
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.18, September 2012

15

A Class of Non Invertible Matrices in GF (2) for Practical

One Way Hash Algorithm

Artan Berisha

Faculty of Mathematical and
Natural Scienes

University of Prishtina, Kosovo

Behar Baxhaku
Faculty of Mathematical and

Natural Scienes
University of Prishtina, Kosovo

Artan Alidema
Faculty of Mathematical and

Natural Scienes
University of Prishtina, Kosovo

ABSTRACT

In this paper, we describe non invertible matrix in GF(2)

which can be used as multiplication matrix in Hill Cipher

technique for one way hash algorithm. The matrices proposed

are permutation matrices with exactly one entry 1 in each row

and each column and 0 elsewhere. Such matrices represent a

permutation of m elements. Since the invention, Hill cipher

algorithm was used for symmetric encryption, where the

multiplication matrix is the key. The Hill cipher requires the

inverse of the matrix to recover the plaintext from cipher text.

We propose a class of matrices in GF(2) which are non

invertible and easy to generate.

General Terms

Cryptographic algorithm, one way function.

Keywords

Hill cipher technique, Non-invertible matrix, Galois field

GF(2), hash algorithm, One-way hash function, plaintext,

integrity.

1. INTRODUCTION
The need of keeping secrets and communicating in secure led

to development of Cryptography. Cryptography is science of

writing secret codes and it dates back from Egyptians with

hieroglyph, Romans with substitution cipher (Caesar cipher),

Arabs with textual analysis which led to the invention of

frequency analysis for breaking mono alphabetic substitution

cipher, Germans with Enigma and today the modern

cryptography [8]. It transforms readable text to scrambled

text; this transformation must be done so that it can be

reversible. Cryptography intersects disciplines of Mathematics

Computer Science and Technical Sciences. The main purpose

of Cryptography is securing and enabling communication

between two parties and protecting the data, sensitive data or

information from outside attacks. In this context cryptography

is based on four specific security requirements: authentication,

integrity, privacy and non-repudiation. So the role of

cryptography is not only data protection but also provide

authentication, there are generally three cryptosystems used to

achieve this: symmetric algorithms, asymmetric algorithms

and hash algorithms. While symmetric and asymmetric

cryptosystem is used for enciphering and deciphering the hash

function are used for authentication. The original text is called

plaintext and enciphered text is called cipher text. Otherwise

the process of deciphering is inverse of enciphering, it has as

input the enciphered text and gives as output the plaintext

(original text). Both cryptosystems depend on a key, and the

difference is that at symmetric cryptosystems one key is used

for enciphering and deciphering,

 ()

 ()

E enciphering function, D deciphering function and K key.

While in asymmetric cryptosystems the key used for

enciphering is called private key and key for deciphering is

called public key.

()

()

The third cryptosystem mentioned is used for authentication,

integrity that for any amount of data always gives a fixed

output. This output is called hash value.

In this paper we will discuss hash algorithms and give a

solution to the one way hash algorithm proposed by [5]. In [5]

it is mentioned the need for designing an algorithm for non

invertible matrix and then design one way algorithm to

generate hash value. Hash algorithm proposed by [5] is based

on matrix encryption algorithm called matrix cipher. In the

matrix cipher the plaintext is enciphered by transformation [7]

 ()

the matrix is matrix (called enciphering matrix), is

a column vector corresponding to a block of plaintext of

length , and is a column vector of length . (When B is

the zero vector, it is called Hill cipher.) To decipher, we must

again solve for :

 ()

 ()

 () ()

If the matrix is non-invertible then the algorithm will meet

the conditions to be one way hash algorithm [5]. From [5] it is

clear if the matrix in non-invertible then the process of

deciphering is impossible. It is proven that it can be applied to

any size of data, produces a fixed output, relatively easily to

compute and has one-way property [5].

In this paper first we give introduction and some preliminaries

about hash functions, permutation matrices. Then we show the

algorithm for generating permutation matrices and with that

also the non invertible matrix, following with proposed

models and mathematical model of algorithms. At the end we

show results gained from experiment and finally conclusion

and the future work.

2. HASH FUNCTIONS

2.1 Definition and description
It is hard to design a function that accepts a variable input and

give fixed output with non reversible property. These

functions are called hash functions and in real world are built

on the idea of a compression function. The inputs to the

compression function are a message block and the output is

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.18, September 2012

16

hash of all blocks up to that point. That is

 ()

The hash value in ith step becomes input for the hash function

in (i+1)th step [9].

