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ABSTRACT 

This paper analyses the steady state behavior of an M/G/1 

retrial queueing system with Bernoulli and phase type 

vacations. Customers arrive one by one at the system in a 

Poisson stream. At the arrival epoch, if the server is busy then 

the arriving customer joins the orbit. If the server is free, then 

the arriving customer starts its service immediately. The 

service time of a customer is assumed to be general. At each 

service completion epoch, the server may opt to take a phase 1 

vacation with probability p or else with probability 1- p stay 

in the system for the next service. After the completion of 

phase 1 vacation the server may take phase 2 vacation with 

probability q or return back to the system with probability 1-q. 

The vacation times are assumed to be general. The service 

times and vacation times are independent of each other. 

Generating function technique is applied to obtain the system 

size and orbit size. Numerical examples are provided to 

illustrate the sensitivity of the performance measures for 

changes in the parametric of the system.  
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1. INTRODUCTION 

Retrial queueing system is characterized by the feature that 

the arriving customers who find the server busy join the retrial 

queue to try again for their requests or leave the service area 

immediately. These models have been successfully used to 

many problems in telephone switching systems, 

telecommunication networks and computer networks. For 

recent bibliography on retrial queue see [1,2,10,11]. 

Vacation queues are very important class of queues in real 

life. Single server queueing models with vacation have been 

well studied due to their wide application in flexible 

manufacturing or computer communication systems over 

more than two decades. Several excellent surveys on single 

server vacation models have been done by [4,5,7,9,12]. Only 

few authors [3,6] have considering phase type vacation. In 

this paper a single server retrial queueing system based on 

Bernoulli schedule and phase type vacation is considered. 

2. MODEL DESCRIPTION 

Consider a single server retrial queue in which customers 

arrive at the system according to a Poisson process with rate 

λ. If an arriving customer finds the server idle, it may obtain 

service immediately. If the server is found busy or on 

vacation, the arriving primary customer joins a retrial queue 

and makes a retrial at a later time. The retrial time is generally 

distributed with distribution function A(x), density function 

a(x), Laplace Steltjes transform A*(s) and the conditional 

completion rate η(x) = a(x)/(1–A(x)). 

The service times are independent and identically distributed 

with common distribution function B(x),density function 

b(x),Laplace Steltjes transform B*(s),the conditional 

completion rate µ(x) = b(x)/(1− B(x)) and first two moments 

are µ1 and µ2. 

The vacation period of the server has two heterogeneous 

phases. At each service completion epoch, the server may take 

a phase 1 vacation with probability p or else continue to be in 

the system for the next service with probability 1-p. Phase 2 

vacation follows the phase 1 vacation in such a way that the 

server may take phase 2 with probability q or return back to 

the system with probability 1-q. The distribution function, 

density function and Laplace Steltjes transform of ith phase (i 

=1,2), vacation times are Vi(x), vi(x) and Vi*(s)  respectively. 

The first two moments are βi1 and βi2 and hazard rate function 

are βi(x), i = 1,2. 

Assume that various stochastic processes involved in the 

system are independent of each other. At time t, let N(t) be the 

number of customers in the retrial queue. U(t) the elapsed 

retrial time of the customer in the retrial queue. X(t) the 

elapsed service time of the customer in service. Yi(t) the 

elapsed ith phase vacation time ( i = 1, 2). 

Let I0(t) be the probability that at time t, there is no customer 

in the retrial orbit, the server is idle. 

In(t, u) du, n ≥1 be the joint probability that at time t, there are 

n customer in the retrial orbit, the server is idle, and the 

elapsed retrial time of a customer is between u and u+du. 

Wn(t,x) dx, n ≥ 0 be the joint probability that at time t, there 

are n customer in the retrial orbit and a customer is in service 

with the elapsed service time between x and x + dx. 

Vi,n(t,y) dy, n ≥ 0; i = 1, 2 be the joint probability that at time 

t, there are n customer in the retrial orbit with elapsed 

vacation time of phase i between y and y + dy. 
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3. STABILITY CONDITION 

In this section necessary and sufficient condition for the 

system to be stable is derived.  

Theorem 1 

The inequality λ (µ1 + pβ11 + pqβ21) < A*(λ) is a necessary 

and sufficient condition for the system to be stable. 

Proof: 

Let E(s) and E(I) denote the expected blocked time and 

expected idle time of the server. From the description of the 

model E(s) = µ1 + pβ11 + pqβ21. 

P(I), the probability that the server is idle = 
)s(E)I(E

)I(E


  

P(s), the probability that the server is blocked = 
)s(E)I(E

)s(E


.   

