
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

17

A New SDLC Framework with Autonomic
Computing Elements

Kunal Sahadeva

Krishna Institute of Engineering
and Technology

Sanjeev Kumar Yadav
Krishna Institute of Engineering

and Technology

Arun Sharma
Krishna Institute of Engineering

and Technology

ABSTRACT

The autonomic complex nervous system of human has ability

to manage itself. It adapts changes in its environment and

manages by self-healing, self-protection and self-

optimization. This gave a robust idea to manage current

complex engineering systems and reduce big efforts in

maintenance in terms of cost and time of technically skilled

human resource. This paper is providing a concept of

developing an autonomic manager simultaneously with the

developments of its particular system or software, via

injecting the autonomic elements into conventional software

development life cycle (SDLC) and hence it will become

secure SDLC or autonomic SDLC framework.

Keywords
Autonomic computing, self-healing, self-protection, self-

optimization, self-configure, secure SDLC & autonomic

SDLC

1. INTRODUCTION
Software maintenance requires good amount of skilled human

effort and cost of development. Sometimes it is catastrophic

for industry when they need to deploy their experts in old

projects to maintain. Jones Capers, 2006 has shown that how

maintenance budget is going to increase from 9% to 77%

(1950-2025) [17]. With rapid growth of technology

complexity of systems have been evolved so now there is a

special need of systems those can manage themselves.

Motivated by this idea we studied concept of autonomic

computing and found if we add autonomic elements during

software development phase to make software with ability of

managing themselves will reduce a very big amount in

maintenance phase and will keep free skilled human resources

to develop new systems/technologies. Autonomic computing

is a computer environment that can detect and adjust its

system automatically to heal itself without the assistance of

any human interaction. Autonomic Computing is inspired by

the robust functioning of human autonomic complex nervous

system having the ability to manage itself and dynamically

adapt to changes in environment [4, 6]. Autonomic computing

systems are analogous to human nervous system having the

property of self-adjustment, self-managing mechanism, self-

configuration, self-healing, self-optimization and self-

protection. In this thesis we have discussed important theories

and technologies to develop Autonomic Computing Models

and we used them to develop new software development life

cycle with autonomic manager so this manager will be able to

sense problem in advance so it can take appropriate action to

avoid problem. If a problem or error happened to be notice

during run of software autonomic manager would be able to

manage and optimize system during run time too. To illustrate

our concept of injecting autonomic element in SDLC and

impact on maintenance we made a case study of library

management system and it is found in long term developing

autonomic manager is more cost effective than maintenance

and problem caused during failure or malfunction of software.

2. AUTONOMIC COMPUTING
Autonomic computing is the study of developing the systems

or software, which can monitor environmental changes itself,

analyze the symptoms of problem itself, plan the remedial

actions, execute change-plan automatically, and reconfigure

itself according to the changing demands by the business put

upon it. There are four different characteristics of an

autonomic computing system or software [1, 2, 3, and 4].

 Self-Configure

 Self-Healing

 Self-Optimization

 Self-Protecting

Definitions:

Self-Configuration: This characteristic refers to the adapting

mechanism of an autonomic software component, which

dynamically adapts with any changes arising in its

environments, by using policies set by the IT professionals.

Self-Healing: This refer to the mechanism of fixing the

malfunctions had occurred in autonomic software , for that it

discover the causes, diagnoses and take corrective actions to

resolve the problem, by using policy based corrective plans

and actions set by technologists.

Self-Optimization: This characteristic refers to reducing the

workload of a system (autonomic) by means of tuning

system’s resources, like for e.g., reallocating resources against

the dynamic changing workload, for that it would monitor the

dynamic workload and tune essential parameters of a

autonomic software or systems.

Self-Protection: It means prevents software or a system

(autonomic) from malicious attacks or from a danger of

crashing or uncertain shutting down, for that it will anticipate,

identify proactively the symptoms of any threats and generate

early warnings for users to protect their systems, software or

hardware.

3. LITERATURE WORK
IBM company in 2001, discovered the term known as an

autonomic computing; in the paper “Autonomic computing

system” was compared with robust “Autonomic computing

nervous system” of Human Body and pointed out four

properties to achieve self-achievement, that is, Self

configuration, Self-optimization, Self- Healing, and self-

protection[1, 2, 3].

