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ABSTRACT 

Vessel enhancement and segmentation is one of the crucial 

pre-processing steps in accurate vessel tree reconstruction in 

many chest CT scan imaging applications. Conservative 

vessel enhancement approaches used eigenvalues of Hessian-

based filters, which are found to be sensitive to noise, fails to 

detect small ones, and sometimes give discontinued vessels 

due to junction suppression. Since Hessian-based filters 

cannot distinguish step edges from vessels effectively, in this 

paper, we propose a novel framework to overcome the 

problems for vessel enhancement for thorax CT images. The 

road map of proposed work has three steps. First, extract the 

lung region from thorax CT images based on Gray-level 

thresholding and morphological operations; then, according to 

the idea of the matched filter in different directions, and local 

entropy thresholding, to obtain more precise analysis in noisy 

environment and thus can correctly reveal entire vessels. Also, 

qualitative as well as quantitative evaluations performed on 

CT images show that the proposed filter generates better 

performance in comparison against two Hessian-based 

approaches (Frangi and Shikata)..   
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1. INTRODUCTION 
In recent times due to the development of multi-slice 

computer tomography (CT) technology, a modern CT scanner 

can generate a large number (200-1000) of slices for each 

patient, which can cover a large volume of human body 

within the short time. Using this high performance 

technology, radiologists can easily photograph the whole 

human chest, abdomen with high spatial resolution in a one-

time CT scan. Observation of complicated anatomical 

structures in the human body and discovery of small abnormal 

regions in a different organ has become possible with this 

technology.  

Two basic functions viz., abnormality detection and 

visualization of CT images are necessary to develop a 

computer aided diagnosis system (CAD) that helps automatic 

detection of anatomical structures. They are pre-segmentation 

of the principal human organ regions and recognition of 

human structures from CT images. In the case of chest CT 

imaging, the lung is the principal region.  Lung structure is 

constructed by lung vessels, bronchus, and lung fissures.   

These are the important elements which play a vital role in 

diagnosing the lung cancer, pneumonia and diffuse lung 

diseases decisions in clinical diagnosis. Identifying the lung 

structure is the most basic and indispensable aspect of 

successful CAD, and undoubtedly influences the efficiency of 

the overall CAD system [1].  

The automatic segmentation of the pulmonary vasculature is 

an essential pre-processing step for many algorithms that 

analyze thoracic CT scans. An accurate segmentation can be 

used to improve the nodule detection by excluding the vessels 

from lung region. The vessel tree segmentation which is 

generated by the pulmonary vasculature also can be used to 

detect pulmonary embolisms and for quantification of 

hypertension in which the diameter of the arteries provide an 

indicator for cardiovascular risk. Furthermore, segmentation 

of the pulmonary vascular tree can be used as a first step for 

other algorithms such as artery vein separation algorithms. 

The pulmonary vascular tree is a complex and heavily 

intertwined tree structure, with many generations for the 

arterial and for the venous tree and diameters varying from 

approximately 20 μm - 15 mm [2]. Blood has an intensity of 

around 40 Hounsfield Units (HU) on CT images. However, 

due to the partial volume effect the maximum intensity of 

small vessels is significantly lower than that of large, which 

makes intensity based global thresholding difficult. Another 

problem caused by partial volume effects is that vessels in 

close proximity to each other are hard to discriminate as 

separate entities. It is very difficult to differentiate between 

vessel crossings and bifurcations. 

Segmentation of Pulmonary vessel tree plays a pivotal role in 

the diagnosis of vascular diseases such as stenosis, 

hypertension, and pulmonary embolism. The vessel structure 

is also an important cue for registering images of the same 

patient [3]. Particularly in clinical practice, it is of great 

importance to be able to characterize the vascular trees for the 

detection of pulmonary emboli, detection of signs of 

pulmonary hypertension, and for the differentiation between 

vasculature and focal opacitie. The vascular trees can also 

serve as a roadmap for monitoring the lung tissues as in the 

aspect of lung volume changes and time taken for that change. 

