
International Journal of Computer Applications (0975 – 8887)  
Volume 54– No.5, September 2012 

41 

A Feedback Neural Network for Solving Nonlinear 
Programming Problems with Hybrid Constraints 

 
 

Hamid Reza Vahabi  
Department of Mathematics, Eslamshahr Branch, 

 Islamic Azad University, Tehran, Iran 
 

Hasan Ghasabi-Oskoei 
Department of Mathematics, Eslamshahr Branch, 

 Islamic Azad University, Tehran, Iran

ABSTRACT 
This paper proposes a high-performance feedback neural 
network model for solving nonlinear convex programming 
problems with hybrid constraints in real time by means of the 
projection method. In contrary to the existing neural networks, 
this general model can operate not only on bound constraints, 
but also on hybrid constraints comprised of inequality and 
equality constraints. It is shown that the proposed neural 
network is stable in the sense of Lyapunov and can be globally 
convergent to an exact optimal solution of the original problem 
under some weaker conditions. Moreover, it has a simpler 
structure and a lower complexity. The advanced performance of 
the proposed neural network is demonstrated by simulation of 
several numerical examples. 
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1. INTRODUCTION 
In the recent years many artificial neural networks developed to 
solve the optimization problems, because it has many important 
applications in wide variety of scientific and engineering fields 
including network economics, transportation science, game 
theory, military scheduling, automatic control, signal processing, 
regression analysis, structure design, mechanical design, electrical 
networks planning, and so on [1]. In many scientific and 
engineering applications, it is desire to have real-time on-line 
solutions of optimization problems [2]. Traditional optimization 
algorithms [1, 3, 4, 5, 6 and 7] are not suitable for real-time on-line 
implementation on digital computers. One promising approach to 
handle these difficulties is to employ an artificial neural network 
based on circuit implementation. The most important advantages 
of the neural networks are massively parallel processing and fast 
convergence. Many continuous-time neural networks for constrained 
optimization problems have been developed using penalty parameters 
[8, 9 and 10]. To avoid the penalty parameters, some significant 
works have done in recent years [11, 12, 13, 14, 15 and 16]. 
In this paper, we propose a class of neural networks with one hidden 
layer structure in order to solve nonlinear convex programming 
problems with hybrid constraints in real time. This model of neural 
networks has no adjustable parameters and therefore has lower 
complexity. The projection operator on a closed convex set is 
employed to describe the network to solve nonlinear programming 
problem. We define a suitable Liapunov function and prove the global 
convergence of the network. 

The paper organized as follow. In the next section we introduce 
nonlinear programming problem with bound constraints and its 
equivalent formulation is described. In section 3, a feedback neural 
network model with circuit implementation is proposed. Section 4 
discusses the stability of the proposed network and analyzes its global 
convergence. Extension of a proposed neural network for solving 
nonlinear programming problems with hybrid constraints is given in 
Section 5. In Section 6, numerical examples are simulated to show the 
reasonableness of our theory and demonstrate the high performance of 
proposed neural networks approach. A comparative analysis is 
presented in Section 7. Some conclusions are summarized in the last 
section.  

2. NONLINEAR PROBLEM WITH BOUND 
CONSTRAINTS AND FORMULATION  

Consider the following nonlinear convex programming problem 
with bound constraints: 

min ( )
. . ,

f x
s t Ax b

l x h
≤

≤ ≤
                   (1) 

where : nf →   is nonlinear, convex and twice 

continuously differentiable, mb ∈ , A is m n×  matrix and 

, , nx l h ∈ .  
Lemma 1. Suppose Χ  is a closed convex set, for any 

kz ∈ , there is a unique point ( )P zΧ ∈Χ  such that  

( ) inf
u

z P z z uΧ ∈Χ
− = −  

( )P zΧ  is called the projection of z on Χ and PΧ is called 

the projection operator on Χ . Moreover, 
, : ( ) ( )ku z P z P u z uΧ Χ∀ ∈ − ≤ −  

For , , ( ) ( ) 0k Tu u u u u z∈ ∈Χ − − ≥  
  for all z ∈Χ  

if and only if ( )u P uΧ= . 
Proof.  See [17 and 18]. 

We first give a sufficient and necessary condition for the 
solution of problem (1). It is the theoretical foundation for us to 
design the network for optimization problems. 