In 2003, IBM presented a reference model based on “two

intelligent control loops (local and global)” which

accumulates data from internal and external environments and

the system known as “MAPE-K” [2, 3]. This model consisted

of autonomic elements (AEs) like sensors, effectors, planner

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

18

and executor, which is responsible of managing the “Managed

Resources” and this complete model, is called as autonomic

manager (AM). The Control loop with sensors and effectors

together with Monitor, Analysis, Plan, Execute, Knowledge

components makes the autonomic element to be self-manage.

The managed resources can be operating systems, wired or

wireless network, CPU, database, servers, routers, application

modules, Web service or virtual machine and so on.

Autonomic manager consists of monitoring component,

analysis component, planning component, and execution

component and knowledge repository. The monitoring

component provides the ability of self-awareness and detects

the external environment. The analysis component then

carries out autonomic decision-making and decides the

adaptive goal of system; planning and execution components

achieve the adaptive function when the system state

departures from the expected goal. The operation of four

components is supported by the knowledge repository [2, 7].

In June 2005 edition, IBM presented a white paper and

highlighted the high-level architectural blue print of

autonomic systems. Autonomic computing is mean to design

the software, or systems which cans shift the burden of

managing the complexity and maintenance from human

resources to the technologies [2, 3, 4]. Here, it has discussed

that how the work of autonomic manager of monitoring,

analyzing, planning and executing makes an intelligent

control loop, which could be abbreviated as MAPE. This

control loops be injected to the run-time environment of

managed resources, and can control them, see in the Figure 1.

Figure 1: Autonomic Manager Architecture Centerpiece,

motivated by [2, 3, and 11]

Moreover, this blueprint gives the framework how

interconnection of many distinct Autonomic Managers (AMs)

can be joined in hierarchy and work together for a whole

complex system, see in Figure 2. Here, in this figure various

autonomic managers at each level communicating with each

other; moreover they are consuming and providing services to

each other.

AM: Autonomic Managers

Figure 2: Hierarchical interactions amongst AM(s) [3, 11]

Mark S. Merkow and Lakshmikanth Raghava in the article [5]

pointed out the securities measures for the development of

software, according to authors software security play an

important role everywhere because if a software have flaw

then it may affects those systems on which they are running,

and in turn it will cause danger to the physical world because

system and software works for physical world. Maintenance

and security could become expensive if they are handling and

fixing after the development of software. Hence the

maintaining expenses and vulnerabilities to securities of

software can be save if the securities would add proactively in

all the phases of software development life cycle (SDLC) and

it cheap the software development.

The article [8] tell us about the misconception with the

application’s developments, and that incorrect practices are in

auditing the problems related to security and maintenance,

because security and maintenance usually concerns and fixing

after the deployment of software in its operational

environment, which is really a time consuming and

dramatically expensive task, so to prevent software’s from

these issues, developer need to change their usual software’s

development practices, they should integrate security-

requirements in early phases of software development life

cycle (SDLC) and the outcome of these practices will impact

on application’s development, i.e., their development can be

obtained at lower costs, moreover it will become more

secured and robust.

Autonomic manager is useful for web services also which is

itself is the source of providing services to autonomic manger

itself, in paper [13], authors proposed a self-healing model for

web services by using autonomic computing, This framework

is consisted of autonomic manager, data logger, adaptive

content wrapper, underlying services. Data logger is using to

calculate the response time of request made by client and send

the information with request- specific information to the

autonomic manager, where autonomic manager track the

current state of the server, check the distinct response time at

different resolution, and that resolution at which request is to

be handled, one filter, written for every available services, and

depending upon the resolution filter called Adaptive content

wrapper modify a request.

Managed Resources

Knowled
ge

Repositor
y

Plan

Execu
te

Effect
or

Senso
r

Monit
or

Analy
ze

Touch Point

Interface

Control

Loop

Hierarchical

AM’S group

AM

Peer AM’s Group

AM

AM
AM AM

AM AM

AM

Policies set by Admin
Use

r

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

19

An accord programming framework proposed in [14],

describing the platform for designing the self-managed

application inspired by autonomic concept, authors of this

paper, tried to use adaptability of autonomic applications with

the existing programming systems, for example, existing

programming systems like, Grid programming systems,

distributed programming models like object oriented, service

oriented, and component oriented etc. Analogy to the objects

oriented programming system, autonomic elements will

encapsulate rules, constraints, and mechanisms of autonomic

properties, and dynamically they will interact with each other.