The extraction of vessel tree aids to improve the detection of 

pathological structures like lung nodules where it has been 

shown to help in reducing false positives [4]. 

The road map of the proposed work has three stages.  During 

the first stage, the lung region is extracted from chest CT 

images. The second stage involves vessel enhancement based 

on the matched filters, and finally local entropy thresholding 

is estimated. Section 2 describes literature survey. Proposed 

algorithm has been explained in the section 3. Section 4 

consists of the results and performance evaluation by the 

existing methods, and finally discussion followed by 

conclusion in section 5.  

2. LITERATURE REVIEW 
Many vessel enhancing filters have been proposed by many 

researchers based on second order derivatives. These filters 

use a priori information about the principle directions of 

vessels, which are expressed in terms of eigenvalues of the 
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Hessian matrix. Different response functions have been 

proposed based on different combinations of these 

eigenvalues to enhance vessels and suppress other bright 

structures, such as nodules, junctions, fissures, airway walls 

and noise [3-8]. The first order derivatives have also been 

used for vessel enhancement, but they claim that these are less 

sensitive to noise. To segment the vessel tree, the output of 

the vessel enhancement filters may be thresholded. However, 

the filter response can also be used as input for a vessel 

reconstruction algorithm, for instance based on mathematical 

morphology [4].  

Different classes of vessel segmentation algorithms use region 

grow based algorithms such as fast marching level-set theory 

[9] and wave front propagation [10]. Starting from a seed the 

vessel tree is traced by iteratively expanding a front to a given 

speed function consisting of criteria that determine whether 

the voxels under consideration are part of a vessel or not. 

Resulting in a connected vessel tree detection and surface 

reconstruction are performed simultaneously within this class 

of algorithms. Certain other tracking algorithms or optimal 

path algorithms have also been used for vessel segmentation. 

Cost function from a multiscale vessel enhancement filter [11] 

is such an example. An active contour model is also proposed 

for vessel tree segmentation [12]. To segment thick blood 

vessels, a region competition-based active contour model 

which uses the Gaussian mixture model is applied. A vector 

field derived from the eigen-analysis of the Hessian matrix in 

a multiscale framework is used to segment thin blood vessels. 

Although, most of these algorithms take shape features into 

account, effective suppression of noise and high density 

structures such as airway walls, fissures, and abnormalities 

remains an important issue in this regard. This is also the case 

because many algorithms have been designed to detect tubular 

structures in general and have been applied to coronary 

arteries, vessels in the brain and even for bone structures in 

particular. Since the lungs contain many bright structures, of 

which sonic have similar characteristics as vessels, these 

algorithms might not be capable of differentiating. The two 

Hessian-based approaches, Frangi and Shikata filters were 

reviewed since both are considered as standard techniques in 

the following lines. 

2.1 Frangi Filter 
The Frangi Filter is based on the eigenvalues of the Hessian 

matrix computed at selected locations and at multiple scales. 

The multiple scales are obtained by smoothing the data with 

different size Gaussian kernels.  

Let |λ1| ≤ |λ2| be the eigenvalues of the Hessian matrix and let 

e1, e2 be the eigenvector associated with λ1, λ2 respectively. 

Based on the vessel assumptions above the ratio |λ2| / |λ1| 

should be close to zero and e1 should be in the cross section of 

the vessel whereas e2 should be in the direction of the center 

line. Based on these assumptions, Frangi proposed the 

following vessel enhancement filter: 

2 2
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where S is the scale of the filter, x is the location of the filter.   

Β and γ are constant normalization factors Rb and Rc
 
are given 

based on the eigenvalues of the Hessian matrix: 
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The function 
1( )   is set to 1 when 

1 0   and set to 0 

otherwise. Given a set of several scales T, the filter output at 

location x is given by 

 SΨ(x) = max ψ (x)| SεT  

2.2 Shikata Filter 
Based on almost similar considerations and the eigenvalue 

computation of Frangi, Shikata defines a vessel enhancement 

filter at a single scale as  

2
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where I(X) is the pixel intensity at location x. 