 Fig. 1: One-way hash function
scheme One-way Hash functions have a

important primitive

cryptographic, and it is

used for

authentication, privacy and

integrity. The output value from hash function is called hash

code [10]. One-way hash function is a function that as a input

has variable string length and outputs a fixed binary sequence

that cannot be reversed [11]. The usual cryptographic hash

functions used today are SHA-1, MD5. As of 2009, the two

commonly used algorithms are MD5 and SHA1. Hash

function MD5 was broken and it was used to break SSL [9].

Most hash functions are of 64 bits and they are too small to

survive a birthday attack that is why most practical hash

functions are that produce 128 bit hash code. This will force

to hash random text to find two hash codes with same

value. NIST in its Secure Hash Standard uses 160 bit hash

value, this makes even harder for the birthday attack, it

requires random text to find two hash codes with same

value [9]. One-way hash function is an alternative to the

message authentication code (MAC), for a variable size input

produces a fixed size message [12]. Unlike the MAC, hash

code does not require a key as an input to authenticate the

message, but a hash value is sent with the message in an

authenticated way. The hash value can be encrypted by using

symmetric key if the sender and the receiver share the key, or

by using public key encryption so the that does not require the

keys to be distributed to the parties in communication [14].

Maybe the main role of hash functions is in the provision of

digital signatures and authentication. In general hash functions

are faster than digital signatures algorithms, the digital

signatures are computed to some document by computing the

signature on the document’s hash value, which is small,

compared to the document itself [13]. A hash value can be

made public and still not revealing the contents of the

document from which is derived. This is important in digital

time stamping, because one can get a document time stamped

without knowing its contents to the time stamping service

[15].

2.2 Requirements for one way hash

function
For a hash function to be useful for authentication it is

necessary to meet these basic requirements are:[14]

 It can applied to any block size of data

 Produces a fixed length output

 Relatively easily to compute (both hardware and

software)

 For a given h hash value it is hard to find a x such

H(x)=h, this is called one-way property

 For any block size x, it is very hard to find y

such H(y)=H(x), this is referred as weak collision

resistance

 It is very hard to find pair (x,y) such that

H(x)=H(y), this is referred as strong collision

resistance

The first three properties are required for a practical

application of a hash function to message authentication. The

fourth states that for a given message it is easy to generate

code, but it is impossible to generate a message for a given

code. The fifth property states that an alternative message

hashing to the same value as a given message cannot be

found, and sixth property refers to how resistant the hash

function is to a type of attack known as birthday attack [14].

Our proposed model will meet the first three requirements as

practical hash function to message authentication.

3. PERMUTATION MATRICES

DEFINITION AND DESCRIPTION
A square matrix is called permutation matrix if each row and

column of the matrix has exactly one 1 and all other entries

are 0 [1]. By definition
 { } { }
 or

 (

 () ()

 ())

where () (), … , () { }.

The permutation above can be written as matrix (permutation

matrix):

 {
 ()

The number of permutation matrices of size n is n! [1].

Permutation matrices are a class of invertible matrices in

GF(2). In GF(2) each element is either 0 or 1, addition is the

binary exclusive-or operator (denoted) and multiplication is

the binary and operator. The arithmetic of row and column in

permutation matrix is performed over the commutative ring

 [16]. Permutation matrices have properties that

determinant is 1 or -1 and the inverse is the transposed of the

matrix. Furthermore the product of two permutation matrices

is a permutation matrix.

1) ()

2) where is identity matrix

When a permutation matrix P is multiplied with a matrix M

from the left it will permute the rows of M (the elements of

column vector), when P is multiplied with M from the right it

will permute the columns of M (the elements of a row vector)

[2]. As we can see the permutation matrices are invertible (the

property above), but the following lemma will give a result

for some property of these matrices [16]. When we refer to a

matrix , that means that , is a square matrix in GF(2)

with w rows and columns.

Lemma 1: If some matrix , has precisely w ones, then

is invertible iff it is a permutation matrix [16].

Lemma 2: Let
 and

 be permutation matrices. The sum

 +

 is not invertible [16].

Proof: Let be the sum of two permutation matrices =

+
 . We have two cases:

I: Suposse there exists i and j such that
 ()=

 ()
 , then the ith row of contains all zeros, so is not

invertible.

II: Assume that there are no such i and j as in first case, then

will have precisely two ones in each row and column. By

induction it is proven that such matrices are not invertible

[16].