According to accord programming framework, autonomic

elements are defined by three operational ports listed below

[14] and shown in Figure 3:

a) Control Port

b) Functional Port

c) Operational Port

Figure 3: An Autonomic Element in Accord Framework

referred from [14]

Functional Port: it is a set of all functional behaviors that are

requires by elements and provided by elements.

Control Port: defines the set of tuples, tuples (sensors/

actuator, constraints) that is tuple sensor/actuator is a set of

sensors and executers that are utilize by elements for getting

details about managed resources and applying change-plan on

managed resources [14].

Operational Port: defines the SET of interfaces between the

sensors and managed resources and interface between

effectors and manageable resources, these interfaces are also

called as Touchpad or touch point interfaces, through touch

points, autonomic manager can formulate rules, dynamically

inject policies and change plan, transfer actions via effectors

and retrieve details of managed resources through sensors,

and one manager can communicate with another Autonomic

managers in hierarchy [14].

4. PROPOSED FRAMEWORK
Influence by the thought of adding security in software’s

from beginning of its development processes not after its

production, and the benefits of incorporating autonomic

computing in them , we are describing an idea for developing

applications with their own autonomic managers. For that

purpose, here the table is designed, see Table1.

If autonomic computing will involve with traditional software

development life cycle (SDLC), then applications develops

will be robust, highly secure and have ability of self-managing

itself, moreover, due to such abilities, an application will

available at lower cost. And thus maintenance cost of an

application will reduced incredibly. Then this way

conventional SDLC will become Secure SDLC or

alternatively Autonomic-SDLC.

The idea is to collect its autonomic manager requirements for

the application and documented these non-functional

requirements (NFR- SRS), and later merge them with the

requirements of software’s SRS, similarly do the same in its

designing phase, process it to the coding phase, and then in

testing phase, test, validate and verified the autonomic

manager on its application, whether it is really fit for its

software or not. The difference will come between the

traditional SDLC and Autonomic SDLC are in the

requirement and in the designing phase mostly, because the

documentation for developing AM will depends on the type of

a application, on which AM will perform its operations, and in

designing phase the decision making algorithms have to be

translated and tested differently from normal type of

algorithms for a software, the general software development

life cycle (SDLC), see in Figure 4.

Figure 4: Conventional Software Development Life Cycle

referred from [10]

Following are factors and practices have represented below,

which could responsible for leaving negative impacts on the

maintenance of software [15, 16, and 17].

 Defect tracking software has(-24%) negative impacts on

software maintenance

 No maintenance specialists also leaving (-18%) negative

impacts on it.

 Management inexperienced has (-15 %) negative impacts on

maintenance phase.

 No Online defect reporting tools also leaving (-12 %)

negative impacts.

 No user satisfaction measurements have (-4 %) negative

impressions on maintenance process.

 Manual change control methods also have (-27%) negative

impacts on maintenance of software.

Developer and technologist must follows the utilization of

autonomic manager, as a part of the conventional SDLC, it is

possible that initial costs of developing software and systems

will increase initially little more than the conventional costs of

developing software due to addition of autonomic manager,

but the running costs or maintenance costs of software at will

guaranteed decreased due to autonomic manager as a part of a

software.

Element Manager

Computational

Element

Functional Port

Control Port

Operational Port

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

20

Table1: Importance of autonomic computing elements in

conventional SDLC phases: - Table 1 is showing, how

security measures are taken care by autonomic computing

elements in SDLC inherently or implicitly by injecting

autonomic computing elements and proposed new SDLC

frame work with autonomic manager [5, 8, 9]. Conventional

SDLC phases are [10]:

[1] Requirement phase

[2] Designing phase

[3] Coding phase

[4] Testing (Verification Validation) phase

[5] Maintenance phase

Table 1: Autonomic SLDC

1) REQUIREMENT ANALYSIS PHASE

Conventional

SDLC’s Phases

INPUTS

Autonomic

Elements and

security

measure in

SDLC

Importance of

autonomic elements

in SDLC phases

Key Inputs[5] Key Deliverables

 Defines

Needed

Information,

 Behavior

 Functions

 Industry

Requirements

 Interfaces

 Organization

Requirements

 Performance

 Privacy

Requirements

 Compliance

Goals

 Industry/Organi

zational

Standards

 Lessons

 Map securities

 Measurements

Etc.