3. PROPOSED ALGORITHM 
The flowchart of our integrated algorithm in Fig 1 consists of 

three main procedures to segment the pulmonary blood 

vessels from the input chest CT images: (1) a mask is used to 

exclude objects which are not part of a vessel in order to limit 

computation time i.e. lung segmentation using conventional 

methods, (2) vessel enhancement based on the different 

directional matched filters, (3) local entropy threshold to 

remove grains occurred during enhancement. The details of 

each step are introduced below. 

3.1 Lung segmentation 
Image denoising and histogram enhancement techniques were 

used to improve image quality and enhance the contrast 

between different objects. Gray-level thresholding is used to 

extract lung regions from the original CT image. The 

algorithm assumes that the image contains two classes of 

pixels (background and foreground) and can find an optimal 

threshold by iterative calculations through all possible values. 

The aim of Otsu’s method [13] is to find the optimum 

threshold value to separate the two classes where their 

combined spread (intra-class variance) is nominal.  

The gray level image is converted to a binary image after the 

calculation of an optimum threshold. The lung parenchyma is 

then extracted from the segmented thoracic region by 

applying a flood fill operator that starts from the four corners 

of the thresholded image. The black lung region of the lung 

parenchyma contains small white shapes representing nodules 

and blood vessels. To eliminate them, the white shapes are 

labeled using connected component labeling. After all white 

shapes in the lung region are labeled; their sizes are analyzed 

using the following rule. 
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Fig 1: Flowchart of the proposed enhancement frame 

work. There are three main steps: Step1:  extraction of 

lung region from chest CT images, Step2: vessel 

enhancement using matched filters and Step3: local 

entropy thresholding. 

I(x, y) = 1, if S (k) is smaller than 150 pixels, 

where k is the label of the white shape 

The resulted mask image is subtracted from original image to 

get the intact lung region.  The results are shown in Fig 2. 

  
(a) (b) 

  
(c) (d) 

Fig 2: Results for chest CT image. (a) Original CT image, 

(b) by segmentation of the original image using Otsu’s 

thresholding method, (c) by mask after application of 

morphological operations, and (d) by final intact lung 

parenchyma extraction. 

3.2 Matched Filter 
The intensity profile of the cross section of blood vessels can 

be approximated by a Gaussian shaped curve, the intensity 

changes little along the center line of vessels, and there are 

two edges at the boundary of vessels. We assume that the 

vessels in lung region have following three properties: 

1) The blood vessels may be approximated as piecewise linear 

segments as they have small curvatures. 

2) The lung vessel has much higher density than the 

background of lung region. A few representative samples of 

blood vessel intensity profiles along directions perpendicular 

to their length are plotted in Fig.3. It was observed that these 

vessels almost never have ideal step edges. Even though the 

intensity profile varies by a small amount from vessel to 

vessel, it may be approximated by a Gaussian curve: 

2

2

d
f(x,y) = k exp - 

2

 
 
 

 

where d is the perpendicular distance between the point (x, y) 

and the straight line passing through the center of the blood 

vessel in a direction along its length, σ is the spread of the 

intensity profile, and k indicates the measure of reflectance of 

the vessel relative to its neighborhood. 

 

Fig 3: The gray level profiles of the cross section of blood 

vessels in the left lung lobe. 

3) The width of a blood vessel decreases as it goes radially 

outward from the hilum, such a change in vessel caliber is a 

gradual one. The diameters of the vessels are found to lie 
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within that range of approximately 20 μm -15 mm. For our 

initial calculations, however, we shall assume that all the 

blood vessels in the image are of equal width 3σ. 

Therefore, a blood vessel is defined as a bright pattern having 

Gaussian shape cross-section profile, piecewise connected, 

and locally linear.  