Suppose that  0 1{ ( , , ) }T m
my y yΧ = = ∈  ,  

0 0 01( ) ( ( ), , ( ))T
mP y P y P yΧ Χ Χ=    

and for 1, ,i m=  ;
0
( ) max{0, }i iP y yΧ = . 
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Fig. 1: Block diagram of the feedback neural network (3). 

1{ ( , , ) }T n
nx x x l x hΧ = = ∈ ≤ ≤  , 

1( ) ( ( ), , ( ))T
nP x P x P xΧ Χ Χ=  and for 1, ,j n=    

( )
j j j

j j j j j

j j j

l x l

P x x l x h

h x h
Χ

 <
= ≤ ≤
 >

 

According to the Karush-Kuhn-Tucker condition [19] and using 
the projection theorem [20], we can obtain easily the following 
lemma. 
Lemma 2. *x is an optimal solution of (1) if and only if there 
exists * my ∈ , such that * *( , )Tx y satisfies the following 
equations 

0

( ( ) ) 0
( ) 0

Tx P x f x A y
y P y Ax b

Χ

Χ

 − −∇ − =
 − + − =

                      (2) 

Proof. See [20].  

3. NEURAL NETWORK MODEL AND 
CIRCUIT IMPLEMENTATION 

Based on the equivalent formulation in Lemma 2, we propose a 
feedback neural network for solving (1), with its time dependent 
dynamical system being given by 
 

0

0 0
0 0

( ( ) )

( )

( ) , ( )

Tdx P x f x A y x
dt
dy P y Ax b y
dt
x t x y t y

Χ

Χ

 = −∇ − −

 = + − −


= =

                    (3) 

 
where nx ∈ , my ∈ . Also ( )PΧ ⋅  and 

0
( )PΧ ⋅  are 

projection operators on Χ  and 0Χ . We shall prove that network 
(3) is globally convergent to the solutions set of problem (1).  
The dynamical equations described by (3), can be easily realized 
by a feedback neural network with a single-layer structure as 
shown in Fig. 1. Where the vectors 0( )x t and 0( )y t  are the 
initial external inputs and x  and y are the network outputs. 

4. STABILITY AND CONVERGENCE OF 
THE NETWORK 

In this section, we shall study the dynamics of network (3). We 
first define a suitable Liapunov function and then prove the 
global convergence of network (3) in Theorem 2.  
Theorem 1. For any 0( )x t ∈Χ  and 0 0( )y t ∈Χ , the neural 

network (3) has a unique solution ( ) ( ( ), ( ))Tz t x t y t= . 
Proof. Let 

0

( ( ) )
( )

( )

TP x f x A y x
M z

P y Ax b y
Χ

Χ

 −∇ − − =  + − −  
 

 
By lemma 1, note that ( ( ) )TP x f x A yΧ −∇ −  and 

0
( )P y Ax bΧ + −  are Lipschitz continuous. Then it is easy to 

see that ( )M z  is also Lipschitz continuous. From the 
existence and uniqueness theorem of ordinary differential 
equations [21], there exists a unique solution )(tz with 

0 0 0( ) ( ( ), ( ))Tz t x t y t=  for the neural network (3).  
Theorem 2. Let 

2
0

1( ) ( ( ( ))) ( ) ( ( ))
2

TE z z P z F z F z P z F z zΧ Χ= − − − − −  

and 

( )
( ) ,

Tf x A y
F z

b Ax
 ∇ +

=  
− 

 

then ( ( ))E z t that is defined as follow is Liapunov function of 
system (3). 

2*
0

1( ( )) ( ) ( )
2

E z t E z z t z= + −  

Where *z  is an equilibrium point of (3). Moreover, the 
network (3) is globally convergent to the solutions set of 
problem (1). 
Proof. We have 

0 ( ) ( ) ( )( ( ( )) )

( ( ))

dE z F z F z P z F z z
du

P z F z z

Χ

Χ

= −∇ − −

+ − −
 

Let  ( ) ( ( ))g z P z F z zΧ= − − , then 

( )*

( ) ( )

( ) ( ) ( ) ( ) ( )