 Privacy

Requirements

 Security

Requirements

Engineering

 Technical

Requirements

 Threat

Modeling

Need to include

requirements of self-

Protection and self-

healing components

of Autonomic

Computing.

Need to document the

following in this

Phase.

Important security

related design goals.

Prioritized security &

privacy requirements.

2)SOFTWARE DESIGNING PHASE

Conventional

SDLC’s Phases

INPUTS

Autonomic

Elements and

security measure

in SDLC

Importance of

autonomic

elements in SDLC

phases

Key Inputs Key Deliverables

 Inputs From

Previous Phase

 Algorithmic

Details

 Data Flow

Diagrams

 Data Structures

 Design

Principles

 Interface

Representations

 Architecture &

Design Patterns

 Architecture &

Design Review

 Measurements

 Security Design

Review

 Security Test

Planning

 Threat

Modeling

Need Self-

optimizations

(Tune

parameters),Self-

Protection(prevent

from attacks on

Algorithms, Data’s

and Data structure)

Programming an

 Software

Architecture

 Technical

&Non-

Technical

Security

Control

Requirements

 Threat

Modeling

autonomic element

will mean

extending Web

services or grid

services with

programming.

Tools and

techniques that aid

in managing

relationships with

other autonomic

elements.

Because

autonomic

elements both

consume and

provide services,

representing needs

and preferences

will be just as

important as

representing

capabilities.

3)IMPLEMENTATION AND INTEGRATION

PHASE

Conventional

SDLC’s Phases

INPUTS

Autonomic

Elements and

security measure

in SDLC

Importance of

autonomic

elements in SDLC

phases

Key Inputs Key Deliverables

 Inputs from

previous phases

 Database

 Secure coding

standards

 Secure

configuration

standards

 Source code

 Testing

 User

documentation

 Architecture

patterns

 Architecture

review

 Design Review

 Design Patterns

 Measurements

 Security Test

Planning

 Static Analysis

 Threat

Modeling

 Peer Review

Self-configuration

configure

themselves

automatically,

High-level

policies (what is

desired, not how)

Need tools to

build elements

that can establish,

monitor, and

enforce

agreements.

Developers will

need tools that

help them acquire

and represent

policies—high-

level

specifications of

goals and

constraints

typically

represented as

rules or utility

functions—and

map them on to

lower-level

actions.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

21

4)TESTING(VERIFICATION AND

VALIDATION) PHASE

Conventional

SDLC’s Phases

INPUTS

Autonomic

Elements and

security measure

in SDLC

Importance of

autonomic

elements in

SDLC phases

Key Inputs Key Deliverables

 Inputs from

previous phases

 Documentation

 Requirement

 Software

Deployed In

Test

Environment

 Attack Patterns

 Automated

Testing

 Regression

Testing

 Stress Testing

 Measurements

 Prioritized list

of

vulnerabilities

from automated

and manual

dynamic

analysis

 Security test

cases document

 Third Party

Assessments

 Threat Model

Updates

Testing

autonomic

elements and

verifying that they

behave correctly

will be

particularly

challenging in

large-scale

systems because it

will be harder to

anticipate their

environment,

especially when it

extends across

multiple

administrative

domains or

enterprises.

It might be

possible to test

newly deployed

autonomic

elements by

having them

perform alongside

more established

and trusted

elements with

similar

functionality.

5)INSTALLATION PHASE

Conventional

SDLC’s Phases

INPUTS

Autonomic

Elements and

security measure

in SDLC

Importance of

autonomic

elements in SDLC

phases

Key Inputs Key Deliverables

 Installation is

all of the

activities that

make a

software system

available for

use

 Deployment

 Incident

Management

 Measurements

 Operational

Security

 Patch

Management

 Threat Model

Security

Monitoring and

Response plan

.i.e., Self-healing

(Analyze

information from

log files and

monitors).

Installing and

configuring

autonomic

elements will most

 Updates likely entail a

bootstrapping

process that

begins when the

element registers

itself in a

directory service

by publishing its

capabilities and

contact

information.

The element might

also use the

directory service

to discover

suppliers or

brokers that may

provide

information or

services it needs

to complete its

initial

configuration.