Now, let us consider the concept of matched filter detection 

[14] used to detect blood vessels in the segmented lung 

regions. The two-dimensional matched filter kernel is 

designed to convolve with the original segmented lung image 

in order to enhance the blood vessels. A prototype matched 

filter kernel is expressed as 

2

2

x L
f(x,y) = exp - for y

2σ 2

 
 

 

 

where L indicates the length of blood vessel segment for 

which the blood vessel is having a fixed orientation. The 

direction of the vessel is considered to be aligned along the y-

axis. Since a blood vessel may be oriented at any angle θ (0 ≤ 

θ ≤ π), the kernel needs to be rotated for all possible angles. 

The matched filter f(x, y) will have its maximum response 

only when it is aligned at an angle θ  π/2. Thus, the matched 

filter kernel is needs to be rotated for all possible angles since 

a blood vessel may be oriented at any angle.  

In [8], twelve different kernels have been constructed to span 

all possible orientations. A set of twelve 15x15 pixel kernels 

are applied by convolving to a segmented lung image and at 

each pixel only the maximum of their responses is retained. 

The results after convolving matched filter kernels at different 

angles with lung region of the chest CT image in Fig 2 (d) are 

shown in Fig 4(a-l) and the maximum of their responses is 

retained as shown in Fig 4(m) where the blood vessels are 

significantly enhanced. During this process the contrast of the 

background tissues are also enhanced along with blood 

vessels. 

3.2 Local Entropy Thresholding 
In order to properly segment the enhanced blood vessel 

segments in the matched filter response (MFR) images, an 

effective thresholding scheme is need. As some of the MFR 

images have complicated relationships or overlap between 

foreground and background, efficient local entropy based 

thresholding algorithm that takes into account the spatial 

distribution of gray levels is used. Particularly, we implement 

a local entropy thresholding technique, described in [15] 

which can well maintain the structure details in the 

thresholded image. 

Two images with identical histograms but different spatial 

distribution will result in different entropy and also different 

threshold values. The co-occurrence matrix of an image is a P 

x Q dimensional matrix, represented by T = [tij]PXQ that gives 

an idea about the transition of grey level between two adjacent 

pixels, indicating spatial structural information of an image. 

More specifically, let tij be the (i, j)th element of the co-

occurrence matrix T, different definitions of co-occurrence 

matrix are possible. 

Here, we made the co-occurrence matrix asymmetric by 

considering the horizontally right and vertically lower 

transitions. Thus, tij is defined as follows: 

  

(a)00 (b)150 

  
(c)300 (d)450 

  
(e)600 (f)750 

  
(g)900 (h)1050 

  

(i)1200 (j)1350 

  
(k)1500 (l)1650 

 
(m)Output image 

Fig 4: Twelve-directional images of the segmented CT 

image shown in Fig 2(d) after applying matched filter and 

the maximum of their responses is retained in output 

image. 
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where ‘and/or’ used in the δlk earlier implies ‘either or both’.  

Normalizing the total number of transitions in the co-

occurrence matrix, a desired transition probability from grey 

level i to grey level j is obtained by 

ij 

ij L-1 L-1

lk

l=0 k=0

t
p = 

t

 

If s, 0 ≤ s ≤ L - 1 is a threshold t. Then s can partition the co-

occurrence matrix into four quadrants, namely A, B, C, and D 

(see Fig 5). Here, it is assumed that pixels having gray level 

above the threshold value are assigned to foreground 

(corresponding to objects). Pixels having gray level equal to 

or below the threshold value are allocated to the background. 