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.18, September 2012

17

4. GENERATING PERMUTATION

MATRICES
After a mathematical background on permutation matrices

and their properties we can generate permutation matrices and

compute the invertible matrix as sum of two permutation

matrices. It is easy to write a permutation matrix following the

rule that each row and column of the matrix has exactly one 1

and all other entries are 0. But doing these in random and to

gain a permutation matrix it is hard. The first solution will be

generating random numbers from 1 to m (m is the size of

matrix) without duplicates. Let i be the generated random

number, the random number will indicate that the value 1 is at

position (i,1), second random number at (i,2) and so on till i

passes throw all values from 1 to m with no duplicates. But

the generated random numbers are not guaranteed that will

generate all numbers in finite time. It could go forever. This

algorithm is implemented in some applications, it generates

the number from 1 to m with duplicates using linear

congruential generator with uniform distribution. The better

idea is to write the numbers from 1 to m and by random to do

the permutation. The best algorithm to generate at random a

permuted sequence of numbers from 1 to m is Fisher-Yates

shuffle algorithm or also called Knuth shuffle algorithm

[3][4]. The basic of this algorithm is generating a random

permutation of numbers from 1 to m, and it goes as follows

[5]

1. Write down the numbers from 1 to m

2. Pick a random number k between one and the

number of unstruck numbers remaining (inclusive)

3. Counting from the low end, strike out the kth

number not yet struck out, and write it down

elsewhere.

4. Repeat from step 2 until all numbers have been

struck out.

5. The sequence of numbers written down in step 3 is

now a random permutation of the original numbers.

The code implemented in Java [6]

public static void shuffleArray(int[] a) {
 int m = a.length;
 Random random = new Random();
 random.nextInt();
 for (int i = 0; i < m; i++) {
 int j = i + random.nextInt(m - i);
 swap(a, i, j);
 }
 }
 private static void swap(int[] a, int i, int j) {

 int temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 }

After generating permuted array with random

generator, we can create permutation matrices, by setting the

value 1 at positions (()) (())
 (()) .

int j = 0;

 for (int i = 0; i < m; i ++) {

 [i]-1][j] = 1;

 [b[i]-1][j] = 1;

 j = j + 1;

 }

where m is the size of matrix. From the gained matrices we

create a sum of them, which is non-invertible matrix as

proved above. The implemented code in Java:

for (int i = 0; i < m; i ++)

 for (int j = 0; j < m; j++)

 = (+)%2;

In the Figure 2 are steps for generating non invertible matrix.

Fig. 2: Algorithm for generating non invertible matrix in

GF(2)

5. PROPOSED ALGORITHM MODELS
In [5] authors proposed a model based on matrix

multiplication, it is called Hill cipher, this model is based on

the non invertible matrix for practical one-way hash function.

This non invertible matrix multiplied plaintext to generate the

hash value. We are proposing a solution which automates the

model for one-way hash function given by [5]. The non

invertible matrix for multiplying plaintext will be generated

by given size m of the square matrix. Algorithm will generate

a non invertible matrix as a sum of two permutation matrices.

The elements of the generated matrix will be from GF(2)

which means that their value is {0,1}. We are proposing two

designs of algorithms for generating hash value. Both models

are based in Cipher Block Chaining (CBC), the second model

No

Yes

m
size of matrix

START

 ()
 ()

Fisher-Yates Algorithm

 Non invertible matrix

i <= m

 ()

 ()

 ()

 i = i + 1

j = j + 1

 i = 1

 j = 1

END

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.18, September 2012

18

Operation for second

proposed model

 () () () ()

 ()

Operation for second

proposed model

 () ()

 () ()

 ()

Hash value

 . . .

differs from the first in some additional operations. These

additional operation steps are to create diffusion using non

linear function. Before calculating the hash value the plaintext

must be converted to binary data, and divided to column

vectors { } of size (mx1),

 (), { } Below we show a

protocol for using this one way hash function by

communication parties.

Protocol

Sender: Value and non invertible matrix

 Calculate ()

 Send to receiver

Receiver: Value and non invertible matrix

 Calculate ()

 Match with

 () is algorithm proposed below.

Algorithm of proposed model

INPUT: Non invertible matrix P of size and value .

OUTPUT: bit hash value.

STEP 1 Convert value M to binary form

STEP 2 Padding value algorithm

STEP 3 Initialize

 ,

 for i=0,1,…,m-1.

STEP 4 for j from 0 to n-1

 STEP 5 for i from 0 to m-1

STEP 6 for i from 0 to n/m-1

 STEP 6’ if (i mod 2 == 0 && i<>0)

 ()
 else for r from 0 to m-1

 STEP 7 for j from 0 to m-1

 STEP 8 for k from 0 to m-1

 STEP 9 for t from 0 to m-1

 ()()

OUTPUT .
This is a proposed algorithm for calculating hash value, the

step 6’ is additional operations for second proposed model (as

you can see in Fig. 3). Following we will give definition of

non linear function F(H,H’) used in second proposed model.