T

T

dE z dE z dz
dt dz dt

F z F z g z g z z z g z

=

= −∇ + + −
 

( ) 2*( ) ( ) ( ) ( ) ( ) ( )
T TF z z z g z g z g z F z g z= + − + − ∇

 In the inequality of Lemma 1, let ( )u z F z= −  and let 
*x z= , we get 

*( ( ) ) ( ( ) ( )) 0Tg z z z g z F z+ − − − ≥  
Then 

2* *( ( ) ) ( ) ( ) ( ) ( )T TF z z z g z F z z z g z+ − ≤ − − −  
 

( )f x∇  ∑ ∫( )PΧ ⋅

TA

0( )x t

0( )y t

y

 ∑

0
( )PΧ ⋅

x

y

x

  ∑∑A

+ 
+ 

+ 
+ 

+ 

- 
- 

- 

- 
b

∫

- 
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It follows that 
2*

2

*

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 0

T

T

T T

dE z F z z z g z
dt

g z g z F z g z

F z z z g z F z g z

≤ − − −

+ − ∇

= − − − ∇ ≤

 

On the other side, in the inequality of Lemma 1, let 
( )u z F z= −  and let x z= , we obtain 

2( ) ( ) ( )TF z g z g z≤ −  

It follows that 
2

0
1( ) ( )
2

E z g z≥  and thus 

( )2 22 * *1 1( ) ( )
2 2

E z g z z z z z≥ + − ≥ − .  

Since ( )E z  is positive definite and radially unbounded, for any 

initial point 0( )z t  there exists a convergent subsequence 

{ }( )kz t  such that ˆlim ( )kk
z t z

→∞
= , where 

ˆ( ) 0dE z
dt

= . We 

next prove that 
ˆ( ) 0dE z

dt
=  if and only if ẑ  is a KKT point. 

Note that ( )F z∇  is positive semi-define and 
*( ) ( ) 0TF z z z− ≥ . Then 

*( ) ( ) ( ) ( ) ( ) ( ) 0T TdE z F z z z g z F z g z
dt

≤ − − − ∇ ≤ . 

Moreover, 
ˆ( ) 0dE z

dt
=  if and only if  

( ) ( )

*ˆ ˆ( ) ( ) 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( )) ( ) ( ( )) 0

T

T

F z z z

P z F z z F z P z F z zΧ Χ

 − =


− − ∇ − − =
 

It can be seen that 
( ) ( )

( ) ( )2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( )) ( ) ( ( ))

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( ) ) ( ) ( ( ) )

T

TT T

P z F z z F z P z F z z

P x f x A y x f x P x f x A y x

Χ Χ

Χ Χ

− − ∇ − −

= −∇ − − ∇ −∇ − −
 

where ˆ ˆ ˆ( , )Tz x y= , and 2 ˆ( )f x∇  is Hessian matrix. 

Since 2 ( )f x∇  is positive definite 

( )ˆ ˆ ˆ ˆ( ( ) ) 0TP x f x A y xΧ −∇ − − =  

thus 
ˆ ˆ ˆ0 : ( ) ( ( ) ) 0T Tx x x f x A y∀ ≥ − ∇ + ≥  

using 
*

* * *

ˆ ˆ ˆ( ) ( ( ) ) 0
ˆ( ) ( ( ) ) 0

T T

T T

x x f x A y
x x f x A y

 − ∇ + ≥


− ∇ + ≥
 

we get 

( )* * *ˆ ˆ ˆ( ) ( ) ( ( ) ) 0T T Tx x f x A y f x A y− ∇ + − ∇ + ≥  
thus 

( )
( )

* *

* * * *

ˆ ˆ( )

ˆ ˆ( ) ( ) ( ) ) .

T T T

T T T

x x A y A y

x x f x A y f x A y

− −

≥ − ∇ + −∇ −
 

On the other side, ( )P xΧ  is monotone.  
That is, for any x and y  

( )( ) ( ) ( ) 0TP x P y x yΧ Χ− − ≥  
then 

*

* * *

ˆ ˆ ˆ ˆ( ) ( ( ( ) )
( ( ( ) ))) 0

T T

T

x x x f x A y
x f x A y

− − ∇ +

− − ∇ + ≥
It follows that 

( )

2* * *

* * * *

ˆ ˆ ˆ( ) ( )

ˆ ˆ2( ) ( ) ( ( ) )

T T T

T T T

x x x x A y A y

x x f x A y f x A y

− ≥ − −

≥ − ∇ + − ∇ +
  

let 

( )* * * *ˆ ˆ( ) ( ) ( ( ) )T T Tx x f x A y f x A yγ = − ∇ + − ∇ +  

If *x̂ x≠ , then 0γ > , since *( ) Tf x A y∇ + is strictly 

monotone. It follows that when 
2*x̂ xγ = −  then 

2 2 2* * *ˆ ˆ ˆ2x x x x x x− ≥ − > − . 