Exit rate from the retrial queue by entering service is 

)I(E

)(*A
)I(P


. 

Arrival rate during the busy time of the server is λ µ1 and 

arrival rate during vacation is λ (pβ11 + pqβ21). 

Hence total arrival rate at the retrial queue is λ (µ1 + pβ11 + 

pqβ21) = λ E(s). For stability, arrival rate should be less than 

the exit rate, λ P(s) < 
)I(E

)(*A
)I(P


 

This is equivalent to λ (µ1 + pβ11 + pqβ21) < A*(λ). 

4. STATIONARY DISTRIBUTION   

By supplementary variable technique, the system of steady 

state equations that govern the model are obtained as follows 

0I      =    (1– p)  


0
0 dx)x()x(W  

                 + (1–q)  


0
10,1 dx)x()x(V +  



0
20,2 dx)x()x(V     (1) 

dx

)x(dIn  =   − ( λ + η(x)) )x(In , n ≥ 1                 (2) 

dx

)x(dW0  =   − ( λ + µ(x)) )x(W0                                 (3) 

dx

)x(dWn  =   − ( λ + µ(x)) )x(Wn + λ )x(W 1n , n ≥ 1        

(4) 

dx

)x(dV 0,i
=   − ( λ + )x(i ) )x(V 0,i , i = 1, 2                       (5) 

dx

)x(dV n,i
=   −(λ+ )x(i ) )x(V n,i +λ )x(V 1n,i  ,i=1,2; n ≥1 (6) 

with boundary conditions 

)0(In  =   (1–p)  


0
n dx)x()x(W +(1– q )  



0
1n,1 dx)x()x(V     

                    +  


0
2n,2 dx)x()x(V  , n ≥ 1                 (7) 

)0(W0  =    0I  +   


0
1 dx)x()x(I                 (8) 

)0(Wn  =    


0
n dx)x(I  +   




0

1n dx)x()x(I , n ≥ 1         (9) 

)0(V n,1  =   p  


0
n dx)x()x(W ,  n ≥ 0               (10) 

)0(V n,2  =   q  


0
1n,1 dx)x()x(V ,  n ≥ 0              (11) 

The normalizing condition is 0I + 


1n



0
n dx)x(I  + 



0n

[




0
n dx)x(W  + 



2

1i



0
n,i dx)x(V ] = 1               (12) 

Define I(z, x) =  


1n

n
n z)x(I  ;  W(z,x) = 



0n

n
n z)x(W  and

)x,z(Vi   = 


0n

n
n,i z)x(V ,i =1, 2 

Theorem 2 

If λ (µ1 + pβ11 + pqβ21) < A*(λ), then the joint steady state 

distribution of  {N(t), t ≥ 0} under different server state are 

obtained as  

I(z)       =    0I z(1−[1–p+p(1–q) ))z1((V*
1   

                    + p q ))z1((V*
1  ))z1((V*

2  ] 

                    )](*A1[  ))z1((*B  ) / D(z)                   (13) 

W(z) =    0I )(*A  ))]z1((*B1[  / D(z)              (14) 

)z(V1  =   p 0I )(*A  ))z1((*B   

     ))]z1((V1[ *
1  / D(z)               (15) 

)z(V2  =   q p 0I )(*A  ))z1((*B  ))z1((V*
1   

    ))]z1((V1[ *
2  / D(z)                 (16) 

Proof: 

Multiplying equation (2) – (11) by 
nz , summing over all 

possible values of n and solving, we get 

I(z, x) =   I(z, 0) xe  [1 – A(x)]               (17) 

W(z, x) =   W(z, 0) x)z1(e  [1 – B(x)]              (18) 

)x,z(Vi  =   )0,z(Vi
x)z1(e  [1 – )x(Vi ], i = 1, 2         (19) 

I(z, 0) =  (1–p)  


0

dx)x()x,z(W +(1–q)  


0
11 dx)x()x,z(V   

     +   


0
22 dx)x()x,z(V  −  0I   `              (20) 
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W(z, 0) =   0I +
z

)0,z(I
 )](*A)z1(z[                (21) 

)0,z(V1  =   p  


0

dx)x()x,z(W = pW(z, 0) ))z1((*B   (22) 

)0,z(V2  =   q  


0
11 dx)x()x,z(V  

=    qW(z,0) ))z1((*B  ))z1((V*
1                (23) 