6)MAINTENANCE PHASE

Conventional

SDLC’s

Phases

INPUTS

Autonomic

Elements and

security measure

in SDLC

Importance of

autonomic elements in

SDLC phases

Key Inputs Key Deliverables

Is the

modification

of a software

product after

delivery to

correct faults,

to improve

performance

or other

attributes

 Adaptive –

dealing with

changes and

adapting in the

software

environment

 Perfective –

accommodating

with new or

changed user

requirements

which concern

functional

enhancements to

the software

 Corrective –

dealing with

errors found and

fixing it

 Preventive –

concerns

activities aiming

on increasing

 Software

maintainability

and prevent

problems in the

future

Self-configuration

Configure.

themselves

automatically

High-level policies

(what is desired, not

how)

Self-optimization

Hundreds of tunable

parameters.

Continually seeks

ways to improve their

operation.

Self-healing: Analyze

information from log

files and monitors.

Self-protection:
From Malicious

attacks, cascading

failures.

The autonomic computing software development life cycle or

AUTO-SDLC has showed in the Figure 5. The left hand side of

the cycle is showing the conventional SDLC’s phases, and at

the mid portion of figure, showing development of interfaces

(Touch point) between autonomic manager and software’s

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

22

resources, and at the right hand side of the figure, representing

development of autonomic manager along with all phases of

conventional SDLC.

Figure 5: AUTONOMIC-SDLC

5. SUMMARY
We discussed about several literature work related to

maintenance problems and their running costs. Then we

introduced about a Autonomic computing technology, an

emerging in IT world, that is, how autonomic computing,

inspired from autonomic intelligent nervous system of

human’s body, which runs all essential functions of a body

without our conscious efforts. Same way, information

technologies like, Internet, Computers, software, operating

systems etc. also required such an intelligent controller, which

can save technologist and user’s time and money for

maintaining their software and systems. Ours aim is to suggest

a path for autonomic application development. For example, if

securities are mapped in all phases of conventional-SDLC

early, plus an application must develop with its own

Autonomic Manager, then technologist can get framework for

developing autonomic applications, in this paper one Table1

has composed, which map the autonomic computing elements

with conventional SDLC and their importance, and later on

we showed that autonomic-SDLC in the Figure 5 known as

AUTO-SDLC. Auto-SDLC framework could provide a

direction to technologists or developers to develop autonomic

applications means to say, applications built together with

their own autonomic managers. For example, development of

operating system with its own autonomic manager, business

application with its own autonomic managers etc., and to do

this, it must follows all types of autonomic computing

strategies and algorithms to develop the Autonomic

computing equipped systems and software in future. And

finally for systems to be autonomic system at all level that is,

from hardware level to software it requires challenging

modifications. In case of software level, for example, for

operating systems, an active code of software may be replaced

while if any hardware is detected to replace it can be re-

change dynamically. Some efforts have also needed to be

focused in the direction of installing of autonomic

middleware’s programming systems at runtime.

6. CONCLUSION
We analyzed present and future scenarios of problems in

maintenance of software and found a need to establish a new

paradigm of software development using autonomic

computing concepts.

Autonomic computing systems are analogous to human

nervous system having the property of self-adjustment, self-

managing mechanism, self-configuration, self-healing, self-

optimization and self-protection. It will reduce the natural

intelligence i.e. human being involvement.

We proposed a new framework of SDLC with collaborative

development of autonomic manager. Autonomic manager

will also be developing in different phases of software life

cycle starting with special emphasis from requirement

elicitation to testing and implementation phase of SDLC.

Impact may be measurable on the initial cost of software

development and it will be higher than traditional

development but during the whole life cycle of software the

overall cost will decrease as it would have cheaper

maintenance and running cost along with great user

satisfaction and will keep free skilled human resources to

develop new systems/technologies.

Therefore for a lifetime usage it will be more efficient,

cheaper and system will run smoothly.

7. FUTURE WORK

Proactive Fault Management Systems- System which can

sense the fault in advance i.e. in an operating system there

various performance parameters and combination of these

parameters has a certain impact in failure/degraded

performance. Then based on study and prediction of

maximum probable error a system can take proactive steps to

avoid fault(s).

Evolutionary Data Structures- This is well known fact that

during software development a particular data structure is

decided to implement based on suitability to performance of

algorithm but in most of scenario where input size is uncertain

and input pattern is too, therefore based on study of

distribution of uncertainty of inputs automated selection and

evolution of appropriate data structures.

