will follow the following 

procedure: 

1. Image 1 (MR image) is down-sampled and then 

interpolated. 

2. Image 2 (CT image) is down-sampled and then 

interpolated. 

3. Down-sampled versions of images 1 and 2 are 

wavelet fused.  

4. Down-sampled versions of images 1 and 2 are 

curvelet fused. For the curvelet fusion, small tiles of 

dimensions 12 × 12 with two pixels of overlapping 

from each side are utilized to approximate long 

curved lines by small straight lines and to avoid the 

edge effects. A high-pass filtering step is used to 

sharpen the curvelet fused images. 

5. The fused image is interpolated. 

 

Tables 1 and 2 give the evaluation metrics for interpolation 

results. 

 

Table 1 PSNR values for interpolation results. 

 

 

Table 2 Similarity values for interpolation results. 

 

 

The obtained results are in favor of curvelet fusion and then 

interpolation. 
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(a) CT image.                         (b) M|R image. 

                                                            

  (c) Wavelet fusion.                        (d) Curvelet fusion.  

Fig 6 Fusion of MR and CT images for case 1. 

 

 

 

 

 

 

(a) Interpolated CT image.    (b) Interpolated MR image. 

 

 

 

 

 

(c) Interpolated wavelet fusion. (d) Post processing of (c) 

 

 

 

 

 

(e)  Interpolated curvelet fusion.  (f) Post processing of (e). 

Fig 7 Interpolation results. 

6. CONCLUSION 
In this paper, we presented an efficient way to obtain high-

resolution images from the fusion of MR and CT images. The 

suggested approach adopts a least-squares strategy to build the 

wavelet sub-bands of the required high-resolution image in an 

iterative manner. Simulation results show the success of the 

proposed approach to obtain images with better resolution, 

especially when the curvelet transform is used to merge the 

MR and CT images with a final post-processing step. 
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