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ABSTRACT 

RNA structure prediction is one of the major topics in 

bioinformatics. Among the various RNA structures, 

pseudoknots are the most complex and unique structure. 

Various methods have been used for modeling RNA 

pseudoknotted secondary structure. In this paper a new 

model for prediction of RNA pseudoknot structure has 

been proposed. In this model, features of two existing 

techniques, i.e. neural network and grammar are 

combined. The advantage of grammar, identification 

based on rules is combined with the strength of a neural 

network to learn. An Elman neural network is used to 

learn the context free grammar that represents a 

pseudoknot. This Learning grammar network further 

identifies if the RNA sequence contains pseudoknot or 

not. Learning grammar helps in reducing the drawbacks 

of both neural network and grammar thus increasing the 

overall power of identifying sequences with 

pseudoknots. 

Highlights 

 Pseudoknots are the most complex and unique 

structure. It is very difficult for an algorithm to 

identify all the classes of pseudoknots at once. 

 In the proposed Learning Grammar Model for 

Pseudoknot Identification features of existing 

technology neural network and grammar are 

combined. 

 In this model Elman neural network is used. 

Elman neural network tries to learn context free 

grammar that represents a pseudoknot. After 

learning the neural network can classify RNA 

sequence into sequences with or without 

pseudoknots. 

 For sequences with pseudoknots the model 

could detect 80.34% of the sequences. It could 

detect all of the sequences without pseudoknots 

correctly. 

 Combining neural network with grammar helps 

in reducing the drawbacks of both the 

technologies and increasing the overall power 

of identifying sequences with pseudoknots 

Keywords-- Minimum Free Energy, Pseudoknots, Soft 

Computing, Elman Neural Network, Grammar, Context 

Free Grammar 

1. INTRODUCTION 

Bioinformatics is an applied science where mathematical 

and computational theories and technologies are used in 

order to process, relate and derive predictions and 

inferences from data obtained in molecular biology. 

Bioinformatics’ goal is to understand and analyze the 

information control and flow within different organisms. 

There is a synergic interaction between computer 

science, mathematics and biology, each with its own 

richness and limitations [1]. 

RNA structure prediction has been a major topic of 

research and especially predicting structure of the non 

coding RNA.  An ncRNA folds into a characteristic 

structure depending upon the interactions 

complementary base pairs. Out of the ncRNA secondary 

structures pseudoknots are the most distinct structure. 

The paper gives a description of pseudoknot prediction 

techniques and is divided into the following sections. 

Firstly it includes biological basics of RNA pseudoknot, 

definition and classes of pseudoknot. Followed by details 

on popular pseudoknot prediction techniques i.e. 

dynamic programming, grammatical approach and soft 

computing. Finally discussing learning grammar model 

for predicting the pseudoknot in RNA sequence along 

with the research techniques combined in the new model.  

2. BIOLOGICAL BASICS OF RNA 

PSEUDOKNOT 

DNA molecules are composed of nucleotides which 

carry the biological information [5]. RNA a single-

strand molecule is made up of nucleotides that are 

adenine (A), cytosine (C), uracil (U), and guanine (G) 

which then bounded with sugar-phosphate backbone. 

Among these four nucleotides cytosine (C) and uracil 

(U) are pyrimidines and adenine (A) and guanine (G) are 

puriens. To form a stable RNA structure puriens bond 

with pyrimidines which means adenine (A) bonds with 

uracil (U) and cytosine (C) bonds with guanine (G). 

Single-stranded RNA sequence folds over to form 

secondary structures like  hairpin loops, internal loops, 

double helix, bulge loops (called orthodox RNA 

structure), pseudpoknots (called non-orthodox RNA 

structure) etc reducing their energy to form a stable 

structure[4].  

A non-coding RNA (ncRNA) folds to form characteristic 

structure depending upon the interactions 

complementary base pairs. Out of the ncRNA secondary 
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structures pseudoknots are the most typical. The 

pseudoknots play a vital role in translation, viral genome 

structure, ribosome active site and many others [6] [3].  

Definition and classes of pseudoknots 

When bases pair between nucleotides loops (hairpin or 

internal) and bases outside the enclosing loop, interact 

they form a pseudoknot. This structure often contains 

coaxial helices. It can be a very stable tertiary interaction 

[9].  

Let S = s1s2...sm be a RNA sequence and Q be the 

secondary structure of S. Q is represented as a set of base 

pairs (si, sj), 1 ≤ i < j ≤ m.  

Let Qx,y  Q be the set of base pairs in the subsequence 

sxsx+1...sy, 1 ≤ x < y ≤ m.  