Using the equations (18), (19),(22) and (23) in equation (20), 

we get 

I(z, 0) =    (1–p)W(z,0) ))z1((*B  + (1–q) )0,z(V1  

      ))z1((V*
1  + )0,z(V2  ))z1((V*

2   −  0I   

=    [1– p+p(1–q) ))z1((V*
1  + p q ))z1((V*

1   

     ))z1((V*
2  ] ))z1((*B  W(z,0)− 0I        (24) 

Substitute equation (24) in equation (21), we obtain 

W(z, 0) =   0I ( 1 – z) )(*A  / D(z)               (25) 

where D(z)   =   [1–p+p(1–q) ))z1((V*
1  +pq ))z1((V*

1   

))z1((V*
2  ] ))z1((*B  )](*A)z1(z[  − z             (26) 

Using the equation ( 25) in the equations (24), (22) and (23) 

we have the following result 

I(z, 0) =    (1−[1–p+p(1–q) ))z1((V*
1  +p q ))z1((V*

1   

     ))z1((V*
2  ] 0I  z ))z1((*B  ) / D(z)     (27) 

)0,z(V1  =   p 0I ( 1 – z) )(*A  ))z1((*B  / D(z)      (28) 

)0,z(V2  =   qp 0I (1– z) )(*A  ))z1((*B   

    ))z1((V*
1  / D(z)               (29) 

Using equations (27) to (29) and (25) in the equations (17) – 

(19) and integrating with respect to x from 0 to  we get the 

equations (13) – (16) of Theorem-2. 

The normalizing condition in equation (12) becomes 0I + 

I(1)+W(1)+ )1(V1 + )1(V2 = 1, substituting the expressions of  

I(1), W(1), )1(V1  and )1(V2 we get 

    0I    =  )(*A/]pqp)(*A[ 21111             (30) 

5. MEAN ORBIT SIZE AND MEAN 

SYSTEM SIZE 

The Probability generating function of the number of 

customers in the orbit is  

)z(Pq  =   0I + I(z) + W(z)  + )z(V1 + )z(V2  

 =   0I ( 1 – z) )(*A  / D(z)               (31) 

The mean number of customer in the orbit is given by  

  qL  =   )z(Plim q
1z




 

=   { 1 )](*A1[  + 1 [ 2111 pqp  ] 

+ )](*A1[  [ 2111 pqp  ] + pq 2111
2   

+
2

2 ]pqp[ 22122  }/ 

 { 21111 pqp)(*A  }              (32) 

The Probability generating function of the number of 

customer in the system is  

)z(Ps  =   0I + I(z) + z W(z)  + )z(V1 + )z(V2  

 =   0I ( 1 – z) )(*A  ))z1((*B  / D(z)          (33) 

The mean number of customer in the system is given by  

sL  =   )z(Plim s
1z




 

 =   1 + qL                     (34) 

6. PERFORMANCE MEASURES 

Performance measures for the system under steady state 

condition are given below 

 The steady state probability that the server is idle in 

the empty system is  

 0I   =   )(*A/]pqp)(*A[ 21111    

 The steady state probability that the server is idle in 

the non - empty system is  

  I1     =   )(*A/]pqp)][(*A1[ 21111   

 The steady state probability that the server is busy is  

  W  =  1  

 The steady state probability that the server is on 

phase 1 vacation is  

  V1   =   11p  

 The steady state probability that the server is on 

phase 2 vacation is  

  V2    =   21pq  

 The steady state probability that the server is on 

vacation is  

V   =    V1 + V2     =   11p  + 21pq  

7. SPECIAL CASES   

Case 1 

If q = 1, the results for M/G/1 retrial queue with 2 phase 

heterogeneous vacations are obtained. In this case 

0I  =   )(*A/]pp)(*A[ 21111   

I1   =   )(*A/]pp)][(*A1[ 21111   

W   =   1      
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V   =   11p  + 21p   

qL =   { 1 )](*A1[  + 1 [ 2111 pp  ] 

          + )](*A1[  [ 2111 pp  ]+ p 2111
2   + 

2

2 ]pp[ 22122  }/{ 21111 pp)(*A  }  

sL    =   1 + qL   

Case 2 

If we take vacation rates of phase 1 and phase 2 are equal then 

we get results of M/G/1 retrial queue with Erlangian -2 

vacations.  

0I  =   )(*A/]pqp)(*A[ 111   

I1   =   )(*A/]pqp)][(*A1[ 111   

W  =   1      

V   =   1p  + 1pq  

qL =   { 1 )](*A1[  + 1 [ 11 pqp  ]+ )](*A1[   

           [ 11 pqp  ]+pq
2
1

2  +
2

2 ]pqp[ 212  }/ 

           { 111 pqp)(*A  }    

sL    =   1 + qL   

Case 3 

If q = 0, then we the results of this mode coincide with the 

results of M/G/1 retrial queue with vacation by Maragatha 

Sundari, S., and Srinivasan, S.,[8]. 