 

Fig 5: Four quadrants of a co-occurrence matrix 

Let us define the following quantities: 

S S

 A ij

i = 0 j = 0

L-1 L-1

 C ij

i = S+1 j = S+1

P = p

P = p


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Normalizing the probabilities in each quadrant, such that the 

sum of the probabilities of each quadrant equals one, we get 

the following cell probabilities for different quadrants: 

ijA

 ij

A

p
P = for 0 i  s, 0  j  s

P
   

 

Similarly,  

ijC

 ij

C

p
P = for S+1 i  L-1, S+1  j  L-1

P
   

 

The second order entropy of the object can be defined as 

 
A
ij

iJ

S S
P(2) A

 A 2

i=0 j=0

1
H S  = - P log

2
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Similarly, the second-order entropy of the background can be 

written as 

 
C
ij

iJ

L-1 L-1
P(2) C

 C 2

i=S+1 j=S+1

1
H S  = - P log

2
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Hence, the total second-order local entropy of the object and 

the background can be written as 

     (2) (2) (2)

 T  A  CH S  = H S +H S  

The gray level corresponding to the maximum of   (2)

 TH S

gives the optimal threshold for object background 

classification. Fig 6 shows the result after local entropy 

thresholding of MFR image. 

 

Fig 6: Local entropy thresholding result for the image 

shown in Fig 4 (MFR). 

4. RESULTS & PERFORMANCE   

      EVALUATION  
The proposed method is tested on publicly available databases 

of Lung TIME [16] which is very useful to extract pulmonary 

vessel tree form low dose chest CT scans obtained from the 

Motol Environment. For this purpose, a pilot clinical sample 

was also acquired to examine the exactness of the outcome. 

The results are compared to those obtained by Hessian-based 

filters output and they demonstrate that the proposed method 

exhibits better connected segmentations and is capable of 

finding connections to thin, peripheral vessels. Experiments 

were performed on 10 out of 157 low dose chest CT scans for 

which the pulmonary vessels are extracted.  

In this section, experiments have been performed with both 

synthetic images and real chest CT images to verify the 

performance of the proposed matched filter in comparison 

with the filters introduced by Frangi and Shikata, which are 

considered as the standard techniques.  

4.1   Junction suppression 
A synthetic image of size 512 x 512 which was processed by 

the three filter models. The synthetic image is obtained to 

contain vessels of different sizes and junctions of different 

types. It is possible to see that the Frangi and Shikata filters 

suppress junctions while the matched filter approach does not. 

The suppressed junctions make vessels discontinuous. 

Although this error may be small, it can cause the splitting of 

a single vessel, which in turn has a critical effect on the 

vessel-tree reconstruction accuracy. Fig 7 shows the results of 

synthetic image. 

Vessel has one principal direction, which is mathematically 

indicated by a small ratio between the minimum and 

maximum Hessian eigenvalue. Meanwhile, at a junction, 

where a vessel branches off, there are more than two principal 

directions, and thus the ratio of two eigenvalues is no longer 

small. As a result, the Frangi and Shikata filters considered 

these points as noise and hence they are suppressed. In the 

proposed method convolves the input image with twelve 

rotated versions of a two-dimensional matched filter (150 of 

angular resolution). As the maximum response of the filter 

with respect to every angle is retained junctions are explored 

clearly. 

4.2 Noise sensitivity 
To compare the performances of the filters with respect to 

noise levels, we considered a set of phantom images shown in 

Fig 8. The properties of phantom are as follows. First of all, 

one original phantom image with various typical hindrances 

B A 

C D 

0 S L-1 

S 

L-1 
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images for accurate vessel detection is created and later on 

used as the “ground truth”. In this 512 x 512 sized phantom, 

fifteen vessel segments are constructed for a wide range of 

widths and directions to model as vascular image. For the 

sake of further analysis, these segments are numbered in an 

increasing order from left to right and top to bottom. 

  
(a) (b) 

  
(c) (d) 

Fig  7: Vessel improvement results. (a) The original 

synthetic image. (b) enhanced image by the Frangi 

method. (C) by the Shikata method, and (d) by our 

approach. The Frangi and Shikata methods suppress the 

junctions while ours does not. 

 

Fig 8: Test data with a size of 512 x 512 phantom obtained 

from www.ecse.rpi.edu/censsis/phantom/fp_d1108_2.pgm. 

The testing data incorporate most of the common 

challenges to exact vessel extraction procedure such as 

image noise and presence of close parallel vessels, very 

thin vessels, discontinued vessels, and vessels with variable 

intensities along their length. 