This would constitute a contradiction. So *x̂ x= and 
ˆ 0Ax b− ≤ . 

Now, *ˆ ˆ( ) ( ) 0TF z z z− =  implies that 
* *ˆ ˆ ˆ ˆ ˆ( ) ( ( ) ) ( ) ( ) 0 .T T Tx x f x A y y y Ax b− ∇ + − − − =  

Since *x̂ x= , *ˆ ˆ( ) ( ) 0Ty y Ax b− − = . Thus 
* * *ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) 0T T Ty Ax b y Ax b y Ax b− = − = − =

Therefore, ˆ ˆ ˆ( , )Tz x y=  is a KKT point. 
Finally, define again 

2
0

1ˆ ˆ( ( )) ( ( )) ( )
2

E z t E z t z t z= + −  

Then, ˆ ˆ( ) 0E z =  and thus ˆ ˆ ˆlim ( ( )) ( ) 0kk
E z t E z

→∞
= = . 

So, for 0ε∀ >  there exists 0η >  such that for all kt tη≥  

we have ˆ ˆ( ( ), )kE z t z ε< . 

Similar to the previous analysis, we have ˆ ( ( )) 0d E z t
dt

≤ . 

So, for t tη≥  

ˆ ˆˆ( ) 2 ( ( )) ( ( )) 2z t z E z t E z tη ε− ≤ ≤ ≤ . 

It follows that ˆlim ( ) 0
t

z t z
→∞

− =  and  ˆlim ( )
t

z t z
→∞

= . 

Therefore, the proposed neural network in (3) is globally 
convergent to a KKT point of (1). 
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5. NEURAL NETWORK FOR NONLINEAR 
PROBLEM WITH HYBRID CONSTRAINTS 

 
Corollary 1. Suppose nonlinear programming problem is as follows 

1 1

2 2

min ( )
. .

f x
s t A x b

A x b
l x h

≤
=

≤ ≤

                                                          (4) 

If y  and w are dual variables vectors of inequality and 
equality constraints, then the neural network (3) changes into 
the following form: 

0

1 2

1 1

2 2

0 0 0
0 0 0

( ( ) )

( )

( ) , ( ) , ( )

T Tdx P x f x A y A w x
dt
dy P y A x b y
dt
dw b A x
dt
x t x y t y w t w

Χ

Χ

 = −∇ − + −

 = + − −



= −
= = =

      (5) 

 
Corollary 2. We can have same analytical discussions about 
neural network (5) and handle them to reach optimum solution 
of problem (4). 

6. SIMULATION EXAMPLES 
We discuss the simulation results using numerical examples to 
demonstrate the global convergence property and effectiveness of 
the proposed neural networks. We have written a Matlab 2010 
code for solving models (3) and (5) and executed the code on an 
Intel Corei5. Based on numerical simulations, the proposed 
models have a very fast convergence to exact optimal solutions 
of problems (1) and (4). This is one of the advantages of our 
networks in comparison with existing neural networks. 
  
Example 1. Consider the following nonlinear programming 
problem: 

4 2 4 2
1 1 2 2 1 2

1 2

1 2

1 2

1 2

1 1 1 1min 0.9
4 2 4 2

2
2

. .
3 2

, 0

x x x x x x

x x
x x

s t
x x
x x

+ + + −

+ ≤
− + ≤
 − ≤ −
 ≥

       (6) 

This problem has an optimal solution * (0.427,0.809)Tx = . It 
can be seen that objective function is strictly convex and the 
feasible region is a convex set. Note that  
 

3
1 1 2
3
2 2 1

0.9
( )

0.9

x x x
f x

x x x

 + −
∇ =   + − 

 

and 
 
 

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x1

x2

 
Fig.2: Transient behavior 1 2( , )Tx x of proposed neural 

network (3) with various initial points in Example 1.  
 
 
2

2 1
2
2

3 1 0.9
( )

0.9 3 1
x

f x
x

 + −
∇ =  

− + 
 

is positive–definite on Χ . Theorem 2 guarantees that the neural 
network (3) is globally convergent to optimal solution of 
problem (6). We use the neural network (3) to solve this 
problem. Simulation results show the trajectories of (3) with any 
initial points are always convergent to *x . The feasible region 
and the transient behavior 1 2( , )Tx x based on (3) with various 
initial points are displayed in Fig. 2. Starting points for dual 
variables are random. 
 