Qx,y = {(si, sj)  Q|x ≤ i < j ≤ y}. 

Qx,y is a regular structure (as in figure 1(a)) if there does 

not exist two pairs  

(i, j), (k, l)   Qx,y such that  

i < k < j < l or k < i < l < j.  

An empty set is considered as a regular structure. 

Qx,y is a simple pseudoknot (as in figure 1(c)) if   x < 

x1, x2 < y (x1, x2 are referred as pivot points) such that 

i) each (i, j)  Qx,y satisfies either x ≤ i < x1 ≤ j < x2 

or x1 ≤ i < x2 ≤ j ≤ y; and, 

ii) QL and QR are both regular where  

QL = {(i, j)  Qx,y|x ≤ i < x1 ≤ j < x2} and  

QR = {(i, j)  Qx,y|x1 ≤ i < x2 ≤ j ≤ y}. 

Q is a recursive simple pseudoknot (as in figure 1(d)) if 

  1 ≤ x1 < y1 < ... < xs < ys ≤ m such that 

i) Qxi,yi , for 1 ≤ i ≤ s, is a recursive simple 

pseudoknot, simple pseudoknot, or a regular 

structure and, 

ii) (Q − U1≤i≤sQxi,yi ) is a regular or a simple 

pseudoknot structure. 

Embedded simple pseudoknot structure is a subset of 

recursive simple pseudoknot. It is defined as follows: 

[11].  

Q is an embedded simple pseudoknot structure if  1 ≤ 

x1 < y1 < ... < xs < ys ≤ m such that 

i) Qxi,yi , for 1 ≤ i ≤ s, is a simple pseudoknot 

structure and, 

ii) (Q − U1≤i≤sQxi,yi) is a regular structure. 

There is another restricted class of recursive simple 

pseudoknot which is also found in existing ncRNA 

families. This class is referred as 2-level recursive simple 

pseudoknot with regular recursive regions. Q is a 2-level 

recursive simple pseudoknot with regular recursive 

regions if  1 ≤ x1 < y1 < ... < xs < ys ≤ m such that  

i) Qxi,yi , for 1 ≤ i ≤ s, is regular and, 

ii) (Q −U1≤i≤sQxi,yi) is a simple pseudoknot structure. 

Simple pseudoknot structure is a subset of both the 2-

level recursive simple pseudoknot with regular recursive 

regions and the embedded simple pseudoknot structure. 

The latter two classes of pseudoknots are subsets of 

recursive simple pseudoknot structure [7]. 

3. RELATED RESEARCH WORK 

RNA pseudoknots have drawn considerable attention of 

researchers because they give 3-D structure to the 

molecule, a structure that will determine in most cases its 

particular biological function. Even though determining 

the molecular structure is of vital importance. It is also 

particularly hard and expensive to obtain structural data 

from RNA spectrometry and crystallography [1].  

 

Figure 1 Examples of RNA secondary structure: 

(a) Simple (non-pseudoknotted) structure; (b) 

Pseudoknot; (c) H-pseudoknot (simple pseudoknot); (d) 

Recursive pseudoknot. 

Among the many exponential possibilities of secondary 

structure for a given RNA sequence under fixed 

environmental conditions, the most stable structure is 

with the minimum free energy. Free energy can be 

calculated by summation of energies (entropy and 

thermodynamic) related to secondary structure’s 

components. Estimating this energy becomes an NP-hard 

problem [1]. There is a tradeoff between the algorithm’s 

complexities and the generalization of RNA structures 

classes [17]. Many techniques like dynamic 

programming, grammatical approach, soft computing 

techniques and more exist to predict the structure of 

RNA pseudoknots [14].  
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3.1. RNA Pseudoknot Structure Prediction 

Techniques 

The following techniques exist to predict the structure of 

RNA pseudoknots: 

3.1.1. Dynamic programming  

Dynamic programming is a very well known and usefull 

method for solving complex problems by breaking them 

down into simpler subproblems. Using this concept of 

dividing into subproblems and the concept of Minimum 

Free Energy, many algorithms were developed. Some 

popular algorithms among the many dynamic 

programming algorithms were proposed by Rivas and 

Eddy (R&E) [10], Lyngso and Pedersen (L&P) [12], and 

Dirks and Pierce (D&P) [8].   

Dirks and Pierce (D&P) algorithm is more general than 

the others, this can be said because calculations can be 

made using the partition function as well as the 

Minimum Free Energy secondary structure [2]. It has 

time complexity Ө (n
5
) and space complexity is Ө (n

4
). 