Segment 1 represents different branch points in a real chest 

CT image. Segment 3 stands for vessel orientation diversity. 

Segments 4 to 7 characterize junctions with different widths. 

Moreover, segments 2, 12, and 14 are designed deliberately to 

have variable cross-sectional widths. Further, common 

challenges such as the presence of close parallel vessels in 

segments 8, 9, and 11, very thin vessels in segment 10, 

discontinued vessels in segment 13, and vessels with variable 

intensities along their length in segment 15 are also 

incorporated into the phantom. In the next step based on this 

original phantom, a series of testing data are generated by 

adding various levels of white noise, having standard 

deviation (SD) ranging from 5% to 80%. The noise SD is 

calculated as a percentage of the 8-bit dynamic range of the 

image (0-255). To our experience, the data with noise SD of 

80% represents the most possibly challenging situation, which 

is well beyond any worst case of real CT images.  

Then the three filters are applied on those phantom images 

and the outputs are segmented using local entropy 

thresholding to compare with the “ground truth”. The 

quantitative performance is measured with receiver operating 

characteristic (ROC) curves [17]. An ROC curve plots the rate 

of pixels correctly classified as vessels (i.e., true positive rate 

or sensitivity) against the rate of pixels incorrectly classified 

as vessels. The rates are obtained with all possible threshold 

choices. Each discrete threshold value produces a pair 

corresponding to a single point in the curve. The closer the 

curve approaches the northwest corner, the better the filter 

performs. A single scalar value reflecting this behavior is the 

area under the ROC curve (AUC), which is 1 for perfect 

performance. Note that to get rid of the large number of 

background pixels correctly classified can compute the 

sensitivity and specificity in the vicinity of the “ground truth” 

vessels which can be obtained by dilation. In our experiment, 

the vicinity size is selected such that the number of 

background pixels is comparable to that of the vessel pixels. 

Fig 9 shows sample enhancement results for the data with 

noise SD of 20%. The performances of the three filters 

applied on the whole testing data set are presented in Table 1 

and Fig 10. In this figure, the AUC measures are plotted as a 

function of the noise SD. We can see that the matched filter 

out performs the others for this data set. Specifically, 

compared to the Frangi filter, it generates similar results in 

case of low noise (i.e., SD of 5 - 10%) but performs much 

better when the noise level increases. 

  
(a) (b) 

  

(c) (d) 

Fig 9: Sample vessel enhancement results. (a) Sample 

phantom image with noise SD of 20%. (b) Enhanced 

image by the Frangi filter, CPU = 2.42 s, (c) by the Shikata 

filter, 2.24 s, and (d) by Matched filter, 5.27 s. 

4.3 Real data 
Similar to junction suppression problem, small vessel 

enhancement is critical because those thin vessels which may 

appear broken or disconnected from larger structures will 

often be omitted in the reconstruction procedures. 

Fig 11 shows the enhancement results of the three filters 

applied on two real lung CT images. The images are of size 

512 x 512 and belong to chest part of the human body. As can 

be observed, the Frangi filter gives good results with large 

http://www.ecse.rpi.edu/censsis/phantom/fp_d1108_2.pgm
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vessels but fails to detect small ones while the Shikata model 

is able to enhance small vessels but unfortunately enhances 

background noise also. Conversely, the matched filter can 

enhance small vessels with more continuous appearances.  

Table1: SD of the AUC of the 

three methods performed on 

the Fig. 9 

SD 

AUC 

Frangi Shikata 
Proposed 

Matched 

0 0.94 0.94 0.94 

10 0.94 0.91 0.94 

20 0.89 0.85 0.91 

30 0.88 0.84 0.89 

40 0.86 0.82 0.88 

50 0.82 0.80 0.84 

60 0.82 0.79 0.83 

70 0.77 0.77 0.80 

80 0.79 0.78 0.79 

The segmentation accuracy of the proposed method was 

evaluated quantitatively on a data set of 10 out of 157 patient 

scans by comparing automatically derived vessel segments 

with expert radiologist randomly selected 100 points from 

pulmonary vessels and 100 points in background near vessel 

structures for axial slices of CT images. Then matched filter 

and local entropy threshold are applied to these images and 

the above regions are used as the ground truth to calculate the 

sensitivity and specificity. Our final results show that 

sensitivity rate of 96.25% and specificity rate of 98.5% for our 

datasets. 