Case 4 

If p = 0, then we get the fundamental retrial queueing model 

without vacations. 

Case 5 

If A*(λ) → 1, then we get the results for M/G/1 queueing 

system with Bernoulli and phase type vacation.  

0I    =   ]pqp1[ 21111      

W    =  1       

V     =   11p  + 21pq    

qL   =   { 1 [ 2111 pqp  ]+pq 2111
2  + 

2

2  

             ]pqp[ 22122  }/{ 21111 pqp1  }  

sL    =   1 + qL    

Case 6 

Assume that A*(λ) → 1, service time is deterministic of 

length d and vacation time are  exponential with rate β1 and β2 

respectively for phase 1 and phase 2. Then the results coincide 

with Jehad Al- Jararha and Madan [6]. 

8. NUMERICAL STUDY 

In order to verify the efficiency of our analytical results, we 

perform numerical experiments by using MATLAB. Assume 

that retrial time, service time, phase 1 vacation time, phase 2 

vacation time are exponentially distributed with the rate η, µ, 

β1, β2 respectively.  

The fig 1 - 4 shows the effect of λ on (µ, I0), (µ, W1), (µ, I1) 

and (µ, LS) for fixed (η, p, q,  β1, β2) = ( 20, 0.5, 0.2, 8, 10) . 

Table 1 displays the performance measures for (λ, η, µ, β1, β2) 

= (3, 20, 20, 7, 12) and for the various values of p and q from 

0 to 1. As expected, for increasing values of p and q the 

performance measures I1, V1, V2,Ls increase and 0I decreases. 

Table 2 shows the results for the various values of η, µ with 

the parameter values ( λ, p, q, β1, β2) = ( 4, 0.5, 0.2, 6, 8 ). As 

expected, W1 is constant for all p and q and V1 and V2 are 

constant for all η and µ. 

 

 

Fig 1 

 

Fig 2 

 

Fig 3 

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30 35 40 45 50

I 0
 

Service Rate µ 

l=1

l=2

l=3

l=4

0

0.1

0.2

0.3

0.4

0.5

101520253035404550

W
1

 

Service rate µ  

l=1

l=2

l=3

l=4

0

0.05

0.1

0.15

10 15 20 25 30 35 40 45 50

I1
 

Service Rate 

l=1

l=2

l=3

l=4



International Journal of Computer Applications (0975 – 8887) 

Volume 54– No.7, September 2012 

34 

 