Lyngso and Pedersen (L&P) algorithm is for a restricted 

class, which includes structure of the form x1x2x1’x2’ 

where both x1x1’ and x2x2’ are pseudoknot free 

structures. The time complexity and space complexity is 

Ө (n
6
) and Ө (n

4
) respectively. Rivas and Eddy (R&E) is 

a complete model with possibility to calculate the free 

energy and find parameters of pseudo-knotted secondary 

structures [2]. However, the complexity of algorithm 

makes it infeasible for molecules of larger length. Its 

worst case time complexity is Ө (n
6
) and Ө (n

4
) for space 

restricting the sequence to a maximum length of around 

150 nucleotides [12]. 

3.1.2. Grammatical Approach  

In grammatical approach, secondary structure prediction 

is viewed as a parsing problem. Several grammars have 

been used to predict the pseudoknotted RNA structure. A 

comparison of grammars show significant attention is 

paid on context-free grammar to predict the orthodox 

RNA structure which took Ө (n
3
) time where n was the 

length of the input sequence. Many variations of CFG 

like Scholastic Context Free Grammar (SCFG), Multiple 

Context Free Grammar (MCFG), and Scholastic 

Multiple Context Free Grammar (SMCFG) can better 

represent pseudoknots. 

Many attempts have been made at modeling RNA 

structure by formal language. Few grammars have been 

proposed to represent pseudoknots. The pioneer define 

two subclasses of tree adjoining grammar (TAG) called 

simple linear tags (SL-TAG) and extended simple linear 

tags (ELS-TAG), and argue that ELS-TAG is appropriate 

for representing RNA secondary structure including 

pseudoknots [23]. SL-TAG cannot be used to represent 

pseudoknots because of its limited representative power. 

Whereas ELS-TAG is the minimum grammar that can 

define a pseudoknot structure grammatically. 

Later grammars like SS-TAG (a sub class of TAG) was 

introduced, it is more general as compared to ELS-TAG. 

Advancement in Context Free Grammar similar to 

Scholastic Context Free Grammar (SCFG) [18] [13], 

Multiple Context Free Grammar (MCFG) can better 

define a pseudoknot.  

It is difficult to answer which class of grammar is the 

minimum to represent pseudoknots as no exact definition 

of pseudoknots in a biological or geometrical sense is 

available. The generative power of ELS-TAG, SS-TAG 

and MCFG was found to be same of Ө (n
5
) [24]. 

A new grammar, Multiple Context Free Grammar along 

with probability of the rule called the Scholastic Multiple 

Context Free Grammar (SMCFG) is recently introduced 

for predicting pseudoknotted RNA structures the [15] 

[1]. SCFG has the generative power and accuracy 

comparable to dynamic programming method. One of 

the important parameter used in the analysis is F-

measure. F-measure is weighted harmonic mean of 

precision and recall. The F-measure is also known as 

balanced F-score. It average F-measure is 65%.  

Only grammatical approach is not sufficient i.e. we need 

more technology to be included into grammatical 

approach to increase its performance. 

3.1.3. Soft computing 

Soft computing is a group of methodologies that work 

together and provides capabilities for handling real life 

ambiguous and uncertain situations. The aim of soft 

computing is to exploit the tolerance for approximate 

reasoning, imprecision, uncertainty and partial truth in 

order to achieve tractability, robustness, low solution 

cost, and close resemblance with human like decision-

making [2].  

The previously discussed techniques have high time and 

space complexities, which lead the use of soft computing 

techniques in the prediction of RNA pseudoknots [19].  

Among the many soft computing techniques that could 

be used for pseudoknot prediction like Artificial Neural 

Network, Genetic Algorithms, Fuzzy Neural Network, 

Swarm Intelligence to achieve near optimal results in 

less computational time and memory requirements. Out 

of these soft computing techniques the neural network is 

very useful and versatile. 

Artificial Neural Network (ANN) is composed of 

interconnecting artificial neurons (programming units 

that mimic the properties of biological neurons to learn). 

Artificial neural networks aim in solving artificial 

intelligence problems by gaining knowledge through 

learning. Artificial Neural Network based algorithm to 

predict the RNA secondary structure use maximizing 

base pairs. They find the most stable structure, the 

structure with minimum energy. More the number of 

base pairs found more stable the secondary RNA 

structure will be. Some ANN following this paradigm 

are described in [22] [16] [20]. The Back Propagation 

neural network (BPN) is widely used neural network. 