Example 2. Consider the following nonlinear programming 
problem: 

2 2 2 2
1 2 3 4 1 4

1 2 3 4 1 4

1 2

3 4

1 2

3 4

3min ( ) 2( ) ln( )
2
3 4 2 3

1
1

. .
0.1 10, 0 10,

0 10, 0.1 10

x x x x x x

x x x x x x
x x
x x

s t
x x
x x

+ + + −

+ + − −

+ =
 + =
 ≤ ≤ ≤ ≤
 ≤ ≤ ≤ ≤

      (7) 

 
The nonlinear programming problem (7) has the exact optimum 
solution * (1,0,0,1)Tx = while its dual has the optimum solution 

* (0,0)Ty = . The model (5) is used to find optimal solutions 
*x and *y , simultaneously. The convergent path for the variables 

1 2 3 4 1 2( , ) ( , , , , )T Tx y x x x x y y=  is shown in Fig. 3 with 
various random starting points. Simulation results show that the 
neural network (5) is globally convergent to *x and *y . The 
obtained solutions are absolutely exact and real time. 

* (0.427,0.809)Tx =



International Journal of Computer Applications (0975 – 8887)  
Volume 54– No.5, September 2012 

45 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-4

-3

-2

-1

0

1

2

3

4

Time (second)

 

 
x1
x2
x3
x4
y1
y2

 
Fig. 3. The trajectories of proposed neural network (5) with 

various random starting points in Example 2. 
 

 

Example 3. Consider the following nonlinear programming 
problem: 

2 2 2 2 3
1 1 2 1 2 3 4 1

1 2 3

1 2 3 4

1 2 4

1 2 3 4

1min 0.4 0.5 0.5
30

2,
3 18,

. . 1 2,
3

, , , 0

x x x x x x x x

x x x
x x x x

s t
x x x

x x x x

+ + − + + +

− + − ≤
 + − − ≤


+ − =


≥

(8) 

This problem has an optimal solution * (0.982,1.672,0,0) .Tx =  
Fig. 4 show that all state variable trajectories of neural network 
(5) are globally convergent to the optimal solution 

* * * *( , , ) (0.982,1.672,0,0,0,0,2.363)T Tz x y w= = in problem 
(8) and its dual, simultaneously. These trajectories indicate fast 
convergence to exact optimal solutions. 

7. COMPARATIVE ANALYSIS 
To see how well the present neural network model is, we 
compare it with one existing network model for solving 
nonlinear convex programming problems. Consider (4) is 

 

min ( )
. .

f x
s t Ax b

l x h
=

≤ ≤
                                                                 (9) 

Then the neural network (5) is as follows 

( ( ) )Tdx P x f x A y x
dt
dy b Ax
dt

Χ
 = −∇ + −

 = −


                            (10) 

Neural network model for solving (9) was developed in [15]. Its 
dynamical equation is described by 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4
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-2

-1

0

1

2

3

4

5

Time (second)
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x2
x3
x4
y1
y2
w1

 

Fig. 4. The trajectories of proposed neural network (5) with 
various arbitrary initial points in Example 3. 

 
 

( ( ) )

( ( ) )

T

T

dx P x f x A y x
dt
dy AP x f x A y b
dt

Χ

Χ

 = −∇ + −

 = − −∇ + +


                       (11) 

It has two layers and because of an additional nonlinear term, it 
is more complex in structure than the proposed neural network 
model (10). Therefore our network implementation is more 
economical, which is very important for implementing of 
the large-scale neural network. 

8. CONCLUDING REMARKS 
We have proposed a feedback neural network for solving 
nonlinear convex programming problems with hybrid 
constraints in real time using the projection technique. We have 
also given a complete proof of the stability and global 
convergence of the proposed network by definition of a suitable  
Liapunov function. Compared with the existing neural network 
for solving such problems, the proposed neural network has a 
simple single layer structure, without a penalty parameter and 
amenable to parallel implementation. The simulation results 
displayed the reasonableness of our theory and fast convergence 
of the proposed neural networks to exact optimal solutions of 
nonlinear optimization problems. 

9. ACKNOWLEDGMENTS 
The authors gratefully acknowledge the financial and other 
support of this research, provided by Islamic Azad University, 
Eslamshahr Branch, Tehran, Iran. Also the authors would like to 
thank M. Saderi-Oskoei for her valuable comments and discussions. 