 

 

Fig 10: Performance plots vs. noise levels for the testing 

data described in Fig. 9. In average, the AUC of matched 

directional filter is relatively 13% and 36% larger than 

that of Frangi and Shikata filters, respectively. 

 
Fig 11: Qualitative results for two lung CT images. (a and e) Original images, (b and f) enhanced images by Frangi 

method, CPU = 2.43 s each, (c and g) by Shikata method, 2.21 s, and (d and h) by Matched filter approach, 4.38 s. The 

Frangi and Shikata models fail to correctly enhance small and thick vessels but our approach succeeds.  

 

5. DISCUSSIONS AND CONCLUSION   

In this paper we have presented a novel approach of vessel 

enhancement for 2D Chest CT images by using matched filter 

and local entropy thresholding. Our main contribution resides 

in adapting the matched filter kernels at different angles to be 

used in the lung region. In particular, this permits the 

estimation of the vessel directions without the Hessian eigen-

analysis. The advantage of the proposed approach is that it 

distinguishes all vessels at bifurcations and crossings.  

Hessian-based filters can enhance vessels of various sizes and 

simultaneously estimate their directions. However, Hessian-

based filters cannot distinguish step edges from vessels 

effectively. Matched filters are capable of distinguishing step 

edges from vessels more effectively.  

We believe the ratio of eigenvalues used in Frangi filter 

cannot distinguish edges from vessels as effectively as 

matched filters due to the fact that it only uses the local 

information, while the matched filter uses all pixels in the 

cross section of a vessel. Therefore, an additional filter 

response is obtained by convolving the image with a matched 

filter in the cross direction of the vessels. The matched filter is 

a second order derivative of one dimensional Gaussian 

function. 

The experimental results show that the matched filter kernels 

at different angles overcome the limitations of conventional 

Hessian-based methods such as junction suppression and 

noise sensitivity. It also performs better on real chest CT 

images. 

In conclusion, we consider the proposed matched filter and 

local entropy thresholding methods performs very well to 

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0 10 20 30 40 50 60 70 80

A
U

C
 

Noise SD [%] 

Frangi

Shikata

Matched



International Journal of Computer Applications (0975 – 8887) 

Volume 54– No.9, September 2012 

24 

extract thin lung blood vessels even in low contrast regions in 

clinical tasks. However, there is still room for improvement 

for detecting the finer vessels. Another difficulty of the 

proposed method is that in some images fissure of the lung 

region is miss-detected as blood vessel. The future work aims 

to solve these challenges. 

6. REFERENCES 
[1]   E Li, S. Sone, H. Abe, H. MacMahon, S. Aimato Ill, and 

K. Doi. “Lung cancers missed at low-dose helical CT 

screening in a general population: comparison of clinical, 

histopathologic, and imaging findings,” Radiology, vol. 

225, pp. 673-683, 2002. 

[2] W. Huang, R. Yen, M. McLaurine, and G. Bledsoe, 

“Morphometry of the human pulmonary vasculature,” 

Journal of Applied Physiology, vol. 81, pp. 2123-2133, 

1996. 

[3]  Hidenoris hikata,Geoffrey McLennan, Eric A.Hoffman, 

and Milan Sonka, “Segmentation of Pulmonary Vascular 

Trees from Thoracic 3D CT Images”, in Hindawi 

Publishing Corporation International Journal of 

Biomedical Imaging Volume 2009, Article ID636240, 11 

pages doi:10.1155/2009/636240. 