The learning of BPN is supervised type. The error is 

calculated in the last layer and feedback to previous 

layers to modify the weights. A simple recurrent network 

http://en.wikipedia.org/wiki/Harmonic_mean
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is used in [20] to classify and predict the best secondary 

structure. The neural network like Hopfield which acts 

like a content addressable memory unit are used in [22] 

[16]. ANN can predict the complex pseudoknots with the 

same ease as the orthodox structures. The complexity of 

designing and learning may increase but the predictions 

are simple with minimum resource requirements.  

4. PROPOSED MODEL 

In this model the advantage of grammar, identification 

based on rules is combined with the strength of a neural 

network to learn. These technologies combine to form 

the Learning Grammar Model for pseudoknot 

identification. The technologies are explained below: 

Exiting Technologies Used in the Learning Grammar 

Model 

4.1. Context Free Grammar for RNA 

Pseudoknot 

The simplest grammar that can represent a 

pseudoknot is context free grammar, various types 

of non terminal symbols are needed to model the 

different known structures. 

The Non-terminals of the grammar and their 

semantic are: 

 P: the paired columns in Watson-Crick 

bridges (bonds A-U C-G) are described by 

a non terminal that emits a base pairing. 

 L: The non paired columns are described 

by a non terminal that emits to the left 

(direction 5´_ 3´) whenever possible; i.e., 

when no possible ambiguous sequences 

may arise. 

 R: non terminal that emits to the right 

(direction 3’ _5’). Case that can 

occasionally happen in protuberances 

between stems and loops in the right part of 

the structure (strand 3’). It is used when 

ambiguous sequences emerge when L is 

used. 

 B: Bifurcation non terminal used to split 

several stems or loops with various 

branches arising from it. 

 S: Beginning non terminal that acts as 

immediate son to a bifurcation’s derivation 

or a sequence start. 

 E: Ending non terminal that finishes the 

derivation of sequences. 

 D: Suppression non terminal i.e. used to 

describe a production that does not emit 

terminal symbols and does not describe one 

of the previous cases. 

Each one of the non terminals has, by its stochastic 

characteristic, a probability ev (a,b) of emitting one 

or two pairs of bases. Here v is the non terminal and 

a, b ϵ {A, G, C, U}. The symbol tv(Y) represents the 

probability to go from state v to state Y [18]. 

P → aYb  Pair derivation (16 possible 

emitting types)  

L → aY  Left derivation (4 possible 

emitted symbols)  

R → Ya  Right derivation (4 possible 

emitted symbols)  

B → SS   Bifurcation 

D → Y   No symbol derivation  

S → Y   Start 

E → ϵ  End 

 

4.2. Neural Network to Learn Grammar 

(ELMAN Network) 

Memory is needed to learn temporal information. 

There are two basic ways to build memory into the 

neural networks [27]. The first one is to introduce 

time delays in the network and to adjust their 

parameters during the learning phase. The second 

way is using positive feedback, i.e. making the 

network recurrent. To characterize memories in 

different architectures, two dimensions, depth and 

resolution has been proposed. Roughly, depth refers 

to how far into the past the memory stores 

information relative to the memory size, and 

resolution how accurately information concerning 

the individual y (n) = xˆ (n) elements of the input 

sequence is preserved, where n is number of 

elements [26]. In time series prediction with neural 

networks the main problems have been deciding 

prediction order and the structure of the network 

[25]. 

 In the case of grammars, it may be verified that 

recurrent neural networks have an inherent ability to 

simulate finite state automata [30], from which 

grammars of regular languages are inferred. The 

behavior of a recurrent neural net (RNN), a 

dynamical system can be used to construct finite 

state automaton [30]. However, regarding the natural 

language processing, it must be noted that grammars 

of natural languages cannot be completely 

represented by finite state models, due to their 

hierarchical structures [31]. Nevertheless, it has been 

shown that recurrent networks have the 

representational power required for hierarchical 

solutions [29], and therefore, a type of RNN for 

natural language processing, called Elman network 

can be used [28]. 

The Elman network takes positive feedback to 

construct memory in the network as shown in Figure 

2. The network has input, hidden and output layers.  

 



International Journal of Computer Applications (0975 – 8887) 

Volume 54– No.9, September 2012 

5 

 

Figure 2 Elman Neural Network 

Special units called context units save previous 

output values of hidden layer neurons. Context unit 

values are then fed back fully connected to hidden 

layer neurons and thus they serve as additional 

inputs to the network. Networks output layer values 

are not fed back to network.  

The Elman network has a high depth, low resolution 

memory, since the context units keep exponentially 

decreasing in trace of past hidden neuron output 

values. The memory in the network has no rigid 

limit, and the fact that the information concerning 

previous data is preserved with better resolution than 

more distant data in the past. 