The function has two input parameters with m bit each and

gives m bit output.

 Fig. 3. Proposed one-way hash algorithm model

Function definition

INPUT: ,

OUTPUT:

STEP 1 for i from 0 to ⌊

⌋

 (
⌊

⌋

) ()

STEP 2 for i from ⌊

 ⌋ to ⌊

⌋

 (
⌊

 ⌋

) ()

STEP 3 for i from ⌊

 ⌋ to ⌊

⌋

 (
 ⌊

 ⌋

) ()

STEP 3 for i from ⌊

 ⌋ to

 (
) ()

OUTPUT

Each m bit input will be divide in four blocks, the first block

has the bits from 0 to ⌊

⌋, second from ⌊

 ⌋ to ⌊

⌋, third

from ⌊

 ⌋ to ⌊

⌋ and last one from ⌊

 ⌋ to m-1.

The output will be a m bit value as shown in figure 4.

 H H’

 Fig. 4. Definition of F function

The padding for both proposed models is done with same

padding algorithm. The padding will be done such that the

number N of column vectors (mx1) will meet the condition N

mod 2 =0. There are two cases, if ((k-k mod m)/m) mod 2 =0

then the (k mod m) last values will be summed (mod 2) with

(k mod m) first values and the length of output binary values

will be (k-k mod m). Second case if the first condition doesn’t

meet then (m - k mod m) values of 0 will be added to input

binary sequence. The output length will be (m+k-k mod m).

A B C D A’ B’ C’ D’

H=F(H,H’)

A+B’ B+C’ C+A’ D+D’

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.18, September 2012

19

Padding Algorithm

INPUT m, binary values

OUTPUT Binary value ()

STEP 1 if (((k-k mod m)/m) mod 2 ==0)

 fori from (k-k mod m+1) to k

 + ()

 else for i from (k+1) to m+k-k mod m

OUTPUT

5.1 Mathematical model of hash algorithm
The mathematical model is based on Hill cipher, but the

arithmetic is performed over the commutative ring . The

mathematical description of first proposed model is:

 () (),

 -number of column vectors, –hash value (mx1), - non

invertible matrix of size (mxm), –ith column vector of

plaintext (message) of size (mx1), - zero column vector,

- exclusive-or operator.

In general the hash value will be (arithmetic used is modulo

2):

 ()
The mathematical description for second proposed model is:

 () ()

 () ()

 ()

 () ()

 () ()

 ()
.

.

.

 () ()

 () ()

 ()

 , - is a non linear function.

Function has two parameters, two column vectors with size

(mx1) and outputs a vector column with length (mx1).

The matrix is non invertible, thus the algorithm is not

reversible. In their paper [17] proved that if a non invertible

matrix is used for encryption then decryption is not reversible.

The number of generated non invertible matrices with size m

is , which means that if the size of non invertible matrix is

 then the space of possible number of non invertible

matrices will be .

5.2 Proof of one-way property for hash

algorithm
5.2.1 Applied to any size of data

The algorithm works with binary data, so first the plaintext is

converted to binary data and then divided to vector columns

with size (mx1) where m is the size of non invertible matrix.

This means that can be applied to any amount of data because

we can create a matrix with m rows and r columns.

5.2.2 Fixed length output

The algorithm takes a input of variable length and produces a

value with fixed length, the length of the hash value is m. The

number of rounds in one way hash algorithm is ⌊

⌋ (⌊ ⌋ -

floor function, N – size of plaintext in bits, m size of non

invertible matrix).

5.2.3 Easy to compute

The property Easy to compute it is clear from mathematical

model. The algorithm needs as input plaintext and size of non

invertible matrix. Calculation is done within multiplication of

matrix with vector and the exclusive-or operator.

5.2.4 One-way property

The algorithm model is design based on matrix multiplication,

and it is proved from [17] non reversibility of matrix

multiplication based cryptosystems.