[4]  O. Agam, S.O. Armato III. and C. Vu, “Vessel tree 

reconstruction in thoracic CT scans with application to 

nodule detection,” IEEE Trans. Med. Imaging, vol. 24, 

no. 4, pp. 486-499, 2005. 

[5]   A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. 

Viergever, “Multiscale vessel enhancement filtering,” in 

Medical Inage computing and Computer Assisted 

Intervention, 1998, pp. 130-137. 

 [6]  Panayiotis D. Korfiatis, Cristina Kalogeropoulou, Anna 

N. Karahaliou, Alexandra D. Kazantzi, and Lena I. 

Costaridou, “Vessel Tree Segmentationin Presence of 

Interstitial Lung Disease in MDCT” , in IEEE 

Transactionson Information Technology in Biomedicine, 

vol.15, no.2, pp. 214-220, March 2011. 

 [7]  Y. Sato, S. Nakajima, N. Shigara, H. Atsumi, T. Koller, 

G. Gerig, and R. Kikinis, “Three-dimensional multi-scale 

line filter for segmentation and visualization of 

curvilinear structures in medical images,” 

Med.Img.Analysis, vol. 2, no. 2, pp. 143-168, 1998. 

[8]  Q. Li, S. Sone, arid K. Doi, “Selective enhancement 

filters for nodules, vessels, and airway walls in two- and 

three-dimensional CT scans,” Medical Physics, vol. 30, 

no. 8, pp. 2040-2051, 2003. 

  

 

 

 

 

 

 

 

 

 

[9]  L. Cohcn and T. Dcschamps, “Segmentation of 3D 

tubular objects with adaptive front propagation and 

minimal tree extraction for 3D medical imaging,” 

Computational Methods in Biomechanics and 

Biomedical Engineering, vol. 10, no. 4, pp. 289-305, 

2007. 

[10]  G. Song, A. Ramirez-Manzanares, and J. Gee, “A 

simultaneous segmentation and regularization framework 

for vessel extraction in CT images,” in First international 

workshop on pulmonary image processing, pp. 185-193, 

2008. 

[11]  Panayiotis D. Korfiatis, Anna N. Karahaliou, Alexandra 

D. Kazantzi, Cristina Kalogeropoulou, and Lena I. 

Costaridou, “Texture Based Identification and 

Characterization of Interstitial Pneumonia Patterns in 

Lung Multidetector CT” in IEEE Transactionson 

Information Technology in Biomedicine, vol.14, no.3, 

pp. 675-680, May 2010. 

[12]  Yanfeng Shang, Rudi Deklerck, Edgard Nyssen, Aneta 

Markova, Johande Mey, Xin Yang, and Kun Sun, 

“Vascular Active Contourfor Vessel Tree Segmentation”, 

IEEE Transactions on Biomedical Engineering, 

vol.58,no.4, pp. 1023-1032, April 2011. 

[13]  N. Otsu, “A threshold selection method from gray-level 

histograms,” IEEE Transactions on Systems,Man, and 

Cybernetics, vol. SMC-9, pp. 62-66, Jan. 1979. 

[14]  S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. 

Goldbaum, “Detection of blood vessels in retinal images 

using two dimensional matched filters,” IEEE Trans. 

Medical imaging, vol. 8, no. 3,pp. 263-269, September 

1989. 

[15]  Chang, C.-I.; Du, Y.; Wang, J.; Guo, S.-M.; Thouin, 

P.D., Survey and comparative analysis of entropy and 

relative entropy thresholding techniques, Vision, Image 

and Signal Processing, Page(s):837 – 850, IEE 

Proceedings, Vol. 153, 2006. 

[16]   M. Dolejsi, J. Kybic, M. Polovincak, and S. Tuma, "The 

Lung TIME-Annotated lung nodule dataset and nodule 

detection framework," in Proceedings of SPIE, Vol. 

7260, 72601U, 2009. 

[17] T. Fawcett, ROC Graphs: Notes and Practical 

Considerations for Researchers, Technical Report, HP 

Laboratories, Palo Alto, USA, 2004. 