Dynamic Query Optimization- In database systems where

queries are designed statically and many time they did not

perform efficiently in dynamic environment so making system

to optimize queries dynamically will make a shift towards

autonomic computing.

Failure Recovery Systems- Systems got failed due to

missing of some critical parts or failures of those parts in that

case if our system can replace with healthier part so it can be

recover from failure

8. REFERENCES

 [1] Horn, P. 2001. Autonomic computing: IBM's Perspective

on the State of Information Technology.

 [2] Dr. Guy, M. Lohman. 2003. SMART (Self Managing

and Resource Tuning). IBM Research.

MAINTENANCE PHASE

MAINTENACE WITH AUTONOMIC MANAGER

TESTING, VALIDATION & VERICATION

SOFTWARE's TESTING INTERFACE TESTING
AUTONOMIC MANAGER's

-TESTING

CODING PHASE

SOFTWARE's CODE INTERFACE's CODE
AUTONOMIC MANAGER's

CODE

DESIGNING PHASE

SOFTWARE's DESIGN INTERFACE's DEISING
AUTONOMIC MANAGER's

DESIGN

REQUIREMENT PHASE

SOFTWARE-SRS INTERFACE'S SRS
AUTONOMIC MANAGER-

SRS

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

23

 [3] IBM Corporation. 2005 Third Edition. White Paper: An

architectural blueprint for autonomic computing.

 [4] Wong, S.F., and Ives, B. 2003. ISRC Future Technology

Topic Brief Autonomic Computing. Available at
www.bauer.uh.edu/uhisrc/FTB/Autonomic/AutonComp.

pdf.

 [5] Mark, S. Merkpw and Raghhavan, L. 2010. Software

Security for Developers. Available at the online link

http://www.csoonline.com/article/618463/software-

security-for-developers.

 [6] Zhao, Z., Gao, C., Duan, F. 2009. A Survey on

Autonomic Computing Research, Second Asia-Pacific

Conference on Computational Intelligence and Industrial

Applications. Vol. 2. pp. 288-291.

 [7] Jeffrey, O. Kephart., David, M. Chess. 2003. IBM

Corporation Thomas J. Warson Research center. The

Vision of Autonomic Computing. Available at

http://www.research.ibm.com/autonomic/manifesto/auto

nomic_computing.pdf”.

 [8] McAfee service datasheet. Intel Corporation. Secure

software development life cycle (SSDLC). Available at

http://www.mcafee.com/us/services/strategic-

consulting/program-development/application-and-

software-development-lifecycle.aspx.

 [9] Sharma, A., Chauhan, S. and Grover, P. S. 2011.

Autonomic computing: Paradigm Shift for Software

Development. CSI Communications.

 [10] Roger S. Pressman. 2005. Software Engineering: A

Practitioner's Approach. 5th Edition. Tata McGraw Hill.

 [11] Tiwari, V., Milenkovic, M. 2006. Standard for

Autonomic Computing. Intel Technology Journal at

http://www.intel.com/technology/itj/2006/v10i4/3-

standards/1-abstract.htm. Volume 10. Issue 04. Published

November 9, 2006.

 [12] Manish, P., Hariri, S. 2006. Autonomic Computing

Concepts, Infrastructure and Applications.

 [13] Naccache, H., Gannod, G. C. 2007. A self-healing for

web services, IEEE Conference on 9-13 July 2007. pp.

398-345.

 [14] Hua, L., Parashar, M. 2006. Accord: A Programming

Framework for Autonomic Applications. IEEE

transaction. Journal and magazines. Vol. 36. pp. 341-352.

 [15] William, R. Estimating Software Costs. Available at the

link “cs.iupui.edu/~mroberts /n361/sdarticle1.pdf”.

 [16] Jussi Koskinen. 2010. Software Maintenance Costs.

Department of Computer Science and Information

Systems. University of Jyvaskyla. Available at the online

link http://users.jyu.fi/~koskinen/smcosts.htm.

 [17] Reifer, D., Judy, J., et al. 2010. Total Cost of Software

Maintenance Workshop. Approved for public release,

review by AMRDEC Public Affair Office, FN4344. At

http://“csse.usc.edu/csse/../Software%20maintenance%”2

0Workshop.pdf”.