6. COMPARATIVE ANALYSIS
Comparative analyses are done against our proposed

algorithm and SHA-2 depending on the time of calculating

hash value. We implemented our proposed algorithm and

SHA-2 in Java. For our experiment we used a test bed with

2.8 GHz and 3 GB RAM. The effect of changing file size for

calculating hash value was chosen. Time for calculating hash

value was measured from step 6 to step 9 at our proposed

algorithm. Same we did for SHA-2 measuring time only in

processes that calculated hash value. Below is table with our

gained results after the experiment (Table 1.), as we can see

the proposed algorithm is faster for the file size less than 6.2

KB, but for large file size it took too much time to calculate

hash value (Table 2.).
Table 1. Time (ms) for calculating hash value with

proposed model and SHA-2 for different file size

File size (bit)

Calculating hash

value (ms)- proposed

model

Calculating

hash

value (ms)-

SHA-2

256 11 36

512 11 36

1024 11 41

2048 11 42

4096 11 43

8192 11 45

16384 17 48

32768 30 47

65536 62 52

131072 124 68

262144 237 73

524288 501 85

The time for calculating hash value at proposed model is

increasing very fast after the file size of 32 KB as we can see

in Fig. 5.

Table 2. Extended results of calculating hash value by

proposed model for larger file size

File size (MB) 8 16 32 64 128 256

Time (min) 1 2 3 8 16 32

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.18, September 2012

20

Fig 5. Graphical view of performance of proposed

algorithm against SHA-2

7. CONCLUSION AND FUTURE WORK
In this paper we proposed a technique for generating non

invertible matrices in GF(2) and one-way hash algorithm to

generate hash value. The non invertible matrices are generated

only by giving a size of square matrix. For a small amount of

data this proposed model meets all six requirements for one-

way hash function. The model proposed is practical for small

amount of data, which implies that can be used for

authentication (password verification), MAC. For file size less

than 6.2 KB it is faster than SHA-2 but for larger amount of

data the time to calculate hash value increases exponentially.

In future we need to see for non invertible matrices in GF()

and to speed up the calculating process of hash value.

8. ACKNOWLEDGMENT
All the Praises and Thanks be to Allah, the Lord of Heavens

and the Lord of the Earth and the Lord of the Worlds.

9. REFERENCES
[1] Zhang, Fuzhen. Matrix Theory. s.l. : Springer, 2011.

[2] Thoma H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, Clifford Stein. Introduction To Algorithms. s.l. :

MIT Press, 2001.

[3] Knuth, Donald. The Art Of Computer Programming.

Boston : Addison-Wesley, 1998. 0-201-89684.

[4] Fisher, R.A, Yates, F. Statistical tables for biological,

agricultural and medical research. London :

Oliver&Boyd, 1938. 0-02-844720-4.

[5] A Practical One Way Hash Algorithm based on Matrix

Multiplication. Mohammed Abu Taha, Mousa Farajallah,

Radwan Tahboub. s.l. : International Journal of

Computer Applications, June, 2011, Vol. e 23-No.2.

0975-8887.

[6] Shuffle an array or a list - Algorithm in Java. [Web site]

2009.http://www.vogella.com/articles/JavaAlgorithmsSh

uffle/article.html.

[7] Bishop, Davis. Intoduction to Cryptography with Java

Applets. Sudbury : Jones and Bartlett, 2003. 0-7637-

2207-3.

[8] History of Cryptography. [Web site]

http://en.wikipedia.org/wiki/History_of_cryptography.

[9] Schneir, Bruce. Applied Cryptography Protocols,

Algorithms and Source code in C. s.l. : John Wiley &

Sons, 1996. 0471128457.

[10] Forouzan, Behrouz. Cryptography and Network Security.

s.l. : McGraw Hill, 2008.

[11] One-Way Encryption and Message Authentication.

Mittmann, Johannes. 2005.

[12] Hill Ciphers and Modular Linear Algebra. Eisenberg,

Murray. 1999.

[13] A Composition Theorem for Universal One-Way Hash

Functions. Shoup, Victor. s.l. : IBM Zurich Research

Lab.

[14] Cryptography and Network Security Principles and

Practices. Stallings, William. s.l. : Prentice Hall, 2006. 0-

13-187316-4.

[15] RSA Laboratories. Hash Functions. [Web site] August

2012. http://www.rsa.com/rsalabs/node.asp?id=2176.

[16] Some Class of Invertible Matrices in GF(2). James S.

Plank, Adam L. Buchsbaum. s.l. : University of

Tennessee, 2007.

[17] Design of a robust cryptosystem algorithm for non

invertible matrices based on Hill cipher. Rushdi A.

Hamamreh, Mousa Farajallah. 05, s.l. : International

Journal of Computer Science and Network Security,

2009, Vol. i 9.

0

20

40

60

80

100

120

140

0 50000 100000 150000

SHA-2

Proposed
algorithm