Fig 4 

Table 1. Performance measures for the varying values of p 

and q 

p q I0 I1 W1 V11 V21 Ls 

0 

0 0.828 0.023 0.150 0.000 0.000 0.209 

0.2 0.828 0.023 0.150 0.000 0.000 0.209 

0.4 0.828 0.023 0.150 0.000 0.000 0.209 

0.6 0.828 0.023 0.150 0.000 0.000 0.209 

0.8 0.828 0.023 0.150 0.000 0.000 0.209 

1 0.828 0.023 0.150 0.000 0.000 0.209 

0.2 

0 0.729 0.035 0.150 0.086 0.000 0.312 

0.2 0.717 0.037 0.150 0.086 0.010 0.330 

0.4 0.706 0.038 0.150 0.086 0.020 0.349 

0.6 0.694 0.040 0.150 0.086 0.030 0.368 

0.8 0.683 0.041 0.150 0.086 0.040 0.388 

1 0.671 0.043 0.150 0.086 0.050 0.408 

0.4 

0 0.630 0.048 0.150 0.171 0.000 0.449 

0.2 0.607 0.051 0.150 0.171 0.020 0.496 

0.4 0.584 0.054 0.150 0.171 0.040 0.548 

0.6 0.561 0.057 0.150 0.171 0.060 0.603 

0.8 0.538 0.060 0.150 0.171 0.080 0.663 

1 0.515 0.063 0.150 0.171 0.100 0.729 

0.6 

0 0.532 0.061 0.150 0.257 0.000 0.635 

0.2 0.497 0.066 0.150 0.257 0.030 0.735 

0.4 0.463 0.070 0.150 0.257 0.060 0.851 

0.6 0.428 0.075 0.150 0.257 0.090 0.984 

0.8 0.394 0.079 0.150 0.257 0.120 1.141 

1 0.359 0.084 0.150 0.257 0.150 1.329 

0.8 

0 0.433 0.074 0.150 0.343 0.000 0.907 

0.2 0.387 0.080 0.150 0.343 0.040 1.111 

0.4 0.341 0.086 0.150 0.343 0.080 1.370 

0.6 0.295 0.092 0.150 0.343 0.120 1.709 

0.8 0.249 0.098 0.150 0.343 0.160 2.174 

1 0.203 0.104 0.150 0.343 0.200 2.849 

1 

0 0.335 0.087 0.150 0.429 0.000 1.339 

0.2 0.277 0.094 0.150 0.429 0.050 1.784 

0.4 0.220 0.102 0.150 0.429 0.100 2.463 

0.6 0.162 0.109 0.150 0.429 0.150 3.624 

0.8 0.105 0.117 0.150 0.429 0.200 6.060 

1 0.047 0.124 0.150 0.429 0.250 14.437 

Table 2. Performance measures for the varying values of η 

and µ 

η  µ I0 I1 W V1 V2 Ls 

5 

25 0.022 0.435 0.160 0.333 0.050 49.825 

30 0.070 0.413 0.133 0.333 0.050 14.891 

35 0.104 0.398 0.114 0.333 0.050 9.641 

40 0.130 0.387 0.100 0.333 0.050 7.528 

45 0.150 0.378 0.089 0.333 0.050 6.389 

50 0.166 0.371 0.080 0.333 0.050 5.677 

10 

25 0.239 0.217 0.160 0.333 0.050 3.058 

30 0.277 0.207 0.133 0.333 0.050 2.515 

35 0.303 0.199 0.114 0.333 0.050 2.214 

40 0.323 0.193 0.100 0.333 0.050 2.022 

45 0.339 0.189 0.089 0.333 0.050 1.890 

50 0.351 0.185 0.080 0.333 0.050 1.793 

15 

25 0.312 0.145 0.160 0.333 0.050 1.958 

30 0.346 0.138 0.133 0.333 0.050 1.680 

35 0.370 0.133 0.114 0.333 0.050 1.515 

40 0.388 0.129 0.100 0.333 0.050 1.407 

45 0.402 0.126 0.089 0.333 0.050 1.330 

50 0.413 0.124 0.080 0.333 0.050 1.273 

20 

25 0.348 0.109 0.160 0.333 0.050 1.580 

30 0.380 0.103 0.133 0.333 0.050 1.375 

35 0.403 0.100 0.114 0.333 0.050 1.252 

40 0.420 0.097 0.100 0.333 0.050 1.170 

45 0.433 0.094 0.089 0.333 0.050 1.111 

50 0.444 0.093 0.080 0.333 0.050 1.067 

25 

25 0.370 0.087 0.160 0.333 0.050 1.388 

30 0.401 0.083 0.133 0.333 0.050 1.218 

35 0.423 0.080 0.114 0.333 0.050 1.114 

40 0.439 0.077 0.100 0.333 0.050 1.044 

45 0.452 0.076 0.089 0.333 0.050 0.994 

50 0.463 0.074 0.080 0.333 0.050 0.957 

30 

25 0.384 0.072 0.160 0.333 0.050 1.273 

30 0.414 0.069 0.133 0.333 0.050 1.122 

35 0.436 0.066 0.114 0.333 0.050 1.029 

40 0.452 0.064 0.100 0.333 0.050 0.967 

45 0.465 0.063 0.089 0.333 0.050 0.922 

50 0.475 0.062 0.080 0.333 0.050 0.888 

35 
25 0.395 0.062 0.160 0.333 0.050 1.195 

30 0.424 0.059 0.133 0.333 0.050 1.057 

0
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35 

35 0.446 0.057 0.114 0.333 0.050 0.972 

40 0.461 0.055 0.100 0.333 0.050 0.914 

45 0.474 0.054 0.089 0.333 0.050 0.872 

50 0.484 0.053 0.080 0.333 0.050 0.841 

40 

25 0.402 0.054 0.160 0.333 0.050 1.140 

30 0.432 0.052 0.133 0.333 0.050 1.010 

35 0.453 0.050 0.114 0.333 0.050 0.930 

40 0.468 0.048 0.100 0.333 0.050 0.876 

45 0.481 0.047 0.089 0.333 0.050 0.837 

 

9. CONCLUSION 

In this paper, a single server retrial queue with Bernoulli 

vacation and phase type vacation is analyzed under the 

condition of stability. Several system performance measures 

are computed in steady state. Some numerical illustrations are 

also presented. 
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