10. REFERENCES 
[1] Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. 1993. 

Nonlinear Programming Theory and Algorithms, 2nd ed. 
New York: Wiley. 

[2] Kalouptisidis, N. 1997. Signal Processing Systems, Theory 
and Design. New York: Wiley. 



International Journal of Computer Applications (0975 – 8887)  
Volume 54– No.5, September 2012 

46 

[3] Avriel, M. 1976. Nonlinear Programming: Analysis and 
Methods. Englewood Cliffs, NJ: Prentice-Hall. 

[4] Fletcher, R. 1981. Practical Methods of Optimization. New 
York: Wiley. 

[5] Harker, P.T. and Pang, J.S. 1990. Finite-dimensional 
variational inequality and nonlinear complementarity 
problems: A survey of theory, algorithms, and applications, 
Mathematical Programming, 48, 161–220. 

[6] He, B.S. and Liao, L.Z. 2002. Improvements of some 
projection methods for monotone nonlinear variational 
inequalities, Journal of Optimization Theory and 
Applications 112(1), 111–128. 

[7] He, B.S. and Zhou, J. 2000. A modified alternating 
direction method for convex minimization problems, 
Applied Mathematics Letters 13(2), 123–130.  

[8] Kennedy, M.P. and Chua, L.O. 1988. Neural networks for 
nonlinear programming, IEEE Transactions on Circuits and 
Systems 35(5), 554–562. 

[9] Lillo, W.E., Loh, M.H., Hui, S. and Zak, S.H. 1993. On 
solving constrained optimization problems with neural 
networks: A penalty method approach, IEEE Transactions 
on Neural Networks 4(6), 931–940. 

[10] Rodríguez-Vázquez, A., Domínguez-Castro, R., Rueda, A., 
Huertas, J.L. and Sánchez-Sinencio, E. 1990. Nonlinear 
switched-capacitor ‘neural networks’ for optimization 
problems, IEEE Transactions on Circuits and Systems 
37(3), 384–397. 

[11] Ghasabi-Oskoei, H. 2005. Numerical solutions for constrained 
quadratic problems using high-performance neural networks, 
Applied Mathematics and Computation 169(1), 451–471.  

[12] Ghasabi-Oskoei, H. and Mahdavi-Amiri, N. 2006. An 
efficient simplified neural network for solving linear and 
quadratic programming problems, Applied Mathematics and 
Computation 175(1), 452–464.  

[13] Ghasabi-Oskoei H. 2007. Novel artificial neural network 
with simulation aspects for solving linear and quadratic 
programming problems, Computers and Mathematics with 
Applications 53, 1439–1454. 

[14] Leung, Y., Chen, K. and Gao, X. 2003. A high-
performance feedback neural network for solving convex 
nonlinear programming problems, IEEE Transactions on 
Neural Networks 14(6), 1469–1477. 

[15] Tao, Q., Cao, J.D., Xue, M.S. and Qiao, H. 2001. A high 
performance neural network for solving nonlinear 
programming problems with hybrid constraints, Phys. Lett. 
A, 288(2), 88–94. 

[16] Xia, Y.S. 1996. A new neural network for solving linear 
and quadratic programming problems, IEEE Transactions 
on Neural Networks 7(6), 1544–1547.  

[17] Kinderlerer, D. and Stampcchia, G. 1980. An Introduction 
to Variational Inequalities and Their Applications, 
Academic Press, New York. 

[18] Zhang, X., Li, X. and Chen, Z. 1982. The Theory of 
Ordinary Differential Equations in Optimal Control 
Theory, Advanced Educational Press, Beijing, in Chinese. 

[19] Luenberger, D.G. 1989. Introduction to Linear and 
Nonlinear Programming, Addison-Wesley Reading, MA, 
Chapter 12. 

[20] Bertsekas D.P. and Tsitsiklis, J. N. 1989. Parallel and 
Distributed Computation: Numerical Methods. Englewood 
Cliffs, NJ: Prentice-Hall. 

[21] Robinson, J. 2004. An Introduction to Ordinary 
Differential Equations, Cambridge University Press. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


	INTRODUCTION
	Nonlinear Problem with Bound constraints and Formulation
	Neural network model and Circuit Implementation
	Stability and convergence of the network
	Neural network for nonlinear problem with hybrid constraints
	Simulation examples
	comparative analysis
	Concluding Remarks
	ACKNOWLEDGMENTS
	REFERENCES