5. LEARNING GRAMMAR MODEL FOR 

PSEUDOKNOT IDENTIFICATION 

In this model, features of existing technology neural 

network with grammar as discussed above are combined. 

The neural network learns grammar to identify 

pseudoknot in RNA sequence.  The model is shown in 

figure 3 and its 3 steps are explained as follows: 

 

Figure 3 Learning Grammar Model for Pseudoknot 

Identification 

i. Pre-Processing 

The selection of an appropriate input encoding 

method is probably one of the most significant 

factors determining the performance of the final 

system, because the encoding determines what 

information is presented to the NNs. An idea1 

encoding scheme should extract maximal 

information from the sequence, and satisfy the basic 

coding assumption so that similar sequences are 

represented by close vectors. The design for the 

input sequence encoding method is application 

dependent, and affected by many other 

considerations. Among the two encoding techniques, 

i.e. direct or indirect encoding any one can be used 

[21]. 

The RNA sequence is coded in binary format in 

order to be fed to the neural network. The four 

alphabets of an RNA sequence A, G, C, T are coded 

in a matrix of mXn where n is the length of the 

sequence and m is the number of bits used to code 

each alphabet of the sequence. There are two 

popular encoding schemes used for RNA sequences. 

One of the encoding schemes is BIN4 in which 1000 

(A), 0100 (U), 0010 (G), and 0001 (C). In the other 

encoding scheme the alphabets are coded as 1101 

(A), 0100 (U), 1000 (G), 1110 (C). 

ii. Learning Grammar 

Elman Neural Network can be used to learn the 

context free grammar of pseudoknot. The number of 

neurons in the input layer and output layer is equal 

to m (encoding scheme of the sequence). The 

number of neurons in the context unit can vary 

according to the level of generalization. 

The Elman network will take an alphabet of the 

RNA sequence and predict the next alphabet in the 

sequence according to the grammar representing 

pseudoknots. The neural network can thus learn all 

classes of pseudoknots at once using only the 

context free grammar. 

iii. Post-Processing 

After the neural network has learnt the grammar the 

output of the neural network can be used to identify 

sequences with pseudoknots. The network when fed 

with the input symbol predicts the next symbol in 

the sequence according to the grammatical rules 

learnt. If the alphabets predicted by the neural 

network is same as the alphabets in the actual 

sequence then the sequence has a pseudoknot 

otherwise the sequence does not have a pseudoknot.  

This criterion can be used to identify sequences with 

and without pseudoknots. 

Pseudoknots are the most complicated secondary 

structure among all RNA secondary structures. It is very 

difficult for an algorithm to identify all the classes of 

pseudoknots at once. Hence there is a tradeoff between 

the algorithm’s complexities and the generalization of 

RNA structures classes [2]. The complexity of 

grammatical approaches is of the O(n
5
) making it very 

time consuming whereas neural network reduces the 

time complexity but the time required in designing a 

Output 

Unit 

Hidden 

Unit 

 

Input Unit 

 

Context 

Unit 
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neural network is higher than other techniques. 

Combining neural network with grammar helps in 

reducing the drawbacks of both the technologies and 

increasing the overall power of identifying sequences 

with pseudoknots. There is a tradeoff between time 

necessary for constructing a system to identify 

pseudoknots and time taken in executing and producing 

the required results. 

6. RESULTS 

RNA pseudoknot sequences from the PseudoBase++ 

(http://pseudobaseplusplus.utep.edu/home) were used to 

test the Learning Grammar Model for Pseudoknot 

Identification. The developed model is tested with 300 

sequences containing pseudoknots. The model could 

detect 80.34% of the sequences correctly as sequences 

with pseudoknots. Further testing the model with non-

pseudoknots sequences, it could detect all of the 

sequences correctly i.e. sequences without pseudoknots. 

7. CONCLUSION 

Pseudoknots are complex and unique secondary structure 

among all RNA secondary structures. All the classes of 

pseudoknots i.e. simple pseudoknot, H-pseudoknot, 

recursive pseudoknot cannot be identified by an 

algorithm at once. There always exists a tradeoff 

between the algorithm’s complexities and the 

generalization of class of pseudoknot it can identify. The 

learning grammar model tries to overcome this problem. 

Elman neural network used in the model tries to learn 

context free grammar that represents a pseudoknot. After 

learning this neural network can now classify RNA 

sequence into sequences with or without pseudoknots. 

Combining neural network with grammar helps in 

reducing the drawbacks of both the technologies and 

increasing the overall power of identifying sequences 

with pseudoknots. Thus Learning Grammar is a better 

method of classifying pseudoknots. 
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